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ABSTRACT. In [And87], Anderson determines the homology of the degree n
Fermat curve as a Galois module for the action of the absolute Galois group
Go(¢n)- In particular, when n is an odd prime p, he shows that the action
of GQ(Cp) on a more powerful relative homology group factors through the
Galois group of the splitting field of the polynomial 1 — (1 — zP)P. If p sat-
isfies Vandiver’s conjecture, we give a proof that the Galois group G of this
splitting field over Q((p) is an elementary abelian p-group of rank (p + 1)/2.
Using an explicit basis for G, we completely compute the relative homology,
the homology, and the homology of an open subset of the degree 3 Fermat
curve as Galois modules. We then compute several Galois cohomology groups
which arise in connection with obstructions to rational points.
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1. INTRODUCTION

The Galois actions on the étale homology, cohomology, and homotopy groups of
varieties carry information about rational points. We revisit results of Anderson
[And87] on a relative homology group of the Fermat curve of prime exponent to
make his results amenable to computations of groups such as H'(Gg,n$P) and
H?(Gg, 7 A 78P) where Gg denotes a Galois group of a maximal extension of a
number field with restricted ramification and w3 denotes the abelianized geometric
fundamental group of the Fermat curve, or of an open subset. These groups arise
in obstructions of Ellenberg to rational points [E00] as well as in McCallum’s
application of the method of Coleman and Chabauty to Fermat curves [McC94].

Let k£ be a number field. The Fermat curve of exponent n is the smooth projective
curve X C P2 of genus g = (n — 1)(n — 2)/2 given by the equation

The affine open U C X given by z # 0 has affine equation 2™ 4+ y™ = 1. The closed
subscheme Y C X defined by zy = 0 consists of 2n points. Let Hy(U,Y;Z/n)
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denote the étale homology group of the pair (U ® k,Y ® k), which is a continuous
module over the absolute Galois group Gy, of k. The u,, X u, action on X given by

(€', ¢7) -y, 2] = (¢, Ty 2y (€1 ¢7) € pan X pin
determines an action on U and Y. These actions give Hy(U,Y;Z/n) the structure
of a (Z/n)[pn X pn] module. As a (Z/n)[un X pn) module, Hy (U, Y;Z/n) is free of

rank one [And87, Theorem 6], with generator denoted 3. It follows that the Galois
action of o € Gy, is determined by o8 = B, [ for some B, € (Z/n)[pn X fin]-

Anderson shows that B, is determined by an analogue of the classical gamma
function T, € Z/n"[u,], where Z/n*® denotes the strict Henselization of Z/n. In
particular, there is a formula [And87, Theorem 9, Theorem 7] recalled in (2.b) as
the equation d’*"(I',) = B, with d’*" defined in (2.a) and immediately below. The
canonical derivation d : Z/n*"[u,] — QZ/n"[u,] from the ring Z/n*"[u,] to its
module of Kéhler differentials allows one to take the logarithmic derivative dlogI',
of T',, which it is convenient to view as an element of a particular quotient of
OZ /1" [11,,]. See Section 2. For n prime, dlogT', determines B, uniquely [And87,
10.5.2,10.5.3]. The function o +— dlog T, is in turn determined by a relative homol-
ogy group of the punctured affine line Hy(A! — V(Z?;OI x%),{0,1};Z/n) [And87,
Theorem 10]. Putting this together, Anderson shows that, for n = p a prime, the
Gyc,) action on Hy(U,Y; Z/p) factors through Gal(L/Q((,)) where L is the split-
ting field of 1 — (1 — zP)P. Thara [Tha86] and Coleman [Col89] obtain similar results
from different viewpoints.

Let K denote the cyclotomic field K = Q((,), where (, denotes a primitive nth
root of unity, and let G be its absolute Galois group. When the exponent is clear,
let ¢ denote (, or ¢, for a prime p. Let x denote the classical Kummer map; for
0 € K*, let k() : Gk — up be defined by

o/

k(0)(o) = —.

(0)(o) 7

In Proposition 4.1, we determine dlog ', in terms of the classical Kummer map for
all n > 3, modulo indeterminacy which does not affect B,, with the answer being

dlogTy = Y72 k(1 = ¢79)(0)¢" dlog C.

Recall that Vandiver’s Conjecture for a prime p is that p does not divide h™, where
h* is the order of the class group of Q(¢, + Cgl). It has been verified for all p
less than 163 million. For n = p a prime satisfying Vandiver’s conjecture, we give
a proof that Gal(L/K) is isomorphic to (Z/p)" with » = (p + 1)/2 in Proposition
3.6. This is false for p not satisfying Vandiver’s conjecture as seen in Remark 3.8.
There are a couple of natural choices for such an isomorphism. In Corollary 3.7,
we show that the following map gives an isomorphism:

@ = () x [T w1 = ¢ Gal(L/K) = () "F.

For p = 3, we use the formula for dlogI', to compute B, explicitly in Lemma 5.5.
It is possible to extend this calculation to compute B, for all primes p and we will
make this computation available in a forthcoming paper. (As seen in Remark 5.3,
the element dlog ', and [And87, 10.5.2] do not determine B, when n is not prime
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so the calculation of B, when n is not prime will require further input.) Combining
the above, we obtain:

Theorem 1.1. Letp = 3 and K = Q((p). The G -action on H1(U,Y;Z/p) factors
through Gx — Gal(L/K), where L denotes the splitting field of 1 — (1 — zP)? (or
equivalently of x® — 323 +3). Write Hy(U,Y;Z/p) = Zy[Co, C1]/(¢5 — 1,¢7 — 1) and
Gal(L/K) = Z/pxZ/p. Then (co,c1) € Z/pxZ]p acts on Ly[Co, C1]/{¢5 —1,¢(7 —1)

by multiplication by B, = Zf,;io bi,jCéCf where

60’0:14*0070(2)

2
b071 = C1 — CO

2
bl,l = —C1 — Cy.

and where the rest of the coefficients b; ; are determined by b; ; = b; ;, and the fact
that b070 + bO,l + b072 =1, b170 + b171 + b172 =0, and b270 + bg,l + b272 =0.

We have an analogous calculation of Hq(U,Y;Z/p) for all primes p satisfying Van-
diver’s conjecture, which we will make available shortly.

Given the Galois action on Hi(U,Y;Z/n), we compute the Galois actions on
H,(U;Z/n) and H1(X;Z/n) for all n > 3 in Section 6.

These computations can be used to study rational points on varieties in the following
way. Let Z be a scheme over k, and for simplicity assume that Z has a rational point
b. (This assumption is unnecessary, but it is satisfied in the situations encountered
in this paper and it simplifies the exposition.) Choose a geometric point of Z with
image b and let ™ = 7 (Z%,b) denote the geometric étale fundamental group of Z
based at the chosen geometric point. The generalized Kummer map associated to
Z and b is the map & : Z(k) — H(G}, ) defined by

K(x) = [0 — v o]
where v is an étale path from b to a geometric point above z. Before returning to
the potential application to rational points, we remark that the map & is functorial
and the computation of dlogI', in Proposition 4.1 is obtained by applying & to the
K-map A" — V(30 2?) — Gr L

From k, we also obtain a map x*"P : Z(k) — H'(Gj,n*® ® Z,) defined to be the
composition of k with the map H'(Gy,n) — H(Gy, 7 ® Z,) induced by the
quotient map 7 — 2P ® Zy,, where Z;, denotes the p-adic integers. For Z a curve or
abelian variety over a number field, k*PP is well-known to be injective. Let S denote
a set of places of k including the infinite places, all the primes of bad reduction of
Z and a place above p. Let Gg = m1(Ok[1/S]) denote the Galois group of the
maximal extension of k ramified only over S. Assume that Z is proper to simplify
exposition. Then x*"P factors through a map x*"P : Z(k) — HY(Gg, 7 @ Z,).
Let m = [7]; 2 [7r]2 2 ... denote the lower central series of the profinite group ,
where [7],, is the closure of the subgroup [[7];,—1,7] generated by commutators
of elements of 7w with elements of [r],,—1. Using work of Schmidt and Wingberg
[SW92], Ellenberg [E1l00] defines a series of obstructions to a point of the Jacobian
of a curve Z lying in the image of the Abel-Jacobi map associated to b. The first
of these obstructions is defined using a map

2t HY (G, 7™ ® Z,)) — H*(Gs, ([7]2/[7]3) ® Zy)
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such that Kerds D Z(k). Zarkhin defines a similar map [Zar74]. The group
([7]2/[7]3) ® Z,, fits into a short exact sequence

0 — Zy(1) — (7 A7) ® Zp — ([n]2/[7]3) ® Z — 0.

There are mod p versions of §; and the generalized Kummer maps. A more detailed
account of Ellenberg’s obstructions is in [Wic12].

Thus computations of H'(Gg, 7 ® Z/p) and H*(Gg, (72" A 72P) ® Z/p) give in-
formation about rational points. Groups closely related to H'(Gs, 7" @ Z/p) also
appear in [CNGJ13] and [McC94].

The final section of this paper includes calculations of H'(Gal(L/K), M) and
H?*(Gal(L/K), M) for M each of H(U,Y;Z/n), H(U;Z/n), Hi(X;Z/n), and
Hy(U,Z/n)ANHy(U,Z/n). These can be inserted into the Hochschild-Serre spectral
sequence
H(Gal(L/K),H(Gg,,, M)) = H™(Gg rc, M),

where G5 1, denotes the Galois group of the maximal extension of L only ramified
at places above S, and Gg x = Gs. Since H1(U,Y;Z/n), H1(U;Z/n), H1(X;Z/n)
are P ® Z/n for Z = U/Y, Z = U and Z = X respectively, these are groups
mentioned above, and appear in Ellenberg’s obstructions. This is the subject of
on-going work.

1.1. Notation. Let n > 3 be an integer; often n will be a prime p. Let ¢ be a
fixed primitive n-th root of unity and K = Q(¢). For brevity, let A = Z/n, and let
A" denote the strict Henselization of A. If n = p is prime, then the field A4 is a
Henselian local ring and its strict Henselization is the separable closure A" ~ IF‘p.

If k£ is any number field, G denotes the absolute Galois group of k.

Definition 1.2. Given a primitive nth root /8 of # € k and o € Gy, then k(0)o
is the element of A such that

o ¥/f = ¢HO7 .

Remark 1.3. The map & : k* — H(G},Z/n(1)) defined by letting () be repre-
sented by the twisted homomorphism o — k(#)o is the generalized Kummer map
of G, with base point 1 € Gy, (k). Here Z/n(1) is the Galois module with un-
derlying group Z/n and Galois action given by the cyclotomic character. See, for
example, [Wicl2, 12.2.1 Example 1].

For § € K* and n = p, the map k(f) : Gk — Z/p is a homomorphism and is
independent of the choice of pth root of 6 because p), C K.

2. ANDERSON’S RESULTS, REVISITED

In this section, we recall results from [And87] that are relevant for this paper.
Recall that K = Q(¢), that U C A% denotes the affine Fermat curve over K with
equation z" 4+ y™ = 1, and that Y C U is the divisor defined by xy = 0. The path
B:[0,1] — U(C) given by t ~— (/t, {/1 — t), where {/— denotes the real nth root,
determines a singular 1-simplex in the homology of U relative to Y whose class we
denote by the same name.
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For m € N, let A,, denote the group ring over A of the finite group s, (C)*(m+1.
Then A,, has a natural Gg-action. For 0 < i < m, let {; denote a primitive nth
root of unity in the ith copy of u,(C). Then

A = Allo, -, Cn]/ (G —1,...,¢ — 1).

There is an action of Ay on U given by ¢} x ¢/ : (x,y) — (¢ix,¢ly). This action
stabilizes Y. Thus the relative homology group H; (U,Y; A) is a A;-module. Note
that H;(U,Y; A) has rank n? over A.

Anderson describes the G g-action on Hy (U, Y; A). First, [And87, Theorem 6] states
that Hy(U,Y; A) is a free rank one module over A; generated by the class 3.

Specifically, o € Gk acts A-linearly, and
o - (¢6¢1B) = (o - G§)(o - () Bo .
where B, is a unit in A; defined by
o-03=B,p.

Thus to describe the Gg-action on Hy(U,Y; A), it is necessary and sufficient to
describe the action on the element .

Anderson also proves that the action of the absolute Galois group Gg on H(U,Y; A)
factors through a finite quotient. This result is a consequence of the analysis in
the rest of the section. In particular, if n is a prime p, then ¢ € Gk acts triv-
ially on Hy(U,Y; A) if and only if o fixes the splitting field L of the polynomial
fp=1—(1—2P)?, [And87, Section 10.5]. In Section 3, we prove that Gal(L/K) is
an elementary abelian p-group of rank at most (p + 1)/2.

Anderson highlights the following application of this result. By [And87, Lemma,
page 558, there is a connection between the action of o € Gg on Hy(U,Y; A) and
the action of o on the fields of definition of points of a generalized Jacobian of X.

Theorem 2.1 ([And87], Theorem 0). Let S be the generalized Jacobian of X with
conductor co. Let b denote the Q-rational point of S corresponding to the difference
of the points (0,1) and (1,0). The number field generated by the coordinates of the

nth roots of b in S(Q) contains the splitting field L of the polynomial 1 — (1 —a™)",
with equality if n is prime.

Information on fields generated by points of the Jacobian of quotients of Fermat
curves is also contained in [CNGJ13], [CTT98], [Gre81], and[Tze07].

In the remainder of this section, we describe Anderson’s method for determining
B,. Let b; ; denote the coefficients of B, so that

By= Y b,
0<i,j<n
It will often be convenient to arrange the coefficients of B, in an n X n matrix.

Let w : Ay — A; be the map induced by swapping the two copies of u,(C), i.e.
by swapping (o and ¢;. Then w preserves the units in A;. Let (A;)" denote the
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symmetric units, i.e., the units fixed by w. If a; ; € A, then an element
> aiCd] € AY
0<i,j<n
is in (A])™ precisely when a; ; = a;; for all 7, j.

Fact 2.2. [And87, Theorem 7] If o € Gg, then B, € (A)". In other words, the
coefficients of B, are symmetric; b; ; = b;; for any 0 < 4,7 < n.

Next, consider the map d” : (A])” — A given by
(Caiicicicd) (X aiicics)
(Z aiijéCng) (Z am‘G@)

By [And87, Theorem 7], B, is in the kernel of d”. In particular, there is an equality
in A, given by

(X busciciad) (Yobiscicd) = (X bescici ) (Do buscics).

This gives, via the map AJ — A] sending (s — 1, the equality

(D biscict) (Do bisth) = (X bcicd) (3o buch) -

By Fact 2.2, the first terms on each side cancel giving

Zbi,jC(i) = Z bi 1.

This is only possible if the following is true.

> ai ¢l =

Fact 2.3. [And87, 10.5.4] If 1 < i < n, then > ., b;; = 0.

In other words, the entries of each column of the matrix B, sum up to zero, for all
but the zeroth column. By Fact 2.2, the entries of each row of the matrix B, also
sum up to zero, for all but the zeroth row.

Furthermore, consider the map d’' : AJ — (A)* given by

(2.a) Zaif(i) . (Z az‘Co) (ZZiaz‘Cl) 7

(> aicici)
as well as its extension d’*" : Af — (A])®, where A; = A; ®4 A®". The kernel
Ker(d'*") is determined in [And87, Proposition 8.3.1]; when n = p is prime, it is
the cyclic subgroup of order p multiplicatively generated by (.

Fact 2.4. [And87, Theorem 9] Let n > 3 and let Ker(d'*") denote the kernel of
d's". In AJ /Ker(d'*"), there exists a unique element I', which maps to B, under
d/Sh-

In the sequel, the notation I', will also be used to denote an element of /_\g repre-
senting this coset in A /Ker(d's").

Fact 2.5. [And87, 9.6 and 10.5.2] The difference B, — 1 lies in the augmentation
ideal (1 — 60)(1 — 61)A1.
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Consider the element I', such that
(2.b) d*"(T,) = B,.

By Fact 2.4, in order to determine B,, it suffices to find the preimage I',. To
accomplish this, Anderson looks at the logarithmic derivative homomorphisms from
the groups of units A} to the Kéhler differentials Q(Ay). This has the geometric
meaning of comparing with “the circular motive,” where the Galois action is more
transparent.

There is a commutative square

_ d _
Ay ——=(AF)”

dlogi ldlog

Q(Ao) —= Q(A1)",

where the bottom horizontal map is defined analogously to d’. Note that for each
m, the A,,-module Q(A,,) is free on generators {dlog ¢; to<i<m.-

Here i§ some notation needed to describe dlogI',. Let V = Al — L and let
V =V U{l}. Let A\g be a small counterclockwise loop around 1. Choose the
isomorphism

Hi(V5 A) = Al Ao = QA[A),
where \g — de%.

Consider the exact sequence from [And&7, §9]
0— Ao — H1(V; A) — H1(V; A) — 0,

or

(2.c) 0— A@ — QA[A] — H1(V; A) — 0,
€0

which identifies H1(V; A) as a quotient of Q(Ag).

Let Z denote the subscheme of V' defined by the vanishing of z¢(1 — zg), i.e., the
points 0 and 1 in V. Let ¢ € Hy(V, Z; A) denote the homology class represented
by the cycle given by the interval [0,1]. Let (o — 1) denote the cycle given by
concatenating the path o1 and the path ¢ traveled in reverse. Since Gi fixes the
endpoints of ¥, the cycle (o — 1)9 represents a class in Hy(V; A) = Hy(V,0; A).

Let ¥, denote the coset in Q(Ag)/Adlog(y which corresponds to the homology
class of (o — 1)t under (2.c). The following theorem computes dlogT', to be U, .

Theorem 2.6. [And87, Theorem 10] dlogT', € Q(Ag) represents the A" dlog (o-
coset V.

For this paper, the importance of Theorem 2.6 lies in the geometric description of
W,. This description shows that ¢ — W, is the image of a rational point under a
generalized Kummer map of the sort which arises in the section conjecture. We use
this observation to compute ¥, in Section 4. By Theorem 2.6, we have therefore
also computed dlogT',.
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To give a complete description of H1(U,Y; A) as a Galois module, it thus suffices
to achieve the following goal, which we complete in Section 5 for the case n = 3
and in future work for n an odd prime.

Goal: reconstruct B, from V.

3. GALOIS GROUP OF THE SPLITTING FIELD OF 1 — (1 — 2P)? OVER K

Let n = p be an odd prime and let { be a primitive pth root of unity. The choice
of ¢ fixes an identification Z/p — p, by sending i to ¢*. Let K = Q(().

Let L be the splitting field of the polynomial f,(x) = 1 — (1 — 2”)?. In Proposi-
tion 3.6, we determine the structure of the Galois group G = Gal(L/K) for primes
p satisfying Vandiver’s conjecture. The techniques in this section are well-known
to experts but we could not find an off-the-shelf reference for this result. Before
starting the proof, we describe some motivation for it in the next remark.

Remark 3.1. (1) As seen in Theorem 2.1, L is the field of definition of the
pth roots of a point b in a certain generalized Jacobian. By [And87, Sec-
tion 10.5], an automorphism o € G acts trivially on Hy(U,Y; A) if and
only if 0 € G. In view of this result, to determine the action of Gx on
H,(U,Y; A), it remains to determine the action of the finite Galois group
Gal(L/K).

(2) We would like to thank the referee for pointing out related work in [Gre81].
Recall that the Jacobian of the Fermat curve X of exponent p is isogenous to
J= Hij Jo where J, is the Jacobian of the curve y? = 2*(1—xz). Consider
the field extension Lj of Q generated by the points of order p on J. In
[Gre81, Theorem 4], Greenberg proves that Ly is the field K ({ ¢/ | n € CT)
generated over K by the pth roots of the real cyclotomic units. (Note that
Lemma 3.3 below implies that Ly C L.) He remarks that Gal(Ly/K) ~
(Z/p)t with t < (p—3)/2 and that t = (p—3)/2 when p satisfies Vandiver’s
conjecture.

(3) We would like to thank Sharifi for pointing out similar work in [AISS,
Section 2.8], where the authors determine the Galois group of the Galois

closure of {/1 — /1 — C over K. That extension is non-abelian over Q(s,2),

in contrast with the extension in this paper which is abelian even over K.

3.1. The splitting field of 1 — (1 — zP)P.

The prime p is totally ramified in K with p = (1 — ¢)P~! [Was97, Lemma 1.4].
Thus there is a unique place v = (1 — {) above p in K. Also, p = Hf;ll(l - (Y
and (1 —¢%) /(1 —¢) is a unit of Ok by [Was97, Lemma 1.3]. Thus v = (1 — ()
for all # = 1,2,...,p — 1. Since 1 = v,(p) = (p — Vv, (1 — (), it follows that
v(1—-CH)=1/(p—1)for1 <i<p-—1.

Let L’ be the maximal elementary abelian p-group extension of K unramified except
over v = (1 — ().

Lemma 3.2. (1) L=K({/1-¢,1<i<p-1).
(2) L C L' and Gal(L/K) is an elementary abelian p-group.
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Proof. (1) Let z = 1—aP where x is a root of 1 — (1 —2aP)P. The equality 2 = 1
implies that K C L. The p? — p non-zero roots of fp(x) are the pth roots
of l—¢'for1<i<p—1. Thus L=K({/1—-(,1<i<p-1).

(2) The field L is the compositum of the fields K({/1 — ¢?). For each i, the
extension K ({/1 — ¢?)/K is a Galois degree p extension ramified only above
1 — ¢? and oo. This proves both statements.

O

Lemma 3.3. The field L is the same as the fields Ly and L3 where

: —1

L= K({/1- {1 <i< P, yp);
: ~1

Ls = K( 1—gz,1g¢§p7,</5).

Proof. The idea of the proof is to show L C L3 C Ly C L.
L C Ls: For 251 <i <p—1, write j = —i. Then

V1= =31-¢i=%/c"-1- V-1
Since p is odd, ¢/—1 € K. So

Y1 =/ —¢) - Y/—1=1- (- ()7 Y/~1e L.

L3 g LQZ

Let (> denote a pth root of ¢. It suffices to show that (,» € L. Write p = bc with

ezl p—1
b=JJ-¢), e= ] 0=¢H
i=1 i:%
Note that (1 — ¢?)/(1— (%) = —¢'. Thus, & = (—=1)"7 ¢ % and
9 p—1  (p=D(p+1)

o= (-1 TR
Then

(p—1)(p+1) p—1 _
S Vel § [
i=1

Let J = (p—1)%(p + 1)/16 and note that pt J. Raising both sides of the previous

equation to the power %_1; shows that
P

—1

'!:7

G = WD (gpF ] (VT-0R) T

<.
[

for some pth root of unity ¢’. Thus CZ;IQ € Ly and (p2 € Lo.

Ly C L: This follows from the equality ¢/p = Hf;ll /1 — (L a
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3.2. Background on units in cyclotomic fields.

Let K = Q(¢) and let KT =Q(¢ + (™). Let E = Oy (resp. ET = O} ) denote
the group of units in Ok (resp. O+ ). Let V denote the subgroup of K* generated
by {£(,1—¢*:i=1,2,...,p—1}. Let W be the group of roots of unity in K.

Consider the cyclotomic units C = V N O* of K and the cyclotomic units Ct =
CN(OT)* of Kt [Was97, page 143]. By [Was97, Lemma 8.1], C' is generated by ¢
and CT; and C™ is generated by —1 and the units

ca=C1T2(1—¢")/1-Q),

for 1 < a < p/2. By [Was97, Theorem 4.12], the index of WE™ in E is 1 or 2. Let
h* denote the order of the class group of K.

Theorem 3.4. [Was97, Theorem 8.2] The index of the cyclotomic units C* in ET
is the class number h™ of K. Thus if Vandiver’s Conjecture is true for the prime
p, then E/EP is generated by C.

Remark 3.5. Vandiver’s Conjecture (first conjectured by Kummer in 1849) states
that p does not divide the class number A*. It has been verified for all p less than
163 million [BH11]. It is also true for all regular primes.

3.3. The Galois group of 1 — (1 — zP)?.

Proposition 3.6. If Vandiver’s Conjecture is true for the prime p, then the Galois
group of L/K is an elementary abelian p-group of rank (p +1)/2.

Proof. By Lemma 3.2, Gal(L/K) is an elementary abelian p-group. Let r be the
integer such that Gal(L/K) ~ (Z/p)". The field L is obtained by adjoining pth roots
of elements in some subgroup B C K*/(K*)?, and by Kummer theory B ~ (Z/p)".
By Lemma 3.3, B is generated by ¢ and 1 — ¢* for 1 < i < (p — 1)/2. Thus
r < (p+1)/2. Thus it suffices to show that r > (p+1)/2.

Note that B is generated by ¢ and 1 — ¢ for 1 < i < (p — 1)/2. Thus B is also
generated by ¢, 1 — ¢, and ¢, for 1 < a < p/2. Consider the subgroup B’ of
K*/(K*)P generated by ¢ and ¢, for 1 < a < p/2. Let 7’ be the rank of B’ over
Z/p. Since ¢ and €, are units, and 1 — ¢ has positive valuation at the prime above
p, it suffices to show that v’ > (p —1)/2.

Since —1 is a pth power, B’ is also the subgroup generated by the cyclotomic units
C. By hypothesis, p satisfies Vandiver’s conjecture and so Theorem 3.4 implies
that B’ ~ E/EP. By Dirichlet’s unit theorem, E =~ Z' 1 x tp. Thus r' =
el _1+1=(p-1)/2 O

We now describe an explicit set of generators for Gal(L/K). Given a primitive pth
root {/6 of § € K and o € G, recall from Definition 1.2 that x(#)o is the element
of Z/p such that

o4/8 = <07 5,
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Corollary 3.7. Let p be an odd prime such that pt h*. Then the following map
is an isomorphism:

p—1
Pl

® = r(¢) x [] w1~ ¢ : Gal(L/K) — (Z/p)"+.

i=1

Proof. By Lemma 3.3, L = K(Y/C,{/1—-¢" : i = 1,2,...,251). Let G C
K*/(K*)P denote the subgroup generated by S = {¢,1 - (7" :i = 1,2,...,p—;1}.
By Kummer theory, it suffices to show that S is a Z/p-basis for the Z/p-vector
space Gal(L/K), which follows from Proposition 3.6. O

Remark 3.8. If p | A" then p divides [E1 : CT| by [Was97, Theorem 8.2]. Since
E7 does not contain the pth roots of unity, ET has no p-torsion, and it follows that
there is an element ¢ of C* which is a pth power of an element in E+, but not a pth
power of any element of CT. Since —1 is a pth power and C7 is generated by —1
and {e, : 1 <i < p/2}, ¢ may be taken to be ¢ = ng:_;)ﬂ ese with 0 <e, <p—1.
Since B’ in the previous proof is generated by C, it follows that B’ is generated by
{¢, €4 : 1 < i < p/2}. Since ¢ maps to 0 in E/EP, this implies that the rank ' of
B’ is less than the cardinality of {¢,€,:1 < <p/2}. Thusr=7"4+1< (p+1)/2.
Thus if Vandiver’s Conjecture is not true for the prime p, then the rank of the
elementary abelian p-group Gal(L/K) is strictly less than (p 4+ 1)/2.

4. COMPARISON WITH AN (n — 1)-TORUS

Recall the notation from Section 2 that V = A' — p,,, V = VU{1}, and Z consists
of the points 0 and 1 in V. Recall that ¢» € H{(V, Z; A) denotes the homology class
represented by the path from 0 to 1 along the real axis, and that ¥, is defined to
be the element of Q(Ag)/A dlog (p determined by (o — 1)¥ and the exact sequence

0 — Adlog ¢y — Q(Ag) — H1(V;A) — 0,

where the quotient map Q(Ag) — Hy(V;A) is the map of Ay modules mapping
(o dlog (o to a small counterclockwise loop around (.

Note that there is a map from V to a torus which induces a Galois equivariant
isomorphism on H;(—; A). For example, this map could be the Abel-Jacobi map to
the generalized Jacobian. Furthermore, over K, this torus splits, and it is easy to
write down a map to a split torus inducing an isomorphism on Hy(—; A). Namely,
the map

iV = (Gpr) ™,

given by z +— (2 —(,2—(?,...,2— (") induces a Galois equivariant isomorphism
on Hy(—; A).

In this section, we use the isomorphism Hi(f; A) to compute ¥, in terms of the
classical Kummer map, relying on the facts that Hy((G,, x)*"~1; A) = A~ ! and
that the map k for G,, can be identified with the classical Kummer map. We will
furthermore see in Section 4.2 that this computation is compatible with Section 3.
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4.1. Computation of ¥,. Fix the isomorphism I : Q(Ag)/Adlog (g — A"~ ! given
by

n—1

Z a;i¢h dlog Co — (a1, az,...,an_1).

i=1
This isomorphism I can also be obtained by composing the isomorphism described
above Q(Ag)/Adlogly = Hy(V;A) with Hi(f;A) and an obvious isomorphism
H, ((Gm’[() ><(n—1); A) >~ An—lL,

Proposition 4.1. With notation as abowve,

Vo = (K(1 = ¢7)(0),-. (1= ¢ D)(0)).

Proof. Consider the maps “(\1/},)1) :V(K) — HY(Gk, Hy(V)), defined so that x{?,(x)
is represented by the cocycle

o ’y_lav
where v is a path from b to x, and composition of paths is written from right to
left, so y~lovy is a loop based at b. As in [Wicl2, p. 8], the dependency on the
choice of basepoint b in V is

(4.d) ki (2) = Kp(z) — Kp(V).

By definition, ¥, is the element of Hy(V;A) determined by (¢ — 1)3. Note that
(o = 1)y = 635 (1)(0)-

Since « is functorial, one sees that Hy(f)(c — 1)y = ﬁ%k)’f(o)(f(l))(a), where T is
the torus T' = (Gm,K)X("’l) and f is the map Vx — T defined above.

Since the geometric fundamental group respects products over algebraically closed
fields of characteristic 0 [sga03, XIII Proposition 4.6], the map kr = k3" for T
decomposes as the product of the maps k for G,, x which are each given by

K. 1c,1(0)(0) = K(0)0 as in Definition 1.2 and Remark 1.3. Thus /{‘%bf(o)(f(l))(a) is

identified with ]} KGyy xc,—ci (1= ¢")(0) when, via the projection maps, (T3, 1)
is identified with H?’;ll 771(Gm@, 1).

Applying (4.d) with b = 1, using the fact that x from Definition 1.2 is a homomor-
phism, yields that []i"; kg, ,—ci(1 —¢*) (o) = [T, &( 1:5 )(c). The proposition
follows from the above, since (1 —¢%)/(—¢*) =1— (" O

Combining with Theorem 2.6 (c.f. [And87, Theorem 10]), we obtain:

Corollary 4.2. Modulo a term of the form adlog(, with o € A",

n—1

dlog(T'y) = 3 ¢;¢" dlog ¢, with ¢; = k(1 —¢7")(0).
i=1
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4.2. Compatibility with Section 3.

Remark 4.3. In computing #(1—¢~%)(o) for k = K, one can restrict to the image
7 € Gal(L/K).

Corollary 4.4. Suppose n = p is a prime satisfying Vandiver’s conjecture. With
respect to the isomorphism ® : Gal(L/K) — A from Corollary 3.7 and the
isomorphism I : Q(Ag)/Adlog oy — AP~ from Section 4.1, the map

Gal(L/K) — Q(Ag)/Adlogp, 0 — ¥,
is the explicit A-linear map

(CO,Cl,...,Cp;l) — (01702,...,cp;1,cp;1 +251¢g, ..., o+ 2¢p,¢1 + ¢p)-

Proof. By Proposition 4.1, ¥, is computed

Uy = (k(1=¢1)(0), o (1= TP7Y)(0))
with respect to the isomorphism I. Fori =1,2,..., %, then k(1—¢~*) is identified
with the projection onto ¢;, the (i + 1)st coordinate of (Z/p)pT+1 ~ Gal(L/K) via
the isomorphism ®. Recall that (1 — ¢*)/(1 — (™) = —¢* and —1 is a pth power
since p is odd. Thus
R(1 = (") = R(L = () = k() = ico.

Rearranging terms yields that x(1 —¢~%) = k(1 —(*) —icy. Applying this equation
when i = 21 +1,..., p—1 shows that k(1 — (™) = k(1—¢~?~9) —icy = ¢, —ico.
This 1mphe5 that (1 — (") is the projection onto the (p — i+ 1)st coordinate c,_;
plus p — ¢ times the projection onto the first coordinate cg. ([l

4.3. Coordinate sum of ¥,. We include the following result for its own interest;
it is not needed in the computation of Hy (U, Y; A), H,(U; A), or H1(X; A) as Galois
modules, and it is not needed in the computations of Section 7. For o € Gal(L/K),
write U5 = (c1,...,¢p—1) as in Corollary 4.4.

Lemma 4.5. If 0 € Gy, with M = Q(3/p), then Zf;ll ¢i = Omod p. More
generally, if My = Q(Cp, ¢/p) and if T € Gal(My, Q(Cp)) is such that T(/p) = ¢ ¢/,
then Zf;ll ¢i = 7 mod p.

Proof. Write 6; = 1 — ¢, and note that [T/~ 19 = p. Thus H?}l V0, = ¢peM

is fixed by o € Gar. So [[V2) o(¥/8;) = ¢/p. By definition, o(/0;) = 0907 ;.
By Proposition 4.1, ¢; = kp(6;)o. Thus,

p—1 1
b=/ = /.
=1

It follows that 27~ ¢; = 0 mod p.

Similarly,
. p—1 bt
Gop=rlvp) = [T /o= o,
i=1

so>.? 1c”_]modp O
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5. EXPLICIT COMPUTATION OF B,

5.1. Determining B, from V,. Recall from Fact 2.4 that I'; is an element of
A, unique modulo the kernel of d’*" : A — A}, such that

d*"(T',) = B,.
Corollary 4.2 determines the coefficients of the logarithmic derivative dlog ', ; they

are the ones appearing in ¥,,, and explicitly described in Proposition 4.1.

When n is prime, the kernel of dlog is easy to manage and thus ¥, determines the
action of Gg on H1(U,Y; A) as seen in the next result. This result is implicit in
[And87, 10.5].

Proposition 5.1. Let n = p be a prime. Then ¥, uniquely determines B,,.

The following lemmas will be useful for the proof of Proposition 5.1.

Lemma 5.2. The kernel of dlog : A — Q(Ag) consists of elements x = Y 0<i<n a;¢h
such that ia; =0 € A for all 0 < i < n. In particular, when n is prime, _thg kernel
of dlog consists of the constant (in (o) invertible polynomials (Ash)* C AJ.

Remark 5.3. On the contrary, when n is not prime, this kernel can be significantly
larger. For example, when n = 6, it contains elements such as 3¢3 + 2¢3.

The following characterization of I', will be used to pinpoint the exact element in
a coset that I', represents.

Lemma 5.4. Writel', = Z()§i<n d;iCh, with d; € A", for an element in 1_\0X which

is a d"*"-preimage of B,. Then ds =Y .., d;i =1.

Proof. By Fact 2.5, B, — 1 is in the augmentation ideal (1 — ¢y)(1 — €1)A;. Since

L (Zag) )
A ST eTe)

it lies in the augmentation ideal if and only if the difference
(> aich) (Do aict) - (Do aicich)

does. But the augmentation of the latter is precisely (d% — dx) = dx(ds — 1). As
T', is invertible, ds, must also be invertible, hence dyx, = 1. (I

We are now ready to prove Proposition 5.1.

Proof. Consider U, = 7, ;¢ dlog (o, with ¢; € A", By Fact 2.4, [AndS87,
Theorem 9], B, is uniquely determined by T, in an explicit way, as B, = d’*"(T,).
Hence it suffices to show that I', is determined by ¥, in a way unique modulo the
kernel of d's".

Corollary 4.2 gives that
dlogT, = adlogo+ » ¢ dlog o,

0<i<n



GALOIS ACTION ON THE HOMOLOGY OF FERMAT CURVES 15

for some o € A%". Note that the kernel Ker(d'*") (cf. Fact 2.4) of d’*" : AJ — A

maps under dlog to the kernel Ker(d") of the map

ds" - Q(Ag) — Q(Ay),
which is given by dlog(d’*"), i.e.

" (D aigidlog Co) = > ai¢h(1 = ¢f) dlog Go + Y ai¢i (1 — ¢5) dlog (i

By [And87, 8.5.1], Ker(dg") is precisely A%"dlog(y. When n is prime, dlog :
Ker(d'*") — Ker(dgh) is an isomorphism by [And87, 8.3.1], which determines
Ker(d'*"). Hence the ambiguity that a introduces is irrelevant for the computation
of B,.

The remaining obstruction to reconstructing I';, and therefore B, is the kernel of
dlog : Aj — Q(Ao).

By Lemma 5.2, when n is prime, the kernel of dlog is A%" ~ IF‘; C AJ. Suppose
a lies in this kernel; this means that dlog(al'y) = dlog(T'y). On the other hand,
d'*"(al',) = ad"*"(T',) = aB,, thus a could introduce an ambiguity.

Nonetheless, this ambiguity can be eliminated using Lemma 5.4, which asserts that
the sum of the coefficients of I', is fixed and equals one. Hence the sum of the
coefficients of al',, for a € IF‘;7 must be a. By Lemma 5.4, this implies that al', is
not a preimage of B, unless a = 1.

In conclusion, when n is prime, dlogI', uniquely determines I', and therefore B, .
O

In theory, by Proposition 5.1, the coefficients ¢; of ¥, studied in Section 4 uniquely
and explicitly determine the coefficients of B,, and thus the action of Gx on
H,(U,Y;A). We carry out this computation explicitly when n = 3 in the following
subsection.

5.2. The case n = 3. Consider the smallest example, i.e., that of n = 3. Write
Uy = (160 + 263) dlog o,
for ¢1,c9 € IF‘,, ~ A Write
Ty = do + d1o + daF,

with d; € ]Fp such that dg + dy + do = 1. To determine the d;’s in terms of the ¢;’s,
it is easier to work with the nilpotent variable y = (; — 1 instead of {y and use the
basis dy = (p dlog (o of Q(Ap).

Indeed, I'y = 1+ (d1 — d2)y + d2y?, and

U, = (c1 + c2 + c2y)dy.
By Fact 2.6, dlogI', agrees with ¥, modulo terms in Fzdlog ¢y = F3(y + 1)2dy.
Therefore, for some « € F3, one sees that

leg Fa’ - \IIO' + Oé(y + 1)2dya
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which yields the equalities
do —di = c+«
—dy = (c+a)’ +c—a

0=ds(c+ o)+ (c+ a)(c2a — o) + o,

where ¢ = ¢; + ¢o. In particular, o must be a solution of the polynomial equation
o —a+c=0.
For an arbitrary choice of solution «a, the coefficients of I', are
di=c1 —a—(c+a)

dy = —co+a—(c+a)

Note that the inverse of I', expressed in the original (y-basis is
Dot = (14 di+dy+ (da = di)?) + ((d2 = d1)® = di)Co + ((d2 — d1)? — d2) (3.
In terms of the ¢’s and «, this becomes

ol =(4e—c—(c+@)?) +(cate—(c+ @)+ (e2— a— (c+a)?)EE.

Now B, = d'*"(I'y) can be computed.
Lemma 5.5. Suppose ¥, = (c1(o + c2(3) dlog (o, and let b; ; be the coefficient of
¢i¢! in B,. Then

bo)o =14c—c — (CQ — Cl>2
(5.e) bo1 = 1 — (2 — 1)

b1)1 = —C1 — (02 — 61)2.
The rest of the coefficients are determined by symmetry b; ; = b, ; and the fact that
boo +bo1+bo2a=1,b1o+bi1+bi2=0, and bao+ba1+b22=0.

Remark 5.6. From the proof of Corollary 4.4, if i =1,..., p—gl, then k(1 —(7%) =
¢p—i—ico. By Proposition 4.1, o = r(1—(~?2). Rearranging terms gives cg = ca—cy,
and it follows that Lemma 5.5 completes the proof of Theorem 1.1.

6. HOMOLOGY OF THE AFFINE AND PROJECTIVE FERMAT CURVE

In this section, we determine the Galois module structure of the homology of the
projective Fermat curve X and its affine open U = X — Y with coefficients in
A=7Z/nfor all n > 3.

6.1. Homology of the affine curve. We first determine the Galois module struc-
ture of Hy(U), where H;(U) abbreviates H;(U; A), and more generally, all homology
groups will be taken with coefficients in A.

The closed subset Y C U given by zy = 0 consists of the 2n points
Ri=1[¢C":0:1], Qi=[0:¢":1].
Thus, Ho(Y) =~ Ay ® Ay is generated by (o @ 0 and 0@ ¢;. The first copy indexes

the points R; and the second copy indexes the points @);. The homomorphism
Hy(Y) — Ho(U) ~ A sends both (o ®0 and 0 ¢; to 1.
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Note that Hy(Y') is an A;-module via (o — (o @ 1 and ¢; — 1 (3. The boundary
map 6 : Hi(U,Y) — Hy(Y) is a A;-module map given by

(6.1) B—100-061.

Lemma 6.1. There is an exact sequence of Galois modules

(6.8) 0 — H\(U) = Hi(U,Y) % Ho(Y) — Ho(U) — 0.
The first Betti number of U is (n — 1)2.

Proof. This follows from the long exact sequence for relative homology, using the
facts that Hy(Y) = 0 and Ho(U,Y) = 0. The Betti number is the A-rank of Hy (U);
note that Hy(U,Y), Ho(Y'), and Ho(U) are all free A-modules, hence

rank(H;(U)) = rank(H; (U,Y)) — rank(Hy(Y")) + rank(Ho(U)).
So, the rank of Hy(U) is n®? —2n+ 1= (n —1)2. O

An element W € Ay will be written as W =3, .., ai CiCl.

Proposition 6.2. Let W = Zogi,jgn—l aij((%(f be an element of A1, and consider

the corresponding element W8 of Hi(U,Y). Then W restricts to Hy(U) if and

only if for each 0 < j < n —1, 2?2—01 aj; = 0, and for each 0 < i < n —1,
n—1

2 j=0 @ij = 0.

Proof. By Lemma 6.1, W3 € H{(U) if and only if W3 € ker(d). Note that, by

(6.0),

5B =(CaN(1e0-081)=(a0-0o1,
and similarly,

S(GR =1a¢G)1e0-081)=180-0&(.

Thus
SWE) = Y ayd(Gicin)
0<i,j<n—1
=> a(leonled)1e0-0a1)
= Zaij(Cé ©0—0®¢)).
So W € ker(0) if and only if the rows and columns of W sum to zero. O

6.2. Homology of the projective curve. We next determine the Galois module
structure of Hy(X), which has rank 2g = n? — 3n + 2.

Proposition 6.3. (1) There is an exact sequence of Galois modules and A-
modules:

0 — Hy(X) — Hy(X,U) 2 Hy(U) — Hi(X) — 0.
(2) The image of D is Stab({o(1) where Stab({o(1) consists of WG € Hy(U)

which are invariant under (oCy, i.¢€., for which a;y1 j+1 = a;j, where indices
are taken modulo n when necessary.

(8) As a Galois module and A-module, Hy(X) = Hy(U)/Stab(¢p¢1).
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Proof. (1): The long exact sequence in homology of the pair (X,U) implies that
the sequence

is exact. Since U is affine, Hy(U) = 0. It thus suffices to show Hy(X,U) = 0.
This follows from the fact that Hy (X, U) is isomorphic as an abelian group to the
singular homology of (X (C),U(C)), where X (C) and U(C) are given the analytic
topology.

Here is an alternative proof that Hi(X,U) = 0 which does not use the analytic
topology and which will be useful for part (2). It follows from [And87, §4 Theorem
1] that Anderson’s étale homology with coefficients in A [And87, §2] is naturally
isomorphic to the homology of the étale homotopy type in the sense of Friedlander
[Fri82]. It follows from Voevodsky’s purity theorem [MV99, Theorem 2.23] and the
factorization of the étale homotopy type through A! algebraic topology [Isa04] that
there is a natural isomorphism H;(X,U) & ﬁi(\/(X_U)(f)P%), where H; denotes
reduced homology. (For this, it is necessary to observe that the proof of [MV99,
Theorem 2.23] goes through with the étale topology replacing the Nisnevich topol-

ogy.) Thus
A1) ifi=2
0 otherwise,

Hi(Plf; A) = {

where A(1) denotes the module A = Z/n with action given by the cyclotomic
character. Over K, A(1) = A. Tt follows that

H\(X,U) = Hi(V x_uym)Pi A) = O(x vy () Hi(Ps A) = 0.

As a third alternative, one can see that Hqi(X,U) = 0 using [Mil80, VI Theorem
5.1] and a universal coefficients argument to change information about cohomology
to information about homology.

(2) As above,
Hy(X,U) = Hi(V x_uy1)PR) = x vy @) Hi(PR) = &x _u)@)AQ).

For n € (X — U)(K), let n also represent the corresponding basis element of
O (x -1 (®)A(1). Then D(n) is represented by a small loop around .

Note that the coordinates of n are [¢ : —e : 0] for some nth root of unity e. In
particular, n is fixed by (p¢y. The loop D(n) is therefore also fixed by (y¢1 because
(oCq1 preserves orientation.

Consider the subset Stab((p(1) of elements of H; (U) fixed by (p¢1. Then Stab({p¢1)
contains the image of D. In fact, Stab((p(1) = Image(D). To see this, it suffices to
show that both Stab((y(;) and Image(D) are isomorphic to A"~ 1.

By (1), one sees that Image(D) is isomorphic to the quotient of Ho(X,U) by the
image of Ho(X) — Hy(X,U). Since X is a smooth proper curve, Ha(X) = A(1)
and Ha(X,U) = @(x_yy®)A(1). The map Hy(X) — Hz(X,U) can be described as
the map that sends the basis element of A(1) to the diagonal element & ;)7 1-
It follows that Image(D) ~ A"~ ! as claimed.
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Now ¢y and {3 act on Hy(U,Y) via multiplication. Note that these actions have
the effect of shifting the columns or rows of W and thus stabilize H;(U). The
stabilizer of (y¢; is isomorphic to A™~! because an element of the stabilizer is
uniquely determined by an arbitrary choice of ag1, ags, - - -, Gon-

(3) is immediate from (1) and (2). O

7. COMPUTING GALOIS COHOMOLOGY WHEN p = 3

In this section, we explicitly compute several cohomology groups when p = 3. Let

e=Cand f=(1.

7.1. Computation of B,. Let o and 7 denote the generators of G = Gal(L/K) ~
(Z/3)? such that

0 /¢ R/ 7Y/
V-t 1=t V-t 1=
The equality —¢(1 — ¢~!) = 1 — ¢ shows that (¢1)s =0, (c2)y = 1 and (¢1), = 1,
(c2)r = 1. By Lemma 5.5, this implies that
By =1—(e+ f)+ (e —ef+ [*) = (*f +ef?)
(70) — (et H1-e)(1- ),
Br=1+(e+f)—(+ef+ )+ f7

7.1.1. The kernel and image of B. Let G = (o, 7). Consider the map
B :F5|G] — Ay, B(o) = B,.

When p = 3, the domain and range of B both have dimension 9. Of course, B is not
surjective since its image is contained in the 6 dimensional subspace of symmetric
elements.

Lemma 7.1. When p = 3, the image of B has dimension 4 and the kernel of B
has dimension 5. In particular, Im(B) consists of symmetric elements whose 2nd
and 3rd rows sum to 0, i.e., elements of the form

ago+ao1(e+ f)+aox(e*+ f?)+aref — (apt +a11) (e’ f+ef?)+ (ao1 +ar1 —agz)e? f;
and Ker(B) is determined by the relations:
Bre+ B, + By =0,
B,2; — B,2 — B, + B =0,
B,. — By — B. + By =0,
Boayz — Byo — Bra + By =0,
By — By — B2 + By = 0.

Proof. Magma computation using (7.h). O
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7.2. Cohomology of Gal(L/K). Since ¢ has order 3, by [Bro82, Example 1.1.4,
Exercise 1.2.2], the projective resolution of Z as a Z[{c)]-module is

l1-0o

ZIG] =7 Zja) T 7)q)

where G = Gal(L/K) = (0,7 | 03 = 7% = [0,7] = 1) ~ (Z/3)?. By [Bro82,
Proposition V.1.1], the total complex associated to the following double complex is
a projective resolution of Z as a Z[G]-module:

l—0o

]1+U+o2

Z[G) vile

\L1+T+7'2 \L1+T+T2

Z[G] 7(170)Z[G7](1+U+Ji

Z[G]1+a+a

Therefore, to compute H' (G, M), one can compute the cohomology of the complex

1+0+02 M

1o __ M {, @
M= @ oM
I+r+72 7 M.

Given h € F3[G], let Annps(h) = {m € M | hm = 0}. Let M = A;.
Lemma 7.2. Let M = Ay with e =€y and f = €.
(1) Annp(1+7+47%) = M.
(2) Annp(1+0+40%) = (1—e,1— f) consists of all m = > m;je' fI such that
> mij = 0.
(3) Aanpy(1—0)=(1+e+e? 1+ f+ f?).
(4) Ao (1=7) = (e = f,1+ f+ f?).

Proof. (1) Every m € M is in the annihilator of 1+7+72 because 1+ B, + B2
equals

e+ )= (+ef+ )+ +(e+ )+ (e +ef + ) +ef
e+ e +ef +f7) = (e+ e f? + (e +ef + f2)e 2,
which is zero.
(2) Note that B, =1— (e + f)(1 —e)(1 — f), which gives that
14+ B, + By = (e —ef + A1 +e+ )1+ f+ f?)
=(L+e+e)1+S+/7).
Note that (1 + B, + By2)el f9 = (1 + B, + By2), so for m = Z” m; jet f7,
(14 By + By2)m = (14 By + By2)(>_ mi ;).

,J
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Thus Anny, (1 + B, + B,2) consists of m € M whose entries sum to 0.

(3) Note that (1 — o)m = 0 if and only if om = m which in turn simplifies
to (e + f)(1 —e)(1 — fym = 0. Thus Anny(1 — o) is generated by the
annihilators of 1 —e and 1 — f and e+ f, which are 1 +e+e? and 1+ f + f?
and 0.

(4) A Magma calculation using that 1 — B, = —(e+ f) + (e? + f?) +ef — e f2.

(I

7.3. Preliminary calculations. Consider the maps X : M — M2, Y : M? —
M3, and Z : M3 — M*. The goal is to compute ker(Y)/im(X) and ker(Z)/im(Y).

After choosing a basis for M, the maps X, Y, and Z can be written in matrix form.
The basis of M chosen here is

17f)f27e’ef7ef27627e2f762f2'

By Lemma 7.2, all of the entries of the matrix V for the map Nm(7) : M — M
are 0. All of the entries of the matrix U for the map Nm(o) : M — M are 1 since
Nm(o) acts on each element of M by summing its coefficients.

Let S be the matrix for the map 1 — B, : M — M. Let T be the matrix for the
map 1 — B, : M — M. Here are the matrices S and T

[0 1 2111 2 1 0]
2011110 21
1 2011110 2
21 0012 111
S=102 120111 1]|;
1021 20111
1 1121001 2
1 11021201
|11 110212 0|
and ~ _
02121010 2
1 02021210
2101020 21
1 02021210
T=(21 01020 21
02121010 2
2101020 21
02121010 2
|1 0202121 0|

The block matrices for X, Y, and Z are given as follows:
X = [ S T ] ;
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S T 0 0
Z=|10 -U V=0 0
0 O S T

7.4. Calculation of H'(Gal(L/K), M). The plan is to compute the cohomology
of the complex:

1+<7+a'2 M

1—0o M 1/—7' )
M= & aa>M
}) o / o
1+7+72 — M.

Lemma 7.3. The kernel on : M? — M? has dimension 13 and a basis is:

(f -
(e —e2f
(1*62f ef —ef? —eXf +e*f?),
ef +ef?+e*f—ef?),
ef+ef2 +e’f —e*f?),
ef —ef? —e*f + e’ f?),
6f+ef2+e2f 2f2)

(
(f? (=
(=
(
(=
(ef —ef? —e*f +ef?),
(
(
(
(
(

e
)69
) ®
A e
(ef =)@
(ef2 A e
( e
Ao
00 (1 —ef —ef?—e2f —ef?),
0& (f+ef+€°f),
00 (f2+ef?+e2f?),
0 (e +ef +ef?),
0@ (e +e*f + e f?).

Proof. Magma calculation. O

Lemma 7.4. The image of X : M — M? has dimension 4 and a basis is:
(I-f =+ f e —f —ef +ef?—e*+ef),
(=l —e+eHel-f+ [ —e—ef?—e?+e'f?),
(e—efr =+ (f—fPHe—ef —e +ef?),
(ef —ef? = f+ef) @ (-1+ fre—ef’ = f+ef?).

Proof. Magma calculation. O

Note that the image of X is contained in the kernel of Y.
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Proposition 7.5. The dimension of H'(Gal(L/K), M) is 9 and a basis is:
(f*—e) 0,
(ef? = fe*) &0,
(2 +e*f+e’f*) a0,
(€f —e*f) @ (ef —ef? —ef +€f?),
0@ (1—ef —ef? —ef—e*f?),
06 (f +ef +ef),
0@ (f2 +ef?+e*f?),
0& (e+ef +ef?),
0@ (e? +e%f +e2f2).

Proof. The quotient H'(Gal(L/K), M) = ker(Y)/im(X) can be computed using
the complement function in Magma. |

7.5. Calculation of H?(Gal(L/K), M). In this section, we compute the kernel of
Z : M3 — M* modulo the image of Y : M? — M?3.

Proposition 7.6. The dimension of H*(Gal(L/K), M) is 13 and a basis is:

(f+ef +e2f) @ 0 @ 0,
(f2+€f2+€2f2) @ 0 D 07
(et+ef+ef’) @ 0 @ 0,
(e +e’f+ef?) @ 0 o 0,
0 & (f2762f2) D Oa
0 @ (ef?—e€2f?) @ 0,
0 @ (e2-¢€2f?) o 0,
0 @ (e2f—¢€%f?) @ O,
0 & 0 @& (1—ef —ef?—e*f —e2f?),
0 & 0 & (f+ef +e2f),
0 & 0 O (fP+ef?4+e2f?,
0 & 0 ® (etef+ef?),
0 & 0 @ (2 +e2f+e2f?)

7.6. First and second cohomology with coefficients in H;(U). Recall that
V = H;(U) has dimension (p — 1)2. If p = 3, then V is a 4-dimensional subspace
of M and a basis for V is:

1 0 -1
v = 0 3
-1 0 1 |
[0 0 0 ]
Vo = 1 0 -1 )
-1 0 1 |
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0o 1 -1
vg=| 0 O ;
|0 -1 1 |
[0 0 0 ]
Vg = 0 1 -1
| 0 -1 1 |

Let X3, Y1, and Z; be the restriction of X, Y, and Z respectively. Similarly, let
S1=1-B,, Ty =1—B,;,U; =Nm(c), and V; = Nm(7) be the restrictions of S,
T, U, and V respectively. Then T, Uy, and V; are each the 4 x 4 zero matrix and

-1 -1 -1 -1

1 1 1 1

Then
X1:[31 T1:0];

| Ui=0 Th1 =0 0

n=1 " ~S vi=o |
S, Ti=0 0 0
Zi=| 0 —U;=0 Vi=0 0
0 0 S T, =0

Proposition 7.7. The dimension of H*(G, H1(U)) is 6 and a basis is
v2 ©0,v3® 0,04 D 0,0® (v1 —v4),0D (v2 —v4),0D (v3 — v4).

The dimension of H*(G, H1(U)) is 9 and a basis is:

(v —v) @& 0 @ O,
(vo4+vy) @& 0 @ O,
(v3+ve) & 0 @ O,

0 & vy @ 0,

0 @& vs & O,

0 & va & O,

0 & 0 & (’Ul — 114)7

00 & 0 & (v2+wa),

0 & 0 & (vs+wa)

7.7. First and second cohomology with coefficients in H,(U) A Hy(U). The
vector space W = H;(U) A H1(U) has dimension ((”_21)2) = 6.

Proposition 7.8. Let W = H;(U) A H1(U). Then HY (G, W) = W? (with dimen-
sion 12) and H*(G,W) = W3 (with dimension 18).
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Proof. The map S™ : VAV — VAV induced by S = (1— B,) is the exterior square
of S1. One computes that S” is the 6 x 6 zero matrix. Similarly the matrices for T,
U” and V" are zero. Then H'(G, W) = W? since Im(X") = 0 and Ker(Y) = W2

Also H*(G,W) = W3 since Im(Y") = 0 and Ker(Z) = W3. O
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