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ARITHMETIC OF ABELIAN VARIETIES
IN ARTIN-SCHREIER EXTENSIONS

RACHEL PRIES AND DOUGLAS ULMER

ABSTRACT. We study abelian varieties defined over function fields of curves in
positive characteristic p, focusing on their arithmetic in the system of Artin-
Schreier extensions. First, we prove that the L-function of such an abelian
variety vanishes to high order at the center point of its functional equation
under a parity condition on the conductor. Second, we develop an Artin-
Schreier variant of a construction of Berger. This yields a new class of Jaco-
bians over function fields for which the Birch and Swinnerton-Dyer conjecture
holds. Third, we give a formula for the rank of the Mordell-Weil groups of
these Jacobians in terms of the geometry of their fibers of bad reduction and
homomorphisms between Jacobians of auxiliary Artin-Schreier curves. We
illustrate these theorems by computing the rank for explicit examples of Jaco-
bians of arbitrary dimension g, exhibiting Jacobians with bounded rank and
others with unbounded rank in the tower of Artin-Schreier extensions. Fi-
nally, we compute the Mordell-Weil lattices of an isotrivial elliptic curve and a
family of non-isotrivial elliptic curves. The latter exhibits an exotic phenom-
enon whereby the angles between lattice vectors are related to point counts
on elliptic curves over finite fields. Our methods also yield new results about
supersingular factors of Jacobians of Artin-Schreier curves.

1. INTRODUCTION

Let k be a finite field of characteristic p > 0 and suppose F' = k(C) is the function
field of a smooth, projective curve C over k. Given an abelian variety J defined
over F, the Birch and Swinnerton-Dyer (BSD) conjecture relates the L-function of
J and the Mordell-Weil group J(F'). In particular, it states that the algebraic rank
of the Mordell-Weil group equals the analytic rank, the order of vanishing of the
L-function at s = 1. If the BSD conjecture is true for J over F and if K/F is a
finite extension, it is not known in general whether the BSD conjecture is true for
J over K.

In [UImO07], the second author studied the behavior of a more general class of
L-functions over geometrically abelian extensions K/F. Specifically, for certain
self-dual symplectic or orthogonal representations p : Gp — GL,(Q,) of weight w,
there is a factorization of L(p, K, T'), with factors indexed by orbits of the character
group of Gal(K/F') under Frobenius, and a criterion for a factor to have a zero at the
center point of its functional equation. Under a parity condition on the conductor
of p, this implies that the order of vanishing of L(p, K4,T) at T = |k|_(“""'1)/2 is
unbounded among Kummer extensions of the form Ky = k(t'/?) of F = k(t); see
[Ulm07, Theorem 4.7].
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The system of rational Kummer extensions of function fields also plays a key
role in the papers [Ber(08 [Ulm13al[UlmI4al. For example, [Ber08] proves that the
BSD conjecture holds for Jacobians Jx /K4 when X is in the class of curves defined
by equations of the form f(z) — tg(y) over F' = k(t) and K, is in the Kummer
tower of fields Ky = k(t'/?). Also, [UIm13al gives a formula for the rank of Jx over
K4 which depends on homomorphisms between the Jacobians of auxiliary Kummer
curves.

In this paper, we study these phenomena for the system of Artin-Schreier exten-
sions of function fields of positive characteristic. The main results are analogous to
those described above: an unboundedness of analytic ranks result (Corollary 2.7.3]),
a proof of the BSD conjecture for Jacobians of a new class of curves X over an Artin-
Schreier tower of fields (Corollary B:I4), and a formula for the rank of the Mordell-
Weil group of Jx over Artin-Schreier extensions which depends on homomorphisms
between the Jacobians of auxiliary Artin-Schreier curves (Theorem [B2.7]).

There are several reasons why the Artin-Schreier variants of these theorems are
quite compelling. First, the curves which can be studied using the Artin-Schreier
variant include those defined by an equation of the form f(z)—g(y)—t over F = k().
The geometry of these curves is comparatively easy to analyze, allowing us to apply
the main results in broad generality. For example, Proposition . 4.1] illustrates that
the hyperelliptic curve 22 = g(y) + t with g(y) € k[y] of degree N satisfies the
BSD conjecture, with unbounded rank in the tower of Artin-Schreier extensions
of k(t), under the very mild conditions that p t+ N and the finite critical values
of g(y) are distinct. Second, the structure of endomorphism rings of Jacobians of
Artin-Schreier curves is sometimes well understood. This allows us to compute
the exact value of the rank of the Mordell-Weil group in several natural cases.
Finally, some apparently unusual lattices appear as Mordell-Weil lattices of elliptic
curves covered by our analysis. We illustrate this for the family of elliptic curves
Y? = X(X+16b%)(X +t2) (where b is a parameter in a finite field) in Subsection [7.3l

Here is an outline of the paper. In Section [2, we consider certain elementary
abelian extensions K of F' = k(C) with deg(K/F) = q a power of p, and we study
the L-functions L(p, K,T) of certain self-dual representations p : G — GL,(Q,).
Using results about Artin conductors of twists of p by characters of Gal(K/F), we
prove a lower bound for the order of vanishing of L(p, K,T') at the center point of
the functional equation. In the case of an abelian variety J over F' whose conductor
satisfies a parity condition, this yields a lower bound for the order of vanishing of
L(J/K,s) at s = 1, Corollary 273

In Section B} we prove that a new class of surfaces has the DPCT property
introduced by Berger. More precisely, we prove that a surface associated to the
curve X given by an equation of the form f(x)—g(y)—t over F' = k(t) is dominated
by a product of curves and, furthermore, this DPC property is preserved under
pullback to the field K, := F(u)/(u? — u — t) for all powers ¢ of p. It follows
that the BSD conjecture holds for the Jacobians of this class of curves X over this
Artin-Schreier tower of fields, Corollary [3.1.4] In Section ] we combine the results
from Sections 2] and Bl to give a broad array of examples of Jacobians over rational
function fields k(u) which satisfy the BSD conjecture and have large Mordell-Weil
rank; see, e.g., Proposition 411

Section bl contains a formula for the rank of Jx over K, in terms of the geometry
of the fibers of bad reduction of X and the rank of the group of homomorphisms

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ABELIAN VARIETIES IN ARTIN-SCHREIER EXTENSIONS 8555

; Section 3
Section 2
Analvti Surfaces
o l};tlc dominated
e \ by a product
Section 4
Examples—
Lower
bounds
Section 5
A rank
formula
/ Section 7
Section 6 ection
Examples—
Examples— f-------------- N e
Explicit
Exact ranks :
points

FIGURE 1. Leitfaden

between the Jacobians of auxiliary curves. (The auxiliary curves are C, and Dy,
defined by equations 27 — z = f(z) and w? — w = ¢(y), and we consider homomor-
phisms which commute with the F,-Galois actions on C, and D,; see Theorem[5.2.1])
Section [6l contains three applications of the rank formula: first, by considering cases
where C, is ordinary and D, has p-rank 0, we construct examples of curves X over
F with arbitrary genus for which the rank of Jx over K, is bounded independently
of g; second, looking at the case when f = g, we construct examples of curves X
over F' with arbitrary genus for which the rank of X over K, goes to infinity with
q; third, we combine the lower bound for the analytic rank and the rank formula to
deduce the existence of supersingular factors of Jacobians of Artin-Schreier curves.
Finally, in Section [7, we construct explicit points and compute heights for two
examples. When ¢ = 2 mod 3, the isotrivial elliptic curve E defined by Y2 +tY =
X3 has rank 2(¢ — 1) over K, = F,2(u) where u? —u = ¢. We construct a subgroup
of finite index in the Mordell-Weil group, and we conjecture that the index is
H1(E/K,)|'/? (which is known to be finite in this case). For b ¢ {0,1,—1}, the
non-isotrivial curve Y? = X (X 4 16b%)(X + t2) has rank ¢ — 1 over K, and again
we construct a subgroup of finite index in the Mordell-Weil group. In this case,
the lattice generated by g — 1 explicit points is in a certain sense a perturbation of
the lattice A;_; where the fluctuations are determined by point counts on another
family of elliptic curves. This rather exotic situation has, to our knowledge, not
appeared in print before.
An appendix, Section8 collects all the results we need about ramification, New-
ton polygons, and endomorphism algebras of Artin-Schreier curves.
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Figure [Il shows dependencies between the sections. A dashed line indicates a
very mild dependency which can be ignored to first approximation, whereas a solid
line indicates a more significant dependency. We have omitted dependencies in the
appendix; these exist in Sections 2, 6, and 7, and at one place in Section 3.

2. ANALYTIC RANKS

In this section, we use results from [Ulm07] to show that analytic ranks are often
large in Artin-Schreier extensions. The main result is Corollary 2.7.3]

2.1. Notation. Let p be a prime number, let IF,, be the field of p elements, and let
k be a finite field of characteristic p. We write r = |k| for the cardinality of k. Let
F = k(C) be the function field of a smooth, projective, irreducible curve C over k.
Let F*P be a separable closure of F. We write F, for the algebraic closure of F,
in F5¢. Let G = Gal(F*°?/F') be the Galois group of F.

Let £ # p be a prime number and let Q, be an algebraic closure of the /-adic
numbers. Fix a representation p : Gp — GL,(Q,) satisfying the hypotheses of
[Ulm07) §4.2]. In particular, p is assumed to be self-dual of some weight w and sign
—e. When € = 1 we say p is symplectic, and when € = —1 we say p is orthogonal.

The representation p gives rise to an L-function L(p, F,T) given by an Euler
product as in [Ulm07, §4.3]. We write L(p, K,T) for L(p|g,, K, T) for any finite
extension K of F' contained in F'*¢P,

In [Ulm07] §4], we studied the order of vanishing of L(p, K,T)/L(p, F,T) at the
center point T = r~(@+1)/2 when K/F is a Kummer extension. Here we want to
study the analogous order when K/F is an Artin-Schreier extension.

2.2. Extensions. Let g be a power of p and write p,4(2) for the polynomial 2z — z.
We will consider field extensions K of F' of the form

(2.2.1) K=Ky, r=Fl2l/(9q(2) = f)

for f € F\ k. We assume throughout that F,K is a field, a condition which
is guaranteed when f has a pole of order prime to p at some place of F. As
described in Lemma BTl under this assumption, the degree ¢ field extension K/F
is “geometrically abelian” in the sense that F,K/F,F is Galois with abelian Galois
group. In fact, setting H = Gal(FpK /E,F ), we have a canonical isomorphism
H = T,, where F, is the subfield of F**? of cardinality g. The element o € F,
corresponds to the automorphism of F, K which sends the class of z in (ZZI)) to
Z+ .

It will be convenient to consider a more general class of geometrically abelian
extensions whose Galois groups are elementary abelian p-groups. Suppose that A
is a monic, separable, additive polynomial, in other words a polynomial of the form

v—1
Alz) = 22" + Zaizpl
i=0

with a; € Fp and ag # 0. We will see in Subsection that there is a bijection
between such polynomials A and subgroups of F, which associates to A the group
Hy of its roots. The field generated by the coefficients of A is the field of p#
elements, where p* is the smallest power of p such that H, is stable under the
pH-power Frobenius.
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Suppose f € F has a pole of order prime to p at some place of F' and that A has
coefficients in k. Then we have a field extension

K =Kaj=Flz]/(Az) = f)-

It is geometrically Galois over F, with Gal(F,K/F,F) canonically isomorphic to
Ha.

By Lemmal[827] if A has roots in F,, then there exists another monic, separable,
additive polynomial B such that the composition AoB equals g,. Furthermore, this
implies that K4 s is a subfield of K, s and that Gal(F,K 4,;/F,F) is a quotient
of F,, namely B(F,). In particular, for many questions, we may reduce to the case
where K 4 ¢ is the Artin-Schreier extension Ky, r-

2.3. Characters. Let K = K, ; be an Artin-Schreier extension of F' as in Sub-
section 2.2 and let H = Gal(F,K/F,F) = F,. Fix once and for all a non-trivial
additive character ¢y : F, — @L;X. Let H = Hom(H, @gx) be the group of Q,-
valued characters of H. Then we have an identification H = F, under which 3 € F,
corresponds to the character xg : H — @L;X, a = Po(Trg, /r, (o))

Next we consider actions of G, = Gal(k/k) on H and H. To define them,
consider the natural projection Gp — G, and let ® be any lift of the (arithmetic)
generator of Gy, namely the r-power Frobenius. Using this lift, G acts on H =
Gal(F,K/F,F) on the left by conjugation, and it is easy to see that under the
identification H = F,, ® acts on I, via the r-th power Frobenius.

We also have an action of G on H on the right by precomposition: (x5)®(a) =
xs(®(a)) = xp(a”). Since

Trg, /r, (a"B) = Trp, /r, (@)

we see that (ys)? = Xgr—1-

If A is a monic, separable, additive polynomial with coefficients in k and group
of roots H 4, then the character group of H 4 is naturally a subgroup of H, and it
is stable under the r-power Frobenius. More precisely, by Lemma B22(2), Hy4 is
the quotient B(F,) of F,, and so its character group is identified with (ker B)+ =
(Im A)+ where the orthogonal complements are taken with respect to the trace
pairing (z,y) — Trg, /5, (2y).

As seen in Example 823 if r is a power of an odd prime p and A(z) = 2" + z,
then the group H 4 of roots of A generates F, where ¢ = 72”. In this case, AoB = g,
when B = p,v. If f € F has a pole of order prime to p at some place of F', then the
field extension K 4 s is a subextension of K, r and its character group is identified
with (ker B)t = H 4.

2.4. Ramification and conductor. We fix a place v of F' and consider a decom-
position subgroup G, of G = G at the place v and its inertia subgroup I,,.

Recall from [Ser79, Chap. IV] that the upper numbering of ramification groups
is compatible with passing to a quotient, and so defines a filtration on the inertia
group I,,, which we denote by I} for real numbers ¢ > 0. By the usual convention,
we set I{ = I, for =1 <t <0.

Let p: Gr — GL,,(Q,) be a Galois representation as above, acting on V = Q,".
We denote the local exponent at a place v of the conductor of p by f,(p). We refer
to [SerT(] for the definition.
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Now let x : Gp — @L;X be a finite order character. We say “y is more deeply
ramified than p at v” if there exists a non-negative real number ¢ such that p(I!) =
{id} and x(I!) # {id}. In other words, x is non-trivial further into the ramification
filtration than p is. Let to be the largest number such that y is non-trivial on I’
and recall that f,(x) = 1+t [Ser79, VI, §2, Proposition 5].

Lemma 2.4.1. If x is more deeply ramified than p at v, then
folp®x) = deg(p)fu(X)-

Proof. This is an easy exercise and presumably well known to experts. It is asserted
in [DD13], Lemma 9.2(3)], and a detailed argument is given in [UlmI13b]. O

A particularly useful case of the lemma occurs when p is tamely ramified and x
is wildly ramified, e.g., when x is an Artin-Schreier character.

2.5. Factoring L(p, K,T). Fix a monic, separable, additive polynomial A with
coefficients in k and a function f € F such that f has a pole of order prime to p at
some place of F'. Let K = K4, s be the corresponding extension whose geometric
Galois group Gal(F,K/F,F) is canonically identified with the group H = Hy4 of
roots of A. Let I, be the subfield of F'**P generated by H4. Recall the Galois
representation p fixed above. In this section, we record a factorization of the L-
function L(p, K, T).

In Subsection .3 above, we identified the character group of H with a subgroup
of F, which is stable under the r-power Frobenius. As in [UlmO07, §3], we write
o C H C F, for an orbit of the action of Fr,. Note that the cardinality of the
orbit o through 8 € F, is equal to the degree of the field extension k(3)/k and is
therefore at most 2v.

As in [Ulm07, §4.4], we have a factorization

L(p, K. T)= [ Llp® oo, F.T)
oClEI

and a criterion for the factor L(p ® 0,, F,T) to have a zero at T = er~(w+1/2 (or
more generally to be divisible by a certain polynomial).

To unwind that criterion, we need to consider self-dual orbits. More precisely,
note that the inverse of x5 is (x3) ™' = x—. Thus an orbit o is self-dual in the sense
of [UIm07, §3.4] if and only if there exists a positive integer v such that 87 = —f3
for all 8 € o. The trivial orbit o = {0} is of course self-dual in this sense. To ensure
that that there are many other self-dual orbits, we may assume r is odd and take
A(z) = 2" 4 z for some positive integer v. Then if 3 is a non-zero root of A, the
orbit through S is self-dual. Since the size of this orbit is at most 2v, we see that
there are at least (r” — 1)/(2v) non-trivial self-dual orbits in this case.

We also note that if 3 # 0, then the order of the character xz is p, and since we
are assuming r, and thus p, is odd, we have that xg has order > 2. Summarizing,
we have the following.

Lemma 2.5.1. Let k be a finite field of cardinality r and characteristic p > 2.
Suppose A(z) = 2" + z. Suppose f € F has a pole of order prime to p, and let
K = Ka,5. Let p be a representation of Gp as in Subsection 21l Then we have a
factorization
L(p,K,T)= [ Lp© 0, F.T)
oCH
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where the product is over the orbits of the r-power Frobenius on the roots of A.
Aside from the orbit o = {0}, there are at least (r¥ —1)/2v orbits, each of which is
self-dual, has cardinality at most 2v, and consists of characters of order p > 2.

2.6. Parity conditions. According to [Ulm07, Thm. 4.5], L(p® 0,, F, T') vanishes
at T = r~(WtD/2if p is symplectic of weight w, o is a self-dual orbit, and the degree
of Cond(p ® xp) is odd for one, and therefore for all, 8 € o. Thus to obtain a large
order of vanishing, we should arrange matters so that p® x satisfies the conductor
parity condition for many orbits o. This is not hard to do using Lemma [ZZ.T]

Indeed, let S be the set of places where xg is ramified, and suppose that xz is
more deeply ramified than p at each v € S. Suppose also that Zues fu(p) deg(v)
is odd. Then using Lemma 2.5.7] we have

deg Cond(p ® x5) = Zdeg ) fu(x ) deg(v +qu ) deg(v
ves vgS

Since p is symplectic, it has even degree, and so our assumptions imply that
deg Cond(p ® xp) is odd.

2.7. High ranks. Putting everything together, we get results guaranteeing large
analytic ranks in Artin-Schreier extensions:

Theorem 2.7.1. Let k be a finite field of cardinality v and characteristic p > 2.
Let v € N and let k' be the field of ¢ = r* elements. Let F = k(C) and p :
Gr — GL,(Qy) be as in Subsection Bl Assume that p is symplectically self-dual
of weight w. Choose f € F with at least one pole of order prime to p. Suppose that
either (1) K = Ky where A(z) = 2" +z or (2) K = K,,, 5 where pg(2) = 27—z
as in Subsection 221 Let S be a set of places of F where K/F is ramified and
suppose that p is at worst tamely ramified at each place v € S. Suppose also that

Y vgs fo(p) deg(v) is odd. Then

L(p, K, s)
ords=(w+1)/2 T(p. F.5) > (" =1)/(2v)

and
L(p, k'K, s) Y
ords=(w+1)/2 m > (7’ — 1)
Proof. For case (1), the first inequality is an easy consequence of the preceding
subsections and [Ulm07, Thm. 4.5]. Indeed, by Lemma2.5.1] we have a factorization

L(p,K,T)= [ Lp©0,, F.T)
oClEI

where the product is over the orbits of the r-power Frobenius on the roots of A.
The factor on the right corresponding to the orbit o = {0} is just L(p, F,T), and
by the lemma, all the other orbits are self-dual and consist of characters of order
> 2. The hypotheses on the ramification of p allow us to apply Lemma 2.4.1] to
conclude that the parity of deg Cond(p ® xg) is odd for all roots 8 # 0 of A. Thus
[Ulm07, Thm. 4.5] implies that each of the factors L(p ® o,, F,T) is divisible by
1- (r(wﬂ)/QT)‘o‘ and, in particular, has a zero at T = r—(®+1/2_ Since there are
(r¥ — 1)/2v non-trivial orbits, we obtain the desired lower bound.
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Over any extension k' of k of degree divisible by 2v, we have a further factoriza-

tion
Lp® oo, K F,T) = [[ L(p ® x5, K'F, T),
B€o

and each factor L(p® s, k'F, T) is divisible by (1— |’|(“*+1/2T) and thus vanishes
at s = (w+ 1)/2. This establishes the second lower bound in case (1).

The lower bounds for case (2) are an immediate consequence of those for case
(1) since K4y is a subextension of K, ; by Example 823l O

Remark 2.7.2. If F =TF,(t) and f =t, then the Artin-Schreier extension given by
u? —u =t is again a rational function field. Thus starting with a suitable p and
taking a large degree Artin-Schreier extension, or by taking multiple extensions, we
obtain another proof of unbounded analytic ranks over the fixed ground field F,,(u).

As an illustration, we specialize Theorem 2.7.1] to the case where p is given by
the action of Gz on the Tate module of an abelian variety over F'.

Corollary 2.7.3. Let k be a finite field of cardinality r and characteristic p > 2.
Letv € N and let k' be the field of ¢ = r?" elements. Suppose J is an abelian variety
over a function field F = k(C) as in Subsection 21l Choose f € F with at least one
pole of order prime to p. Suppose that either (1) K = Ka ; where A(z) = 2" + z

r (2) K = K, 5 where p4(z) = 27 — z as in Subsection 22 Let S be the set of
places of F where K/F is ramified. Suppose that J is at worst tamely ramified at
all places in S and that the degree of the part of the conductor of J away from S is
odd. Then

ords—1 L(J/K,s) > (r¥ = 1)/(2v)
and
ords—1 L(J/K'K,s) > (r¥ — 1).

2.8. Orthogonal p and supersingularity. Consider the set-up of Theorem 2.7.1],
except that we assume that p is orthogonally self-dual instead of symplectically self-
dual, and we replace the parity condition there with the assurnption that

deg(p) Z(— ord, (f) + 1) deg(v) + Z fo(p) deg(v
veS vgS
is odd. Then [Ulm07, Thm. 4.5] implies that if o is an orbit with o # {0}, then
L(p®o,, F,T) is divisible by 1 + (r(w+1)/2T)|°|. In particular, over a large enough
finite extension k' of k, at least ¥ — 1 of the inverse roots of the L-function
L(p, K,T)/L(p, F,T) are equal to |k'|(w+1)/2,

We apply this result to the case when p is the trivial representation to conclude
that the Jacobians of certain Artin-Schreier curves have many copies of a supersin-
gular elliptic curve as isogeny factors. This implies that the slope 1/2 occurs with
high multiplicity in their Newton polygons as defined in Subsection However,
as explained in Subsection [84] the occurrence of slope 1/2 in the Newton poly-
gon of an abelian variety usually does not give any information about whether the
abelian variety has a supersingular elliptic curve as an isogeny factor. This gives
the motivation for this result. More precisely:

Proposition 2.8.1. With the notation of Corollary RT3, write

divee (f) = i a; P;
i=1
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where the P; are distinct k-valued points of C. Assume that pta; for all i and that
St (ai+1) is odd. Let J (resp. Ja,f, Jp,.r) be the Jacobian of C (resp. the cover
Ca,s of C defined by A(z) = f, the cover Cy,, y of C defined by pq(2) = f). Then up
to isogeny over E, the abelian varieties jA,f/J and J@mf/J each contain at least
(r¥ —1)/2 copies of a supersingular elliptic curve.

Proof. We give only a brief sketch, since this result plays a minor role in the rest of
the paper. An argument parallel to that in the proof of Theorem 27.1] shows that
the numerator of the zeta function of C4 ; divided by that of C is divisible by

1+ TuTzu)(T”—l)/(%) .

Thus over a large extension k' of k, at least ¥ — 1 of the inverse roots of the zeta
function are equal to |k’|'/2. Honda-Tate theory then shows that the Jacobian
has a supersingular elliptic curve as an isogeny factor with multiplicity at least
(rv —1)/2. O

We will see in Section 8 that the lower bound of Proposition 2.81]is not always
sharp.

2.9. The case p = 2. The discussion of the preceding subsections does not apply
when p = 2 since in that case all characters of H have order 2. To get high
ranks when p = 2, we can use the variant of [Ulm07, Thm. 4.5] suggested in
[UlmQ7, 4.6]. In this variant, instead of symmetric or skew-symmetric matrices, we
have orthogonal matrices, and zeroes are forced because 1 is always an eigenvalue
of an orthogonal matrix of odd size, and 41 are always eigenvalues of an orthogonal
matrix of even size and determinant —1. The details are somewhat involved and
tangential to the main concerns of this paper, so we will not include them here.

2.10. Artin-Schreier-Witt extensions. The argument leading to Theorem 2711
generalizes easily to the situation where we replace Artin-Schreier extensions with
Artin-Schreier-Witt extensions. This generalization is relevant even if p = 2. We
sketch very roughly the main points.

Let W, (F) be the ring of Witt vectors of length n with coefficients in F. We
choose f € W,,(F) and we always assume that its first component f; is such that
2% — x — fy is irreducible in F[z] and so defines an extension of F' of degree g.
Then adjoining to F' the solutions (in W, (F'*¢?)) of the equation Fr,(x) —x = f
yields a field extension of F' which is geometrically Galois with group W, (F,). The
character group of this Galois group can be identified with W, (F,), and we have
an action of Gy, (i.e., the r-power Frobenius where r = |k|) on the characters of this
group.

Choose a positive integer v and consider the situation above where ¢ = 2V. We
claim that there are r™ solutions in W,,(F,) to the equation Fr,.(x) + x = 0. For
p > 2, this is clear—just take Witt vectors whose entries satisfy =7~ + z = 0. For
p = 2, the entries of —x are messy functions of those of x, so we give a different
argument. Namely, let us proceed by induction on n. For n = 1, x; = (1) is a
solution. Suppose that x,_1 = (ai,...,a,—1) satisfies Fr,»(x) + x = 0. Then we
have

Frpv(ay,...,an-1,0)+ (a1,...,a,-1,0) = (0,...,0,b,),
and it is easy to see that b, lies in the field of r¥ elements. We can thus solve the
equation a!, +a,, = by, and then x,, = (a1, ..., a,) solves Fr,.(x,) +x, = 0. With
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one solution which is a unit in W, (F,) in hand, we remark that any multiple of our
solution by an element of W, (F,.) is another solution, so we have ™ solutions in
all.

Next we note that the self-dual orbits o C W,,(FF,) (i.e., those orbits stable under
x — —X) are exactly the orbits whose elements satisfy Fr,.(x) + x = 0. These
orbits are of size at most 2v. If p > 2, all but the orbit o = {0} consist of characters
of order > 2, whereas if p = 2, all but p” of the orbits consist of characters of order
> 2. Thus taking p > 2 or p = 2 and n > 1, we have a plentiful supply of orbits
which are self-dual and consist of characters of order > 2.

The last ingredient needed to ensure a high order of vanishing for the L-function
is a conductor parity condition. This can be handled in a manner quite parallel to
the cases considered in Subsection Namely, we choose f € W,,(F) so that at
places where p and characters x are ramified, y should be so more deeply, and the
remaining part of the conductor of p should have odd degree. Then p ® x will have
conductor of odd degree.

3. SURFACES DOMINATED BY A PRODUCT OF CURVES
IN ARTIN-SCHREIER TOWERS

In this section, we extend a construction of Berger to another class of surfaces,
following [Ulm13al §54-6].

3.1. Construction of the surfaces. Let k be a field with Char(k) = p and let
K = k(t). Suppose C and D are smooth projective irreducible curves over k.
Suppose f:C — P! and g : D — P! are non-constant separable rational functions.
Write the polar divisors of f and g as

diveo(f) = Y _a;:P; and  dive(g) = Y _b;Q;
i=1 j=1
where the P; and the Q); are distinct k-valued points of C and D. Let

M:iai and Nzibj.
i=1 j=1

We make the following standing assumption:
(3.1.1) pfa;for1<i<m and ptbd;forl<j<n.

We use the notation P,lc’t to denote the projective line over k£ with a chosen

parameter t. Define a rational map i : C xk’D——é]P’,lw by the formula ¢t = f(z)—g(y)
or more precisely

[f(x) —g(y): 1] if x ¢ {Pi} and y & {Q,},
Y1(z,y) = q[1:0] if v € {P;} and y € {Q,},
: 0] if o ¢ {P;} and y € {Q;}.
The map 1 is undefined at each of the points in the set
B={(P,Q;)|1<i<m,1<j<n}

Let U = C x;, D — B and note that the restriction 9|y : U — P,lm is a morphism.
We call the points in B “base points” because they are the base points of the pencil
of divisors on C X D defined by ;. Namely, for each closed point v € IP’,lc)t, let
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Y1 ! (v) denote the Zariski closure in C x;, D of (¢1|y) "' (v). The points in B lie in
each member of this family of divisors.
We note that the fiber of ¥; over v = 0o is a union of horizontal and vertical
divisors:

m n
¥y (o0) = (U{aiPi} X D) ul e x{be;}
i=1 j=1
In particular, the complement of this divisor in C x D is again a product of (open)
curves. This is the underlying geometric reason why the open sets considered in
Proposition B3] below are dominated by products of curves, and ultimately why
we are able to deduce the Tate and BSD conjectures in Theorem below.

Suppose ¢1 : X — C xi D is a blow-up such that the composition m = 1 o
01 X — C xy D——»P}m is a generically smooth morphism. The statement of
Theorem below is independent of the choice of ¢1. In Proposition BI5] we
will construct a specific blow-up ¢, in order to compute the genus of X in terms of
the orders of the poles of f and g. We will use this construction later in Section
to find a formula for the rank of the Mordell-Weil group of the Jacobian of X.

Let X — Spec(K) be the generic fiber of m; so that X is a smooth curve over
K = k(t). In Theorem BI.2 we show that X’ is dominated by a product of curves
and X is irreducible over kK ~ k(t), thus proving the Tate conjecture for X and
the BSD conjecture for the Jacobian of X when k is a finite field.

More generally, we prove analogous results for the entire system of rational Artin-
Schreier extensions of k[t]. Let g be a power of p and set p,(u) = u? —u. We write
Y, = Py, and we define a covering ¥, — P, , by setting t = p,(u). We write K,
for the function field of Y, so that K, = k(u) and K, /k(t) is an extension of degree
g. When the ground field k contains Fy, then K,/k(t) is an Fg-Galois extension.

Consider the base change:

Sy = Vg xp1r, X — X
\ 1
Yy — P,
Because both ), and X have critical points over oo, the fiber product S, will
usually not be smooth over k, or even normal. Let ¢4 : X; — S, be a blow-up of the
normalization of S; such that &} is smooth over k. The statement of Theorem [3.1.2]

is independent of the choice of ¢,. Let m; : X; — ), be the composition and let
X, — Spec(K,) be its generic fiber. Note that X, = X Xgpec x Spec(Kj).

Theorem 3.1.2. Given data k, C, D, f, g, and q as above, consider the fibered
surface mq : Xy = Yy and the curve Xq/Kq constructed as above. Then:
(1) Xy, is dominated by a product of curves.
(2) X, is irreducible and remains irreducible over kK, = k(u).
(3) Ifk is finite, the Tate conjecture holds for X, and the BSD conjecture holds
for the Jacobian of X,.

These results also hold for X and X.
The Tate conjecture mentioned in part (3) of Theorem refers to Tate’s
second conjecture, Rank NS(X,;) = —ords=1 ((X, s), stated in [Tat65]. The BSD

conjecture mentioned in part (3) of Theorem and in Corollary B.1.4] refers
both to the basic BSD conjecture, Rank(Jx,(K,)) = ords—1 L(Jx,/Kg, s) and the
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refined BSD conjecture relating the leading coefficient of the L-function to other
arithmetic invariants; see [Tat66b]. See also [Ulm14bl 6.1.1, 6.2.3, and 6.2.5] for
further discussion of these conjectures.

We now introduce some notation useful for proving Theorem Let C; be
the smooth projective irreducible curve covering C defined by p,(z) = f and let
D, be the smooth, projective irreducible curve covering D defined by pq(w) = g.
The morphisms C; — C and D, — D are geometric F,-Galois covers; i.e., after
extending the ground field to k, these covers are Galois and there is a canonical
identification of the Galois group with IFy.

Let C° C C and C; C C, be the complements of the points above the poles of f.
Similarly, let D° C D and D; C D, be the complements of the points above the
poles of g. Then C; — C° and Dy — D° are étale geometric Fy-Galois covers. Let
X° =C°xD° and let Xy C X, be the complement of 7, *(coy,).

Proposition 3.1.3. For each power q of p, there is a canonical isomorphism
X, = (Cy xx DY) /Fy
where Fy acts diagonally.

Proof. By definition, X° is the open subset of C x D where f(z) and g(y) are regular.
Also, X is the closed subset of

X° xkyq:CO XkDO Xkyq

with coordinates (z,y,u) where f(z) —g(y) = pq(u). On the other hand, C; x Dy
is isomorphic to the closed subset of

(Co Xk yq) Xk (Do Xk yq) = C(c; Xk D;
with coordinates (x,y, z,w) where f(x) = pq(2) and g(y) = pq(w).

Letting u = 2z — w, the morphism (z, z,y,w) = (z,y,z — w) presents C; X D
as an [ -torsor over X 0

Proof of Theorem B.1.2. By Proposition B.1.3] there is a rational dominant map
Cq x Dy--»X, given by
(x,z,y,w) — (x,y,z — w).

This proves that &} is dominated by a product of curves. Also, X} is geometrically
irreducible since C, and D, are geometrically irreducible. This proves that X,
remains irreducible over k(u). Part (3) is a consequence of part (1) and Tate’s
theorem on endomorphisms of abelian varieties over finite fields. See, for example,
[Ulm14bl 8.2.2, 6.1.2, and 6.3.1]. The claims for X and X follow similarly from the
fact that X is birational to C xj D. O

Using [Ulm14bl 8.2.1 and 6.3.1], we see that if X is a curve over a function
field F' and the BSD conjecture holds for X over a finite extension K, then it also
holds over any subextension F C K’ C K. The following is thus immediate from
Theorem and Lemma

Corollary 3.1.4. Let X be a smooth projective irreducible curve over K = k(u)
and assume that there are rational functions f(x) € k(z) and g(y) € k(y) and a
separable additive polynomial A(u) € k[u] such that X is birational to the curve

{f(z) = g(y) — A(u) = 0} C P x P
Then the BSD conjecture holds for the Jacobian of X .
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We note that an argument similar to [UlmI4al, Rem. 12.2] shows that the hy-
pothesis that A is separable is not needed.

To determine the genus of X, and for later use, we now proceed to construct a
specific blow-up ¢1 : X — C X, D which resolves the indeterminacy of the rational
map ¢ : C X} D--+P} ; and yields a morphism 7, : X — P ;.

Proposition 3.1.5. The genus of the smooth proper irreducible curve X, over K,
8

9x, = Mgp + Ngc + (M —1)(N - 1) — 25(%‘71?3‘)
0,J

where §(a,b) := (ab—a — b+ ged(a,b))/2.

Proof. The proof of PropositionB.I5lis very similar to the proof of [Ber08, Thm 3.1];
see also [Ulm13al, §4.4]. It uses facts about the arithmetic genus of curves of bidegree
(M, N) in C xj D, the adjunction formula, and resolution of singularities.

The procedure to resolve the singularity at each base point (P;, ;) is the same,
so we fix one such point and drop ¢ and j from the notation. Thus assume that
(P,Q) is a base point, that f has a pole of order a at P, and that g has a pole
of order b at ). Choose uniformizers z and y at P and @ respectively, so that
f =wuz"® and g = vy~ " where v and v are units in the local rings at P and Q
respectively. The map ¢ is thus given in the neighborhood of (P, Q) in projective
coordinates by [uy® — vx? : z%°].

The resolution of the indeterminacy at (P, Q) takes place in three stages. The
first stage, which we discuss now, occurs only when a # b. Suppose that is the
case and blow up the point (P,Q) on C xi D. Then there is a unique point of
indeterminacy upstairs. If a < b, we introduce new coordinates x = x7y; and
y = w1 in which the blow-up composed with 1; becomes [uylf1 —vx{t :ci”yfl]
where a1 = a, by = b—a, a3 = a and $; = b. The unique point of indeterminacy
isat z1 = y; = 0. If a > b, we introduce new coordinates x = z; and ¥y = x111
in which the blow-up composed with 1; becomes [uyll’1 — vzt x‘flylﬁ '] where
ap =a—>b,by =b, a;y = a and 8, = b. The unique point of indeterminacy is at
x1 =y; = 0. In both cases, note that a; > a; and B > b;.

We now proceed inductively within this case. Suppose that at step ¢ our map
is given locally by [uyzz —vxyt x?eyf‘] and ay # by. The point z, = yp = 0 is
the point of indeterminacy. If ay < by, we set xp = xp11yer1 and yg = yey1 so that
our map becomes [uy%ff — vx?fll : :E?ﬁlyf_ﬁl] where apy1 = ag, bey1 = by — ay,
agy1 = ag and Ber1 = Be+ ap — ag. On the other hand, if ay > by, we set zp = xp 41
and Yy = Tyyr1yer1 S0 that our map becomes [uny:f — vz :E?ﬁlyfﬁl] where
ag+1 = ap — by, bpy1 = by, apy1 = ay + Be — by and Bey1 = Be. (We use here that
ay > ag and By > by and we note that these inequalities continue to hold at step
{+1)

Let vy(a,b) be the number of steps to proceed from (a,b) to (ged(a,b),0) by
subtracting the smaller of a or b from the larger at each step (cf. [Ulm13al fourth
paragraph of §4.4]). Then after j = v(a,b) — 1 steps as in the preceding paragraph,
our map is given by [uyjJ - vx?j : x;”yfj] where a; = b; = ged(a,b). To lighten
notation, let us write ¢ for ged(a,b), a for a;, 5 for 5;, x for x;, and y for y;, so
that our map is [uy® — vz® : 2*y”] and the unique point of indeterminacy in these
coordinates is = y = 0. Note that a, 8 > ¢. This completes the first stage of the

resolution of indeterminacy.
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FIGURE 2. Resolution for a =4,b =26

The second stage consists of a single blow-up at x = y = 0. Introducing coor-
dinates x = rs, y = s, our map becomes [u — vr® : r*s#T2¢] and there are now
¢ points of indeterminacy, namely the ¢ solutions of r* = u/v, s = 0. (Note that
u(z) = u(rs) and v(y) = v(s) are both constant along the exceptional divisor s = 0,
so the equation r¢ = u/v has exactly ¢ solutions on that divisor.) Let § = f+a —c.

The third stage consists of dealing with each of the ¢ points of indeterminacy in
parallel. Focus on one of them: Replace r with r —w where w is one of the zeroes of
7¢ —u/v so that our map becomes [wr : 25°], the point of interest is 7 = s = 0, and
w and z are units in the local ring at that point. We now blow up § times: Setting
r =1r181, § = 1, our map becomes [wry : zs‘i_l}; setting r; = roso and s; = s our
map is [wrg : zsg_z]; ...; and after § steps our map is [wrs; z] which is everywhere
defined.

Figure 1 above, illustrating the case a = 4, b = 6, may help to digest the various
steps. The vertical line in the lower left is the proper transform of C x {@}, and the
horizontal line in the upper right is the proper transform of {P} x D. The two lines
adjacent to them are the components introduced in the first stage of the resolution,
where (a,b) = (4,6) becomes (2,2) in 2 steps (so v = 3). The line of slope 1 is
the component introduced in step 2. The chains leading away from this last line
are the components introduced in the third step, where 6 = 12 (but we have only
drawn half of each chain, indicating the rest with ...).
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Now we go back and consider a general element of the pencil defined by v
and its proper transform at each stage. For all but finitely many values of ¢, the
element of the pencil parameterized by t is smooth away from the base points. In
a neighborhood of a base point (P, Q) where f and g have poles of order a and b

respectively, F = 11 1(1%) is given by uy® — va® — tz%y®. The tangent cone of F at

(0,0) is a single line z = 0 or y = 0, and so there is a unique point over (P, @) on
the proper transform of F. The situation is similar for each of the first y(a,b) — 1
blow-ups, and after the last of them, the proper transform of F is given locally by
uy® — va® — tz®y? in the notation at the end of the first stage above.

Now at the second stage the tangent cone consists of ¢ lines, and there are ¢
points over x = y = 0 in the proper transform. Locally the proper transform is
given by wr — zs°, and this is smooth in a neighborhood of the exceptional divisor.
Therefore, there are no further changes in the isomorphism type of the proper
transform in the third stage. In other words, the fibers of 71 are isomorphic to the
elements of the pencil appearing after the second stage.

To compute the genus of the fibers, we note that the multiplicity of the point of
indeterminacy on F at the ¢-th step of the first stage is e, = min(ag,by), and at
the second stage it is ¢ = ged(a,b). Thus the change in arithmetic genus at step
0 is eg(ep — 1)/2, and the change in the last step is ¢(¢ — 1)/2. Summing these
contributions and noting that the arithmetic genus of the elements of the original
pencil is Mgp + Ngc + (M —1)(N —1) yields the asserted formula for the genus gx,
of the generic fiber of 7. (See [Ber(08, §§3.7 and 3.8] for more details on computing
the sum.) This completes the proof. O

It is worth noting that the algorithm presented above for resolving the inde-
terminacy of v¢; sometimes leads to a morphism X — ]P),%:’t which is not relatively
minimal. In general, one needs to contract several (—1)-curves to arrive at a rela-
tively minimal morphism.

Remark 3.1.6. For later use we note that the exceptional divisor of the last blow-up
in stage three (at each of ¢ = ged(a,bd) points) maps isomorphically onto the base
]P’,lc,t, whereas all the other exceptional divisors introduced in the resolution map to
the point co = [1,0] € Pi,t. In particular, 7y : X — ]P’,lm always has a section, and
X always has a k(¢)-rational point.

4. EXAMPLES—LOWER BOUNDS ON RANKS

Our goal in this section is to combine the construction of Theorem B. T2 with the
analytic ranks bound in Corollary B.7.3] to give examples of Jacobians which satisfy
the BSD conjecture and which have large Mordell-Weil rank. This is an analogue
for Artin-Schreier extensions of some results in [Ulm07] for Kummer extensions.

4.1. Notation. Throughout this section, k is a finite field of cardinality r, a power
of p. Given an integer M and a partition M = a; +- - - 4+ a,,, we say that a rational
function f on P! is of type (ay + -+ + a,) if the polar divisor has multiplicities
A1y .-y A, 1.€.,
m
divee(f) = > aiP;

i=1
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where the P; are distinct k-valued points. We assume throughout that p{ ay - - - ay,.
Given two non-constant rational functions f on C and g on D over k, Proposi-
tion gives a formula for the genus of the smooth proper curve over k(t) with
equation f — g =t in terms of the types of f and g.

4.2. Elliptic curves. Suppose now that C = D = P! over k and that f and g are
rational functions on P'. Straightforward calculation reveals that if the types f
and g are on the following list, then the curve X over k(t) given by f(x) —g(y) =1t
has genus 1:

(2,1+1),(14+1,1+1),(2,3),(2,2+1),(2,4), (2,24 2), (3,3).

(We omit pairs of types obtained from these by exchanging the two partitions and
assume p # 2,3 as necessary.)

For example, to illustrate the (2,1+ 1) case, let f(x) be a quadratic polynomial
so that f has type (2). Let g1(y) and g2(y) be polynomials with degg; < 2 and
deg go = 2 such that g has distinct roots and g; and go are relatively prime in
kly], so that g = g1/g2 has type (1 4+ 1). For such a choice of f and g, the curve

f(x) — g(y) =t has genus 1.

4.3. Elliptic curves of high rank. Recall that K = k(t), ¢ is a power of p, and
K, = k(u) with u? — u = t. The next result says that for certain types as in the
previous section and “generic” f and g, the elliptic curve X has unbounded rank
over K, as g varies.

Proposition 4.3.1. Suppose that p > 2 and f and g are rational functions on P*
over k of type (2,2+ 1) or of type (2,4). Suppose that the finite critical values of g
are distinct. Then the curve X defined by f(x) — g(y) =t is elliptic, it satisfies the
BSD conjecture over K, for all q, and the rank of X (K,) is unbounded as q varies.
More precisely, if ¢ has the form ¢ =% and k' is the field of 2V elements, then
v—1

2v

r

Rank X (K,) >

and
Rank X (K'K,) > ¥ — 1.

Proof. Proposition shows that X has genus 1, and Remark shows that
X has a k(t)-rational point, so X is elliptic.

By the Riemann-Hurwitz formula, a rational function of degree M has 2M — 2
critical points (counting multiplicities). A pole of order a is a critical point of
multiplicity a — 1. Thus a rational function f of type (2) has 1 critical point which
is not a pole, and therefore 1 finite critical value. A rational function g of type
(2 4+ 1) has 3 non-polar critical points, and so 3 finite critical values. Similarly,
a rational function of type (4) has 3 non-polar critical points and 3 finite critical
values. By “generic” we mean that the finite critical values of g are distinct, and
we impose no restriction on f.

Now consider the rational map 1 : C X D——+P,1€7t given by t = f(x) — g(y)
and the blow-up ¢ : X — C x D constructed in the proof of Proposition
that resolves the indeterminacy of ¢, yielding a proper morphism m; : X — P}ﬁ,t
whose generic fiber is X. Away from the fiber over ¢t = oo, the critical points of
my are precisely the simultaneous critical points of f and g. Under our hypotheses,
these are simple critical points, and so the critical points of 71 away from the fiber
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at infinity are ordinary double points. Moreover, by the counts in the previous
paragraph, there are precisely three such ordinary double points. This shows that X
has multiplicative reduction over three finite places of the t-line, and good reduction
at all other finite places. Thus the degree of the finite part of the conductor of X
is 3.

Next we claim that X (or rather the representation H'(X x K, Q) for any ¢ # p)
is tamely ramified at ¢ = co. One way to see this is to use the algorithm in the
proof of Proposition to compute the reduction type of X at ¢ = oco. One finds
that X has Kodaira type I5 in the (2,2 + 1) case and Kodaira type IIT* in the
(2,4) case. In both cases, X is tamely ramified at ¢ = co for any p > 2. (Another
possibility is to use the method of the proof of Proposition £.4.1] below to see that
X obtains good reduction over an extension of k((¢t~!)) of degree 4.)

Now we may apply Corollary 273/ to conclude that we have ord,—1 L(X/K,, s) >
(r¥ —1)/(2v) and ords—1 L(X/K' K,,s) > r* — 1. Moreover, by Theorem BI1.2] X
satisfies the BSD conjecture, so we also have a lower bound on the algebraic ranks,
i.e., on Rank X (K,) and Rank X (k'K,).

This completes the proof of the proposition. |

The curves in Proposition [£.3.] can of course be made quite explicit. Let us
consider the case of types (2,2+ 1). Since f and g have unique double poles, these
occur at rational points, and we may assume they are both at infinity. Thus f(z)
is a quadratic polynomial which, after a change of coordinates on z and ¢, we may
take to be 22, and g has the form

ay® +by® +cy+d
9(y) = ”

for scalars a, b, c,d. A small calculation reveals that X has the Weierstrass form

y? =23 + (t + ¢)x* + bdx + ad®.

The discriminant of this model is a cubic polynomial in ¢, and the genericity condi-
tion is simply that the discriminant have distinct roots. To see that the locus where
it is satisfied is not empty, we may specialize as follows: If p > 3, take a = d = 1 and
b=c=0sothat X is y?> = 2% + t2? + 1. The discriminant is then —16(4¢> + 27),
which has distinct roots. If p = 3, take a = b=d =1 and ¢ = 0, in which case the
discriminant is —t3 +t? — 1, a polynomial with distinct roots in characteristic 3.

4.4. Unbounded rank in most genera. The main idea of the previous section
generalizes easily to most genera.

We define a pair of polynomials (f,g) to be “generic” if the set of differences
f(z:) — g(y;), where z; and y; run through the non-polar critical points of f and ¢
respectively, has maximum possible cardinality. In other words, we require that if
(¢,4) # (7', 5"), then f(x;)—g(y;) # f(xi)—g(y;). Note that this condition imposes
no constraint on a quadratic polynomial f since it has only one finite critical value.

Proposition 4.4.1. Fiz an integer gx > 0 such that p does not divide N = 2gx+2.
Suppose that f and g are a pair of “generic” rational functions on P! (generic in
the sense mentioned above) of type (2, N). Then the smooth proper curve defined
by f(z) — g(y) =t has genus gx, its Jacobian Jx satisfies the BSD conjecture over
K, for all q, and the rank of Jx (K ) is unbounded as q varies through powers of p.
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Proof. We may assume that the unique poles of f and g are at infinity, so that f
and g are polynomials. After a further change of coordinates on = and ¢, we may
take f(z) = 2%. Thus X is a hyperelliptic curve

(4.4.2) 22 =anyN +ay_1zV 4 Fag+t

where ag,...,ay € k and ay # 0. The BSD conjecture is true for Jx by Theo-
remB.12] and the genus of X is gx = (N—1)—4§(2, N), as seen in Proposition B.I5

Our genericity assumption is that the N —1 finite critical values of g are distinct.
As in the proof of Proposition [£.3.1] we see that X has an ordinary, non-separating
double point at N — 1 places of P!, and it has good reduction at all other finite
places. This shows that the degree of the finite part of the conductor of X is
N —1=2gx — 1, an odd integer.

We now claim that at ¢ = oo, X obtains good reduction over an extension of
degree N. Since p t N by hypothesis, this implies that X is tame at ¢ = co. To
check the claim, let v satisfy + = v~ and change coordinates in ([£Z.2) by setting
x =z /v and y = y; /v™/?. The resulting model of X is

N-1

2 N i N—i

x] =any; + E a;yiv T+ L
i=0

This curve visibly has good reduction at v = 0, which establishes our claim.
Now Corollary 273 applies and shows that when ¢ = r%,

ords—1 L(Jx /Ky, s) > (r¥ —1)/(2v).

Since Jx satisfies the BSD conjecture, we get a similar lower bound on the rank,
and this completes the proof of the proposition. |

As an explicit example, assume that p { (29x +2)(29x +1) and take N = 2gx +2,
f(z) =22, and g(y) = y~ + v, so that X is the hyperelliptic curve

w2 =yN fy+t.

The finite critical values of g are (N — 1)/N where « runs through the roots of
aN~! = —1/N, and these values are distinct under our assumptions on p. Thus
this pair (f, g) is generic, and we get an explicit hyperelliptic curve whose Jacobian
has unbounded rank in the tower of fields K.

5. A RANK FORMULA

In this section, k£ will be a general field of characteristic p, not necessarily finite.
In the main result, we will assume k is algebraically closed for convenience, but this
is not essential.

5.1. The Jacobian of X. We write Jx for the Jacobian of the curve X over
K = k(t) discussed in Theorem Recall that for a power g of p, we set
K, = k(u) where pg(u) = u? —u = t. Our main goal in this section is to give a
formula for the rank of the Mordell-Weil group (as defined just below) of Jx over
K,.
First we recall the K, /k-trace of Jx, which we denote by (By, 7). By definition,
(By, Tq) is the final object in the category of pairs (B,7) where B is an abelian
variety over k and 7 : B xj, Kg — Jx is a morphism of abelian varieties over K.
See [Con06] for a modern account.
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Proposition 5.1.1. For every power q of p, the Ky/k-trace of Jx is canonically
isomorphic to Je X Jp.

Proof. The proof is very similar to that of [UlmI13al, Prop. 5.6], although somewhat
simpler since our hypothesis that p does not divide the pole orders of f and g
implies that C; and D, are irreducible. We omit the details. O

Definition 5.1.2. The Mordell-Weil group of Jx over K,, denoted MW (Jx/K,),

is defined to be
JX(Kq)

4By (k)
5.2. Two numerical invariants. Recall that we have constructed a smooth pro-
jective surface X equipped with a generically smooth morphism 7 : X — IP’}M

whose generic fiber is X/K. For each closed point v of ]P’,lg’t, let f, denote the
number of irreducible components in the fiber of 7 over v. We define

ci(q) =q Y (fo—1)degu
VF#00

where the sum is over the finite closed points of ]P’,lc,t.
Using the notation established at the beginning of Subsection Bl we define

Cco = zm:zn:gcd(ai,bj) —m—-n+1.

i=1 j=1
We can now state the main result of this section.

Theorem 5.2.1. Assume that k is algebraically closed. Given data C, D, f, and
g as above, consider the smooth proper model X of

{f—9g—t=0} CC x, D xy, Spec(K)

over K = k(t) as constructed above. Let Jx be the Jacobian of X. Recall that
K, = k(u) with u? —u =t. Then, with ¢1(q) and c2 as defined above, we have

Rank MW (Jx /K,) = Rank Homy,_ 4, (Je,, Jpq)Fq —c1(q) + co.

Here Homy,_ 4, denotes homomorphisms of abelian varieties over k, and the expo-
nent F, signifies those homomorphisms which commute with the F, actions on Je,
and Jp,.

Remark 5.2.2. The theorem also holds for X/K: We have Rank MW (Jx /K) =
Rank Homy 44 (Je, Jp) — ¢1(1) + 2. The proof is a minor variation of what follows,
but we omit it to avoid notational complications.

Proof. The proof is very similar to that of [Ulm13a, Thm. 6.4]: we will construct a
good model 7, : Xy — P,lc’u of X/K, and use the Shioda-Tate formula.

First consider the rational map 1, : Cq X Dq“’Pk,u defined by the formula
u = z —w. For each pair (i,5) with 1 < i < m, 1 < j < n, there is a unique
point (P;,Q;) € Cy xx D, over (Pi,Q;) € C x; D. The indeterminacy locus of 1,
is {(P;, Q])} At each of these base points, the blow-ups required to resolve the
indeterminacy of 1), are identical to those described in the proof of Proposition
(resolving the indeterminacy of ¥ at (P;,Q;)). For each (i,7), write the total
number of blow-ups over {(P;,Q;)} as Ni; + gcd(a;, b;) and recall that Ny; of the

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



8572 RACHEL PRIES AND DOUGLAS ULMER

exceptional divisors map to oo € P!, whereas ged(a;, b;) of them map isomorphically
onto Py .. Let Cy x Dy denote this blow-up of Cy X Dy

The action of F2 on Cq X Dy lifts canonically to Cq xj Dg. In fact, it is clear

that the action of IE‘?I on the tangent space at {(]51, Qj)} is trivial, so every point
in the exceptional divisor is fixed and these are the only fixed points. Therefore

the quotient X, := Cq/>_<\;;/Dq /Fq (quotient by the diagonal subgroup F, C F2) is

smooth. The resolved morphism Cy x; Dy — IP’,lcyu factors through X, and defines
a morphism m, : X; — Pi# whose generic fiber is X/K,,.
It is classical (and reviewed in [UlmI1l I1.8.4]) that

NS(Cy xk Dy) = Homy_qy(Je, , Jp,) & Z°.

Noting that the blow-ups are fixed by the action of Fz and taking I, invariants, we
find that

NS(X,) = Homy_q,(Je,, Jp, )" @ 22+ 220 (Nistecd(aibs)
and so

(5.2.3) RankNS(&;) = Rank Homy_a(Je,, Jp,) * +2 + Z i +ged(ag, by)).

We apply the Shioda-Tate formula [Shi99] to A;. It says that

(5.2.4) Rank NS(X,) = Rank MW (Jx /Kq) + 2+ > (fuq — 1).

Here the sum is over the closed points of P,lc’u, and f,, denotes the number of
irreducible components in the fiber over u. As we noted at the beginning of the
proof of Proposition[3.1.3] the complement X(? of m, Ho0y,) in X(? is the fiber product
of pg : Ay, — AL, CPL, and my : X — P} . Thus

> (fug—=D =0 (fr1—1)=ci(q).
UF0o t#00
Also,
foo,q = ZN” +m+n.

4,J
Substituting these into equation (5.2.4]), comparing with equation (5:2.3)), and solv-
ing for Rank MW (Jx /K,) yield the claimed equality, namely

Rank MW (Jx /K,) = Rank Homy,_q,(Je,, Jp,) " — c1(q) + co.

This completes the proof of the theorem. O

6. EXAMPLES—EXACT RANK CALCULATIONS

In this section, we use the rank formula of Theorem [5.2.1] and results from the
Appendix to give examples of various behaviors of ranks in towers of Artin-Schreier
extensions.
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6.1. Preliminaries. Throughout this section, we let k = Fp and let f and g be
rational functions on C = D = P! with poles of order prime to p. Let X be the
smooth proper model of {f(z) — g(y) —t = 0} C Pk xx Pk where K = k(t).
We noted in Subsection above that X is an elliptic curve when f and g have
various types of low degree. If either f or g is a linear fractional transformation,
then Proposition shows that X is rational, so its Jacobian is trivial and there
is nothing to say about ranks. Also, if f and g are both quadratic and both have a
double pole at some point, then X is again rational by Proposition The first
interesting case is thus when (f, g) has type (2,1 + 1).

6.2. Elliptic curves with bounded ranks. Assume that p > 2 and that (f, g)
has type (2,1+41), i.e., that f and g are quadratic rational functions such that f has
a double pole and g has two distinct poles. Up to a change of coordinates on = and
t, we may assume that f(z) = z(z—a) with a € {0,1}. Also g(y) = (y—1)(y—b)/y
for some parameter b € k*. The curve X is then the curve of genus 1 with affine
equation

z(x—a)y—(y—1—0b) =ty
The change of coordinates (z,y) — (y/x,z) brings X into the Weierstrass form

y* —axy = 2® + (t — 1 — b)x? + b

Examining the discriminant and j-invariant of this model shows that X has I3
reduction at two finite values of ¢ and good reduction at all other finite places, so
c1(r) =0 for all r. It follows immediately from the definition that co = 0 as well.

Thus our rank formula says that

Rank X (K,) = Rank Hom(Je,, Jp,)".

Now since f has a unique pole, by Lemma BT3] J¢, has p-rank 0 for all g. On
the other hand, g has simple poles, so the same lemma shows that Jp, is ordinary
for all . Thus Hom(J¢,, Jp,) = 0 and we have Rank X (K,) = 0 for all g.

6.3. Higher genus, bounded rank. The idea of Subsection extends readily
to higher genus. Namely, it is possible to construct curves X of every genus such
that the rank of Jx (K,) is a constant independent of g. Let f be the reciprocal of
a polynomial of degree M with distinct roots, and let g = . Then X has genus
g= (M —1)(N — 1) by Proposition B.T.5

By Lemma B.1.3| Je, is ordinary whereas Jp, has p-rank zero. It follows that
Hom(Je,, Jp,) = 0 and a fortiori Hom(Je,, Jpq)Fq = 0. Since the term c¢; in the
rank formula is non-positive (and goes to —oo with ¢ if it is not identically zero),
and since ¢y is a constant, we see that in fact ¢; = 0 and the rank of Jx(K,) is
bounded (in fact constant) independently of q.

If p > 2, we may take N = 2 and M arbitrary to get examples of every genus.
If p =2, we may take M = 2 and N odd to get examples of every even genus.

When p = 2, a similar construction produces examples of curves with odd genus.
Indeed, let C be an ordinary elliptic curve and let f be a function on C with M > 2
simple poles. Applying the Lemmas and [B13] we see that C, is an ordinary
curve of genus M(q— 1)+ 1. If D = P! and g = y"¥ with N odd, then D, has
p-rank 0 so Hom(Je,, Jp,) = 0 as before. By Proposition B.I.3, X has genus
N+ (M —1)(N —1). Taking N = 3 yields examples of every odd genus > 5.
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6.4. Elliptic curves with unbounded ranks. Now suppose that f = ¢ is a
quadratic rational function with two distinct poles. We may choose coordinates
so that f(z) = (x — 1)(z — a)/x and g(y) = (y — 1)(y — a)/y for some parameter
a € k*. The curve X is then the curve of genus 1 with affine equation

(x—1)(z—a)y—(y—1)(y —a)z = tay.

The change of coordinates

) [t ta=)
’ (x—a)y ~ y
brings X into the Weierstrass form
y? —taey = 2 — 2a2? + d’x.

Straightforward calculation with Tate’s algorithm gives the reduction types of
X. When p > 2, we find that X has reduction of type I; at two finite places
(t = £4/16a), reduction of type I at t = 0, and good reduction at all other finite
places. When p = 2, X has reduction type I1] and conductor exponent 3 at ¢t = 0,
and it has good reduction at all other finite places. (Thus, the analytic ranks result
of Corollary 7.3 gives a non-trivial lower bound on the rank of X (K,) which we
will see presently is not sharp.) In all cases it follows that ¢1(¢) = ¢. It is also
immediate from the definition that co = 1.

Next, we note that C; = D, and so

Hom(Je,, Jp,)"* = End(Je,)".

Moreover, by Lemma RT3, C, is ordinary. Since k = F,,, we know from Honda-Tate
theory (cf. Lemma B.5.2)) that End(Je,) is commutative of rank 2gc, = 2(¢ — 1).
Thus we find that

Rank X (K,) =¢— 1.
We will study this example in much more detail in Section[[.3l In particular, we

will give explicit generators of a subgroup of finite index in X (XK,).

6.5. Another elliptic curve with unbounded ranks. In this example we take
p#3and f =g =23 Then X is the isotrivial elliptic curve z3 — y® — t = 0 with
j-invariant 0. The change of coordinates

(z,y) = (

brings X into Weierstrass form

y+9t y
3z 3z

y? + Oty = 2° — 2712,

Tate’s algorithm shows that X has good reduction away from 0 and oo, and reduc-
tion type IV at 0. (In particular, the analytic ranks result of Corollary 2.7.3] does
not give a non-trivial lower bound on the rank.) It follows that c¢;(¢) = 2¢ and
¢z = 2. The rank formula shows that Rank X (K,) = Rank End(J¢, )" — 2(¢ — 1).

Suppose that p = 2 (mod 3). Then the curve C, is supersingular of genus ¢—1 (in
other words, its Newton polygon has all slopes equal to 1/2). Applying Lemma[R5.2]
part (3), we find that the rank of End(J¢, )" is 4(¢—1) and Rank X (K,) = 2(q—1).
In Subsection [T.2 below, we will write down explicit points generating a finite index
subgroup of X (K,).
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6.6. Higher genus, unbounded rank. It is clear from Lemma that when
we take f = ¢ in the construction of Section [3 in many cases the main term of
the rank formula, namely Rank End(ch)]Fq7 will go to infinity with ¢. If we can
arrange the geometry so that ¢y is not too large, we will have unbounded ranks. In
this subsection, we show that this is not difficult to do.

Before giving constructions, we record two easy lemmas about irreducibility of
curves.

Lemma 6.6.1. Suppose that C C P! x P! is a curve of bidegree (M, N) which has
only ordinary double points as singularities. Suppose further that the number of
double points is less than min(M, N). Then C is irreducible.

Proof. If C is reducible, then it is the union of curves of bidegrees (i,j) and
(M — i, N — j) for some (i,5) # (0,0) and # (M, N). The intersection number
of the two components is (M —i)j + (N — j)i, and it is not hard to check that the
minimum of this function over the allowable values of (,5) is min(M, N). Thus
if C has fewer than min(M, N) ordinary double points and no other singularities,
then it cannot be reducible. (]

Lemma 6.6.2. Let L be an arbitrary field and let f(x) = a(z)/b(x) € L(x) be a
rational function of degree M such that a(x) — b(z)t is irreducible and separable in
L(t)[z]. Suppose that the Galois group G of the splitting field of a(z) — b(z)t over
L(t) is a 2-transitive subgroup of Sy;r. Then the plane curve with affine equation
f(z) — f(y) = 0 (or rather a(x)b(y) — a(y)b(xz) = 0) has exactly two irreducible

components over L.

Proof. Consider the morphism , : P}, — Pp , given by x — t = f(z). The
corresponding extension of function fields is L(t) — L(t)[z]/(a(x) — b(z)t) = L(z).
Make a similar definition of 7, with y replacing = everywhere. Then the curve
f(z) — f(y) = 0 is the fiber product of m, and m,. The function field (or rather
total ring of fractions) of this fiber product is L(z) (1) L(y). By basic field theory,

its set of irreducible components over L is in bijection with the set of orbits of G
acting on ordered pairs of roots of a(z) —b(z)t in L(t). By our hypotheses, there are
exactly two of these, namely the diagonal (corresponding to the component z = y)
and the rest. Thus f(x) — ¢g(y) = 0 has exactly two components. |

We return to the construction of Section Bl and consider the case where k = F,
and f = g. We assume that f has degree M > 2 and is generic in the following
sense: if the critical values of f : PL — P! are a4, ..., aap 2, then our assumption
is that the set of differences o; — a; for ¢ # j has maximum cardinality, namely
(2M —2)(2M — 3). (This is slightly different from the condition that the pair (f, f)
be generic in the sense of Subsection [£.4])

Our assumption implies in particular that f has 2M — 2 distinct critical values.
Therefore, the type of f (in the sense of Subsection [1)) is 1 + 1+ --- + 1; i.e., f
has M simple poles. In this case the genus of Cq is (M —1)(¢ — 1), Je, is ordinary
by Lemma B1.3] and

Rank End(J, )" = 2g¢, = 2(M —1)(q — 1)

by Lemma
Now let X be the curve over k(t) defined by f(z) — f(y) — t = 0, with regular
proper model 7 : X — IP’,lc)t. By Proposition B.IH the genus of X is (M — 1)2.
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Arguing as in Subsection [£4] we see that the fibers of m away from t = 0,00 are
either smooth or have a single ordinary double point. By Lemma [6.6.1] they are
thus irreducible. If we assume further that f has a large Galois group (in the sense
of Lemma [6.6.2]), then the fiber of 7 over ¢ = 0 has two components. Thus ¢; =1
and our rank formula says that

Rank MW (Jx/K,) = 2(M —1)(qg — 1) — g + ¢3.

Since M > 2, the rank is unbounded as ¢ varies. (The reader has no doubt already
noticed that the case M = 2 is exactly the situation of Subsection [6:4])

6.7. Explicit curves of higher genus and unbounded rank. As a comple-
ment to the preceding subsection, we give an example showing that even with
fairly special choices of f = g, we get unbounded ranks. Namely, let us take f =
1/(z™ — 1) where m > 1 is prime to 2p. Then the curve X over k() has equation

y"r =™ —t(z™ - 1)(y™ —1) = 0.
It is obvious that the fiber of X over ¢t = 0 is reducible, with m components. We

claim that for all other finite values of ¢, the fiber is irreducible. In other words, we
claim that for all @ € £, the plane curve

X, : ym =™ —a(z™ -1 (y"-1)=0

is irreducible. Since the only critical values of f are 0 and —1, both with multiplicity
m — 1, the fibers away from ¢ € {0, =1, 00} are smooth and thus, by Lemma [6.6.1]
irreducible. The fiber over t = —1 is the curve

xmy™ —22™ +1=0.

We can see that this is irreducible by considering it as a Galois cover of ]P’,lc’x with
Galois group p,,. To wit, the cover is totally ramified over the regular points
x = (1/2)™ y =0, so the curve must be irreducible. The argument at t = 1 is
similar and we omit it.

Using the results of the preceding paragraph, we find that ¢1(q) = (m — 1)g,
ca = (m — 1)%, and our rank formula yields

Rank MW (X/K,) =2(m —1)(¢ — 1) — (m — 1)g + (m — 1)?
=(@+m=3)(m—1)
which grows linearly with q.

6.8. Analytic ranks and supersingular factors. In this subsection, we show
that the rank formula of Theorem [(.2.1] gives a connection between the symplectic
and orthogonal versions of the analytic rank lower bounds, i.e., between Corol-
lary and Proposition 2.8.11

Consider the situation of Proposition A3l with (f, g) generic of type (2,2 + 1)
and p odd. We suppose that f and g are defined over a finite field kg of cardinality
r, and we let k = Fp and K = k(t). We assume that ¢ is a power of r? and set
K, =F,(u) with u? —u =t.

The curve X given by f — g =t has genus 1, and by Proposition [£.3.1] we have

Rank X (K,) — Rank X (K) > /g — 1.

The proof of Proposition d.3.I]shows that X has three finite places of bad reduc-
tion, each with a single ordinary double point. It follows from Lemma [6.6.1] that

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



ABELIAN VARIETIES IN ARTIN-SCHREIER EXTENSIONS 8577

the fibers are irreducible, so ¢1(g) = 0. It is immediate that co = 1, so the rank
formula of Theorem B2l reads

Rank X (F,(u)) = Rank Homg (Je,, Jp, a1,

The formula of Remark for Rank X (K)) shows that Rank X (K) = 1. Con-
sidering the lower bound of the preceding paragraph, we find that

Rank Homg (Je,, Jp,)™ > /g — 1.

Now the Jacobian of C, is supersingular of dimension (¢ —1)/2. By LemmaRT1.2
and Theorem [8331] the Jacobian of D, has dimension 3(¢ — 1)/2 and slopes 0,1/2,
and 1, each with multiplicity (¢ — 1). The slopes suggest, but do not prove, that
Jp, has supersingular elliptic curves as isogeny factors. The ranks formula does
prove this. Indeed, if e is the multiplicity of the supersingular elliptic curve in the
Jacobian of Dy, then
qg—1 1

e

— 2.
2 ‘q-1 “°

Rank Homg (Je,, Jp,)™ =4

Therefore 2e > /g — 1, and we see that Jp, has a supersingular elliptic curve as an
isogeny factor with multiplicity at least (/g — 1)/2. This is exactly the conclusion
we would obtain by applying Proposition 2.81] directly to D,.

A similar discussion applies when we take (f, g) to have type (2, N) with N even.
If p=1 (mod N), slope considerations (as in Theorem B3.T]) suggest supersingular
factors. Without this congruence on p, we know little about slopes. Still, for
all p { 2N we get supersingular factors in Jp, directly from Proposition 28] or
indirectly via Corollary 7.3l and the rank formula of Theorem [(.2.11

7. EXAMPLES—EXPLICIT POINTS AND HEIGHTS

7.1. A variant of the construction of Section[3l There is a slight modification
of the construction of Section Bl which is very useful for producing explicit points.
To explain it, choose data C, D, f and g as usual. Assume that f = g and that the
covers f : C — P! and g : D — P! are geometrically Galois, necessarily with the
same group G. For ¢ a power of p, we have the curves C; and D, with equations
27—z = f(x) and w? —w = g(y) respectively. The surface X, is birational to the
quotient of C; x D, by the diagonal action of F,, and its function field is generated
by z, y, and v with v = z — w.
Now consider the graph of Frobenius F'ry : C; — Dy, i.e., the set

{(z,z,y,w) = (z,z,2%,2%)} C Cy x Dy.

Its image in X, is {(z,y,u) = (x,2%, 2z — 29) = (z,29, —f(x)}, which is obviously
a multisection of X, — PL whose degree over Pl is equal to the degree of f. It is
more convenient to have a section, and we can arrange for this by dividing &} by
the action induced by the diagonal or anti-diagonal action of G on C; x D,. (The
two quotients can be different; they can even give rise to curves X with different
genera, and which to take is dictated by the circumstances at hand.) Calling (a nice
model of) the quotient X, and writing X'/ K, for the generic fiber of X — P! the
image of the graph of Frobenius in A will then be a section and will give rise to a
K ,-rational point of X’. We will use this variant in the two examples that follow.
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7.2. An isotrivial elliptic curve with explicit points. For this example, we
assume that ¢ = 2 (mod 3), and we take f = g = 3. The curve X thus has
equation 2% — y® = t. We take the quotient by G = u3 acting anti-diagonally (i.e.,
(x,y) = ({2, (" 'y)). The invariants are generated by X = zy and Y = —23, and
the relation between them is Y2 +tY = X3. This is the equation of our curve
X'’. Note that X’ and X are 3-isogenous elliptic curves, so they have the same
Mordell-Weil rank, and the prime-to-3 parts of their Tate-Shafarevich groups are
isomorphic. In Subsection 6.5, we found that the rank of X (F,(u)) is 2(q — 1).
Presently we will find explicit points generating a subgroup of X'(F,2(u)) of this
rank.

To ease notation, we write E for X’. Note that E is isotrivial, with j-invariant
j = 0. It becomes isomorphic to a constant curve Ey over I, (tl/ 3). The underlying
Ey is supersingular since we have assumed that p =2 mod 3.

Thus our aim is to find points on

E: Y4ty =Xx°
over K = k(u) where u? — u = t and where k is the field of ¢ elements.

Proposition 7.2.1. The torsion subgroup of E(K) is isomorphic to Z/37Z, with
non-trivial points (0,0) and (0, —t).

Proof. Let P = (X,Y) € E(K) be a non-trivial torsion point and let L = K(v)
where v3 = t. Over L, the change of coordinates X = v%2’, Y = 03y’ gives an
isomorphism between E and the constant curve Fy : (y')? + v/ = (2/)3. It is well
known (see for example [Ulm11l I.6.1]) that the torsion points of Ey(L) are defined
over the finite constant field. Thus (X,Y) = (av?,bv?) for some a,b € k. Since
these coordinates are also in K, we must have ¢ = 0, and then it follows easily that
b=0 or b =—1, yielding the two points in the statement of the proposition. O

Next we construct some non-torsion points. Using the graph of Frobenius, we
find a point (X,Y) = (u(?+1/3 ) on E(K). More precisely, the graph of Frobenius
Fry : C; — Dy is a curve in C; X D,. Its image in X, (which is birational to
(Cy x D) /F,) yields a multisection of X, — P of degree 3, given by y = 27 and
u = —z3. Taking the quotient by the action of u3 discussed above yields the section
X =zy =u9tY/3 Y = —23 = 4 whose generic fiber is the desired rational point.

Now using the Galois group of k(u)/k(t) and the automorphism group of E, we
get 3¢ points labeled by i € Z/3Z and « € F:

P, = (Cz(u + a)(q+1)/3,u+ oe) )

Considering the divisor of Y —(u-+a) shows that 3, 737y Pi,a = 0. Considering
the divisor of X — Y(@+1)/3¢% shows that Zaem‘q P; o is the 3-torsion point (0,0).
Thus the subgroup of E(K) generated by the P; , has rank at most 2(¢ — 1) and
contains all the torsion points of E(K). We will see by calculating heights that it
has rank exactly 2(¢ — 1).

In the following result, we normalize away the factors of logr in the canonical
height, as in [Ulm14bl Ch. 4].

Proposition 7.2.2. The height pairing on E(K) satisfies
(Pia» Pjp) = (Pivj.a—p5, Po0)-
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We have
24l = 0,0 =0,
-2 ifi=0, a0,
(Pi,as Poo) = 3,1 f f
—4= ifi#0,a=0,
3 ifi#0, a#0.

Proof. We refer to [Shi99] or [UlmI4bl 4.3] for a detailed account of the height
pairing.

That (P; o, Pj ) = (Pi—ja—s, Po,0) follows from the fact that E is defined over
F,(t) and the height pairing is invariant under the action of Gal(K/F,(t)). Thus
to compute the pairing in general, we may reduce to the case where (5, 3) = (0,0).
What has to be computed are intersection numbers and the components above
places of K which contain the reductions of points.

We write X’ — PL for the regular minimal model of E/K and we write P; , also
for the sections of X’ corresponding to the points with these labels. We write O
for the O-section of X’. With this notation, as in [CZ79, Lemma 1.18], the height
is given by

(Pias Poo) == (Pia —0) - (Poo— O+ D),
where the dot signifies the intersection product on X', and where D is a divisor
with Q-coefficients supported in fibers such that Py o — O + D is orthogonal to all
components of all fibers of X’ — P!'. The divisor D is easily calculated once we
know which component of each fiber Py lands on; cf. [CZ79].

Standard calculations using Tate’s algorithm [Tat75] show that E has reduction
type IV at the places u = v € [, and over u = oo. The non-identity components
correspond to components of the tangent cone Y (Y +¢) = 0.

The height (or degree) of X’ — PL (in the sense of [Ulm11l I11.2.4]) is (¢+1)/3, so
the self-intersection of any section is —(¢+1)/3. So, O-O = Py - Py = —(¢+1)/3.
We see that P, - O = 0 for all (i,«) because the points P; , have polynomial
coordinates of low degree. We briefly summarize the calculations needed to compute
the multiplicity of the intersection of P; o and Py for (i,a) # (0,0). (i) If « =0,
then the multiplicity is (¢ —2)/3 at w = 0 and is zero at the other finite places. (ii)
If @ # 0, the equation for the Y coordinate shows the multiplicity is zero at every
finite place. (iii) At infinity, the multiplicity is (¢+1)/3 if i =0 and is (¢ — 2)/3 if
i # 0. Putting these local contributions together gives the “geometric part” of the
height, namely —(P; o — O) - (Poo — O).

Similar calculations show that P; , lands on the identity component when o #
and on the non-identity component indexed by ¥ = 0 at a« = v and at co. Thus
the “correction factor” —(P; o —O)-Dis —4/3 if « =0 and —2/3 if & # 0, as in
[CZ79, Lemma 1.19]. Summing the geometric part and the correction factor gives
the heights asserted in the statement of the proposition. O

Let V be the subgroup of E(K) generated by {P; o | i € Z/3Z, o € F,}. It
follows immediately from Proposition that V has rank 2(¢ —1). Write A% for
the lattice of rank n dual to the A,, root lattice (cf. [CS99| 4.6.6]). It is well known
to have discriminant (n + 1)"~!. For a real number a, write aA? for the scaling of
A% by a. Then the sublattice of E(K)/tor generated by the P; , is isomorphic to

the tensor product lattice A5 ® (%A;_l). It thus has discriminant

R = q2(q—2)31—q_
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Now E(K)ior = Vior and R’ is the discriminant of the lattice V/Vj,,.. The dis-
criminant of the full lattice E(K)/E(K ) is thus R'/[E(K) : V]?. The integrality
result of [UIm14al Prop. 9.1] shows that [E(K) : V] divides ¢7~2.

The degree of the L-function of F over K is 2(¢ — 1). Since the rank of E(K)
is at least this big (by the height computation), it is equal to 2(¢ — 1) and the
L-function of E is (1 — ¢?(1=%))2(a=1) (Recall that the ground field  is the field of
q? elements.) In particular, the leading term of the L-function at s = 1 is 1. Using
the BSD formula, we find that

[B(K) : VI = [II(E/K)|q3.

It follows that ¢3(@~2) divides the index [E(K) : V]. Also by [Ulm14al Prop. 9.1],
the order of ITI(E/K) is a power of p which divides ¢3(@2).

Experience with analogous situations suggests that there should be an easily
constructed subgroup of E(K) whose index is | TI1(E/K)|'/?. We now propose a
candidate for this subgroup.

First, we note that since ¢ = 2 (mod 3), the curve C, is a quotient of the Her-

mitian (Fermat) curve F with equation 27" = 2¢ — z; via the map
+1)/3
(z1,21) = (z = 21,2 = xgq )/ ).
Choose elements «, 5,y in Fp satisfying a1 = —1,y=a% and p?— 3 =~11! =

—a?T!, Then we have an automorphism of F given by
(21,71) = (21 + az1 + B, 21 + 7).

We take the graph of this automorphism and map it to C; x D, then on to &, and
Xé, which leads to a rational point. After some simplifying algebra, we arrive at
the following points:

If p > 2, for each solution 3 of 37~ = —1 we have a point

. B u? — 32 (a+1)/3 (u — B)a+!

For each choice of 3, we may act on Py by elements of the Galois group of k(u)/k(t)
(sending u to u + o with « € F;) and the automorphism group of E (sending X to
(3X). This leads to a set of 3g(q — 1) points, all with coordinates in K = k(u) =
Fo2(u).

If p = 2, it is convenient to index our points by elements 5 € Fp \ F,. The
corresponding point is

: (@t B)(u+ )\ (u+ i+
Py (X)Y)= <<W> (wepr)

and for each value of 8 we can apply automorphisms of F to get a triple of points.
Again we get a total of 3¢(q — 1) points.

Recall that V is the subgroup of E(K) generated by the P; ,. Let V; be the sub-
group generated by V, the Pg, and their images under the action of Gal(K/F,(t))

and Aut(E). We conjecture that [V; : V] Z g3 o equivalently that
?
[B(K) : Vi]* = | TI(E/K)].

For all prime powers ¢ < 32 with ¢ = 2 (mod 3), we have confirmed this conjec-
ture by using machine calculation to compute the height pairings (Pg, P; o).
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Remark 7.2.3. If we again take f = g = 2, but assume that ¢ = 1 (mod 3), then
we do not get any interesting results about ranks (other than what can be deduced
from the above if ¢ is a power of p with p = 2 (mod 3)). The reason is that we
have little control of the Jacobian of C, in this case. It might well be ordinary, in
which case we would have Rank X (F,(u)) = 0.

7.3. A family of non-isotrivial elliptic curves with explicit points. In this
subsection, let k = F, and suppose ¢ is odd. Let f(z) = (z — 1)(z — a)/zx for some
a € k\ {0,1} and let X be a smooth projective surface over k birational to the
affine surface in A® with coordinates (z,y,t) defined by

flx) = fly) =t
We may choose X such that there is a morphism m : X — P} extending the
projection (z,y,t) — t. Let X; be a smooth proper model of the fiber product of
mp and P, — P}, ¢t = u? — u. The generic fiber of X, — P is the curve over k(u)
studied in Subsection above.

Let C, and D, be the smooth projective curves defined by the equations z¢ —z =
f(z) and w? — w = f(y) respectively. We saw in the course of analyzing the
construction of Section [ that X, is birational to the quotient of C, xj Dy by the
diagonal action of F;. As in the previous section, we want to take a further quotient.
Note that since f is quadratic, C; and D, are double covers of the z- and w-lines
respectively; thus they are Galois covers with group Z/2Z. We let X be (a smooth
projective model of) the quotient of X, by the diagonal action of Z/2Z.

We have a morphism X — P! sitting in a commutative diagram

Xy —— &)
]Pl —Pl

We will see in a moment that the generic fiber X’ of Xé — P! is an elliptic curve
over k(u) and so the morphism X — X’ induced by X; — A is a 2-isogeny. It
follows that the rank of X'(k(u)) is equal to the rank of X (k(u)), and we showed
in Subsection that this rank is ¢ — 1. Our main goal in this section is to exhibit
an explicit set of points generating a subgroup of X'(k(u)) of finite index.

We now proceed to find an explicit equation for X', working birationally, i.e.,
with function fields. The function field of X, is generated by z, y, and u, with
relation f(z) — f(y) = u? — u. The action of Z/2Z sends x to a/x, y to a/y, and

fixes u. Let
a a

a a
si=(z+-), 52 (y+y)7 and 53 = (2~ —)(y y)
It is easy to see that the field of invariants of Z/2Z acting on X, is generated by
s1, s3 and u. (Note that u? —u =t = $1 — s2.) The relations are generated by
s = (s% - 4a) (s% — 4@)
= (s7 —4a) ((s1 —t)> — 4a) .
It is thus evident that the generic fiber of Xé — PL is the curve X’ of genus 1 with
equation

(7.3.1) s3 = (s7 —4a) (s] — 2tsy +t*> — 4a) .
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Now for convenience (explained below), we assume that a is a square in k, say
a = b% Then X' has the k(u)-rational point s; = —2b, s3 = 0. We use this point
as origin and make the substitution

X +4 4bt(4 Y
o (XY oy

X — 4bt (X —4bt)2
which brings X’ into the Weierstrass form
(7.3.2) E: Y2 = X(X +160%)(X + t2).

(Note that E is closely related to the Legendre curve.)

We are now going to write some explicit points of E(k(u)). First consider the
graph of the g-power Frobenius morphism C, — D,, which is the closed subset
I' € Cy x1, Dy defined by y = 29, w = 29. The image of I' in &, is defined by y = x¢
and u = z — 27 = — f(x). The image of I in A} is defined by

s1=f(x)+a+1
=—u+a+1

and

a\ e+l
S3 = (JJ——)
x

= ((—U +a+ 1)2 - 4a)
= (u® —2(a+ L)u+ (a—1)?)
The image of I' in &) turns out to be a section and yields the rational point
ul — (b—1)?
X = dbt (ﬁ) 7
v — 4bt(4b +t) (u® — 2(a + V)u + (a — 1)2)(q+1)/2
(u—(b+1)2)°

(g+1)/2

(g+1)/2

on E(k(u)).

We write Q(u) for the point in E(k(u)) defined by the last display. Since E
is defined over k(t) and the Galois group of k(u)/k(t) acts via the substitutions
u — U+ @, it is clear that Q(u + «) lies in E(k(u)) for all a € F,. To streamline
coordinates, let P(u) = Q(u + (b + 1)?), so that P(u) is given by

u? + 4b
u b

x =

Abt(4b + t) (u? + 4bu) TV
Y = 5 .
U
For a € F,, write P, for P(u — «).

(We note that the curve (Z3.1]) has two evident rational points, namely the two
points at infinity. Instead of using one of them to go to the Weierstrass form (.3.2]),
we assumed that ¢ = b? in k and used the point s; = —2b, s, = 0. This does not
affect the model ([Z32]), but it does change the points P(u) by translation by a
torsion point. We made the choices we did because they simplify the coordinates
of P(u).)

Our next goal is to prove that the points P, generate a subgroup of F(k(u)) of
finite index. Normally we would prove a result like this using heights, but as we
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will see below, the height pairings in this example are exotic, and it seems difficult
to calculate the relevant determinant. Instead, we proceed using the construction
of Section [ directly.

First, we need a preliminary result on Endy 4. (Je,). Recall from Lemmal8.5.2(2)
that End)_ av(Je,) is commutative of rank 2(¢—1) since J¢, is ordinary of dimension
q—1.

Lemma 7.3.3. The subgroup of Endg_aU(ch) generated by the endomorphisms [
and Fro[a] for a € Fy has rank 2(q—1), and thus has finite index in Endg_q,(Je,)-
(Here Fr is the q-power Frobenius.)

Proof. Lemma B5.2(1) implies that the subgroup of Endg_av(ch) generated by
the endomorphisms [a] for o € F, has rank ¢ — 1. It is clear that )" [a] = 0, so
{lo]|a € F, \ 0} is linearly independent.

Since Fr is not a zero divisor in Endg_av(.]cq), the subgroup of Endg_lw(ch)
generated by the endomorphisms Fro[a] for @ € F, also has rank ¢ — 1 and
{Fro[a]|la € F, \ 0} is also independent.

We will show that the two subgroups generated by

{lo]|a € F, \ 0} and {Fro[a]|la € F, \ 0}

are independent. To that end, we consider the (effective) action of Endj_ av(Je,) on
H'(Je,, Q) = H'(C4,Q,). Computing the latter using the Leray spectral sequence
for the finite map C, — P. and decomposing for the action of F,, we find that

Hl(cqv@f) = @ W/B
BEF,
where Wj is the subspace of H'(C,,Q,) where F, acts via the character a

Yo(Trr, jr, (aB)). (Here vy is a fixed character F), — Q. .) Using the Grothendieck-
Ogg-Shafarevich formula, we see that each W3 with 8 # 0 has dimension 2 and
Wy = {0}. Using an exponential sum expression for the action of Fr on Wg, we see
that for 8 # 0, Fr has two distinct eigenvalues on Wyg: one a p-adic unit, the other
a non-unit.

Now suppose that we have a linear dependence, i.e., that there are integers a,
and b, such that

Z agla] + bofa] o Fr =0

a€cFg >

in Endgﬂw(ch). Then as endomorphisms of H'(C,,Q,), we have

Z aqlo] = — Z bola] o Fr.

acFg > a€cl >

Suppose that the left hand side is not zero. Then there is a § such that the left
hand side is not 0 on Ws. But the left hand side acts as a (non-zero) scalar on Wjg
(namely »° aato(Trg, /r, (@B))). On the other hand, the right hand side acts as a
(non-zero) scalar composed with Frobenius, and thus has two distinct eigenvalues.
This is a contradiction, and so we must have

Z aqla] = Z bola] o Fr = 0.

acFg > a€clg >
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It then follows from Lemma R5.2(1) that a, = b, = 0 for all @. This completes
the proof of the lemma. O

‘We now return to the curve E.

Theorem 7.3.4. The points P, € E(k(u)) generate a subgroup of rank ¢ — 1 and

of finite index in E(k(u)). The relation among them is that 3¢y P is torsion.

Proof. To see that the subgroup generated by the P, has finite index in E(K,),
we consider in more detail the geometry of the construction of Section 5l We have
Cq x Dy with its action of ]Fg, its blow-up S, and the quotient S/Fy by the diagonal
F,. The resulting X, = S/F, is equipped with a morphism 7, to P} whose generic
fiber is X/k(u). It is also equipped with an action of F, (namely F2 modulo the
diagonal) which induces the action of Gal(k(u)/k(t)) = F, on X. There is an
isogeny X — X’ = E and the P, come from sections of 7, so it will suffice to show
that the corresponding points in X (K,) generate a subgroup of finite index.

Now the Shioda-Tate theorem tells us that the Mordell-Weil group X (K,) is a
quotient of the Néron-Severi group NS(X,). In the course of the proof of Theo-
rem [0.2.7] we saw that

NS(&,) = Endkfav(JCq)]Fq @ 7224 (Nij+eed(aib;))
= Endk_av(ch) %) VA

where the factor Z!'° corresponds to the classes of the exceptional divisors of the
blow-ups and the classes of (the images of) C, x {pt} and {pt} x D,.

We claim that the classes in the factor Z'° all map to torsion points in X (k).
Indeed, it is clear from the discussion above that they are fixed by the action of
F, on X,. Thus they land in the F,-invariant part of X (K,), which is precisely
X (k(t)), and we know the latter group has rank 0. (This claim can also be checked
by straightforward, but tedious, computation.) It follows from the claim that the
image of Endy_q4(Je,) in X (K,) is a subgroup of finite index.

By Lemmal[Z.3.3) the subgroup of End} (Je,) generated by the endomorphisms
[a] and Fro[a] for a € F, has finite index in Endg_q.(Je,). The corresponding
points in X (K,) are the images of the graphs of these endomorphisms. Moreover,
it is easy to see that the graph of [a] maps to one component of the fiber over u = «
(the component “z = y”) in X;. Therefore, these endomorphisms map to zero in
X(Ky).

It follows that the image of the remaining endomorphisms Fro[a] generates a
finite index subgroup of X (K,). Their images in E(K,) are precisely the points P,,
and we proved in Subsection [6.4] that E(K,) has rank ¢ — 1, so we have established
the first claim of the theorem.

Since ) P, lies in E(k(t)) and we know that the rank of E(k(t)) is zero, the sum
must be torsion. (We could also note that Lemma implies that ) _ Fro[a] is
trivial in Endg 4. (Jc,).)

This completes the proof of the theorem. O

Remark 7.3.5. In contrast to the situation of [Ulm14al, 2-descent is not sufficient to
prove that the “visible” points P, generate a finite index subgroup of E(K,). More
precisely, when ¢ # p, the index of the subgroup generated by the P, in E(K,) is
divisible by a large power of 2.
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We turn now to a consideration of the heights of the P,. For v € Iy, write
tr., for the integer defined as follows: Consider the fiber of the family (Z31) over
t = . In other words, let X’ be the smooth projective curve given by (Z3.1)) with
«v substituted for ¢. Then tr, is defined by the equality

#X (Fy) =q—try+ 1.

If x denotes the non-trivial quadratic character of F, then we may also define tr,
as

try=—1-"% x((8°~4a) (6° — 298+ ~ 4a))

BEF,

=—1- " x(B(B+4b)(B—)(B -7 +4b)).

BEF,

(The first equality comes from the standard count of points on a hyperelliptic curve
as an exponential sum. The second comes from a change of variables 5 +— 8 + 2b.)

Theorem 7.3.6. The height pairings (P, Pg) are given by

(3f1*a)q(q*1) + % if o = B,

(Pay Ps) = § 522 + 4x(=1) if a— B = +4b,

1;5’1 +tra_p  ifa—B#0,+4b.

Remarks 7.3.7.

(1) If we were to ignore the second term in each of these heights, the lattice
generated by the P, would be a scaling of the lattice A7 ;. We may
view the actual lattice as a “perturbation” of A7_; where the fluctuations
are controlled by point counts on an auxiliary family of elliptic curves.
This seems to us an exotic phenomenon somewhat reminiscent of mirror
symmetry.

(2) The terms 1/2 and 1x(—1) in the height formula may also be viewed as
traces. To wit, we consider the “middle extension sheaf” F on P} associated

to the family (Z31)). Then for v # 0, £4b, we have
try = Tr (Frq | Fy)

where F, is the stalk of F at a geometric point over ¢ = 7. One can then
show that for v = £4b we have

Tr (Frq |[F) = x(=1)
and for v = 0 or 7 = oo we have
Tr (Frq | Fy) = 1.

(3) As a check, we note that the Lefschetz trace formula for F implies that

> Tr(Fr|Fy) =0.

'YEP% (Fq)
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Thus if we interpret the 1/2 in the formula for (Py, Py) as

1
1 (Tr (Frq | Fo) + Tr (Fry | Fso))

then we see that the sum Zaqu P, is orthogonal to all P,; i.e., it is torsion.
This is in agreement with Theorem [.3.4

Proof of Theorem [[3.8l Since E is defined over k(t), and the height pairing is
invariant under the action of Gal(k(u)/k(t)), we may reduce to the case where
B = 0. Thus we consider (P,, Py) and we have to compute

—(Py—0O)-(Py— O+ Dp,).
The height of E/k(u) (in the sense of [Ulm1ll II1.2.4]) is equal to g, so we have
2 _

0° = —q.
Next we consider P, - O. Rewriting the coordinates of P, slightly, we have
X Pa =4b — 4b a s
(Pa) — (u—a+4h)
Y(Pa) = 4b (4b + 1) (u — a + 4b) V2 (y — ) a=1/2,
uU—Q

and since u — a divides t, we see that these coordinates are polynomials in w. This
shows that P, and O do not meet over any finite place of k(u). Moreover, the
degree in u of X(P,) is 2¢ — 1 and the degree in u of Y (P,) is 3¢ — 1. Since these
degrees are < 2q and < 3q respectively, P, and O also do not meet over u = oc.
Thus we have

P, -O=PF;-0=0.

Now we consider the disposition of the points at the 3¢+1 places of bad reduction,
namely u € F, (sot =0), u? —u =t = £4b, and u = co.

At the places u € F,, E has multiplicative reduction of type I4. At u = «,
X (P,) # 0, so P, lands on the identity component. At u = o —4b, X (P,) vanishes
to high order, so P, lands on the component labeled 2. At u € F,, u # o, a — 4b,
X(P,) and Y (P,) both vanish simply and so P, lands on the component labeled
either 1 or 3. Which case occurs is determined by the sign of

Y (Py)/X (Py) = 4b(u — )97 V/2 (4 — a 4 4b) =07 D/2 = 14p,

We make the convention that component 1 corresponds to the case +4b above.
Considering components shows that if « # 0, P, and Py do not meet over u = 0,
—4b, «, or oo — 4b. At other places with u € Fy, they both land on component 1 or
3 and we have to look closer for a possible intersection. Consider the X coordinate
of P, over u = 3 after the blow-up at which components 1 and 3 appear. It is

4b¢(B8)(B — o + 4b)

where ¢(u) = t/(u — a)(u — ) so that ¢(8) = —1/(8 — «). The X coordinate in
question is thus 4b(8 — o + 4b) /(o — 5). The map a — 4b(8 — a + 4b)/(av — )
is a linear fractional transformation, thus injective, so there are no intersections
between P, and Py over places with u € F,.

Now consider places u = 8 where u? — u =t = 4b. At such a place,

X(Pa)(8) = 1602020 R

B
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Also, we have X (P,)(8) = —16b% if and only if 23 = 2a: — 8b, but this is impossible
since 8 ¢ F,. This shows that P, lands on the identity component at these places.
Also, since a — (8 — a+ 8b)/(B — «) is injective, X (P,) # X (Py) if a # o/ i.e.,
there are no points of intersection at these places.

At places u = 3 where u? —u = t = —4b, we have X (P,)(8) = —16b* and so P,
always lands on the non-identity component. A short calculation reveals that

—B9 4+ o
S (- 8)— (- ).
After the blow-up which makes the non-identity component appear, X (P,) evalu-
ates to 4b(—fB74a)(B—a) at u = B, and a — 4b(—B9+«) (8 — ) is injective. Thus
there are no points of intersection between P, and Py at the places where ¢t = —4b.

Next, we consider the situation at u = oo, where E has reduction of type I4,.
Setting v = u~! and changing coordinates X = v=2¢X’, Y = v=39Y”, the point P,
has coordinates:

X'(Py) = 4b (v(1 — av)?™" = v7) (1 — av? + 4ba?)
Y'(Py) =4b (v(1 — av)?™" — ) (4bv? +1 — 097 ) (14 4bv)(q+1)/2 .

X(P,) =4b

Since X’ and Y’ both vanish simply, P, lands on the component labeled 1. In fact,
each P, lands on the same point on that component. (In natural coordinates this is
the point (4b,1).) Moreover, by considering the next term in the Taylor expansions
of X’ and Y’ near v = 0, we see that the local intersection multiplicity in P, - Py
is 1.

Finally, we consider possible intersections between P, and Py at places where F
has good reduction. At a place where the X-coordinates coincide, we would have

uq—|—4b_ u? — o+ 4b
o u—a

4bt 4bt

Since we have already treated the places where t = 0, we may assume ¢ # 0 and then
the equality above holds if and only if u? 4+ 4b = u, i.e., if and only if t = —4b. We
already treated these places as well, so there are no further points of intersection.

Summarizing, we have shown that the “geometric” part of the height pairing is

~(Pa=0)- (P~ 0) = {2q peo
qg—1 ifa#0.
As for the “correction factor” —Dp, - P,, the local contributions at ¢ = 4b are
0, they are 1/2 at each of the ¢ places where t = —4b, and they are (4¢ — 1)/4q at
U = 0.
The correction factors over ¢ = 0 are more interesting. Namely, at © — 8 with
B # a,a — 4b, P, lands on component +1 where the sign is controlled by whether
or not

(B — a)(qfl)/Q(ﬂ —a+ 4b)*(q*1)/2 -1
i.e., by whether or not
(B = a)(B = o+ 4b)
is a square in .
If & = 0, then Py lands on the identity component at u = 0, on the component
2 at u = —4b, and on component +1 at other places v = 5 with 5 € F;. Thus the
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contribution to the correction factor at places over t = 0 is —(3¢ — 2)/4, the total
correction factor is
5¢%> +2q — 1
—Py-Dp, =4 T4~
0 Dp, 1q

and the height pairing is

3¢2 —2¢+1 B (3q—1)(q—1)+1

Py, Py) = -

(Po, o) 4q 4q 2
If « = —4b, then at 8 = 0 and 8 = —4b, one of Py or P, lands on the identity
component and the local contribution is zero. At 8 = —8b, Py lands on component

+1 and P, lands on component 2 for a local contribution of —1/2. At other places
over t =0, Py and P, lie on components +1, and the sum of the local contributions
is

- 5 (G e s)
B0, —4b,—8b

qg—3 1
=—"="—-2 > x((B+8)/8).
B7#0,—4b,—8b
The last sum is easily seen to be —1 — x(—1), and so the sum of the local contri-
butions over all places over ¢t = 0 is

29—-5 1
- “v(=1).
1 +4x( )

The total correction factor is

—4¢*+q+1 1
—FPo - Dp, = 4—q + ZX(—l)a

and the height pairing is

(1-3¢) 1
e,

The case a = 4b is very similar to that of a = —4b and we leave it as an exercise
for the reader.

Now assume that o # 0,+4b. Then at 8 = 0 and 8 = «, one of Py or P, lands on
the identity component and the local contribution is 0. At 8 = —4b and 8 = a—4b,
one of Py or P, lands on component 2 and the other lands on component +1, so we
get local contributions of —1/2. At the other ¢ — 4 places over ¢t = 0, both Py and
P, land on components +1. The sum of the local contributions at these places is

<Pa;PO> =

1 1
- Y (e mE-aE-arm)
B#0,—4b,ac,c—4b
qg—4 1
=——+-(1+try).
5 t1 (1+try)
(For the last equality, see the display just before the statement of the theorem.)
Thus the sum of the local contributions at places over ¢t = 0 is
2¢g—-5 1

_tom
r "
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the total correction factor is

—4¢®+q+1 1
Py Dpy= —L T4y gy
Po 4q Tl
and the height pairing is
1-3 1
(Pay Po) = ( 4q ) + Ztroz
This completes the proof of the theorem. O

It would be very interesting to have a conceptual explanation for the appearance
of point counts in the height pairings.

8. APPENDIX: AUXILIARY RESULTS ON ARTIN-SCHREIER COVERS

In this section, we collect results on Artin-Schreier curves and the Newton poly-
gons and endomorphism algebras of their Jacobians.

8.1. The genus and p-rank of Artin-Schreier curves. Suppose k is a perfect
field of characteristic p. Suppose C is a smooth projective irreducible curve over k
with function field F = k(C). Let f(x) € F be a non-constant rational function.
Write diveo (f(z)) = St a; P; with distinet P; € P(k) and all a; # 0.

For a power g of p, let C4 ¢ be the smooth projective curve with function field
Flz]/(22 — z — f) and let 7,y : Cq.y — C be the morphism corresponding to the
field extension F — F[z]/(2? — z — f(x)). We assume throughout that Cg ¢ is
geometrically irreducible. This holds, for example, if f has a pole of order prime
to p at some place of F.

Lemma 8.1.1. If k contains Fy, then 74¢ : Cqr — C is a Galois cover and its
Galois group G is canonically identified with IF,.

Proof. This is a straightforward generalization of [Sti09, 6.4.1(a-b)]. O

Lemma 8.1.2. Let k, q, f, and Cq .y be as above. Suppose that all the poles of f
have order prime to p.

(1) The branch locus of 745 is {P1,...,Pyn}. Above each point P;, the cover
T4 is totally ramified. If k contains Fy and G denotes the ramification
subgroup of G at P; in the upper numbering, then Gi* = G and G is trivial
fort > a;.

(2) The genus gq,5 of Cq.; and the genus ge of C are related by the formula

200 —2=0q(20c —2) + (g — 1) _(a; +1).
=1

In particular, if C ~ P!, then g, s = %(q —1) (=24 > (a; + 1)).
Proof. This is a straightforward generalization of [Sti09] 6.4.1(c-g)]. O

Let Jg.5 be the Jacobian of C, ¢ and let J, f[p] be its p-torsion group scheme.
Recall that the p-rank of J, s is the integer s such that #J, ;[p](k) = p*. The
p-rank is at most the genus g4 r of Cy ¢, and Cq y and Jy,  are said to be ordinary
if the p-rank is maximal, i.e., s = g4 5 [CO09, Section 1.1].
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Lemma 8.1.3. The p-rank of Jq.5 is s = 1+q(s¢c —1)+m(g—1). In particular, if
C ~P', then J, s is ordinary if and only if the poles of f are all simple, and Ty ¢
has p-rank 0 if and only if f has exactly one pole.

Proof. This follows from the Deuring-Shafarevich formula [Sub75l Thm. 4.2]. O

8.2. Quotients of Artin-Schreier curves. This section contains two results
about subextensions of the Artin-Schreier extension F' < F[z]/(z? — z — f). The
first allows us to reduce questions about the structure of the Jacobian of the curve
Cq,5 given by the equation 29—z = f to the case ¢ = p; it is used in Subsection B3

Lemma 8.2.1. Suppose C ~ P!, Let S be a set of representatives for the cosets of
Fy CFy. ForpeS, let Z,, be the Artin-Schreier curve 2P —z = uf and let J,, be
the Jacobian of Z,,. Then there is an isogeny

Ja.f ~ @ T
neS
Proof. By [GS91], Proposition 1.2], the set {Z, — P! | u € S} is the set of degree p
covers Z — P! which are quotients of 7 : C; ; — P!. The result then follows from
[KR89, Theorem C]. O

The second result is used in Section[2] where we need to work with a more general
class of Artin-Schreier extensions. To that end, recall that there is a bijection
between finite subgroups of Fp and monic, separable, additive polynomials, i.e.,
polynomials of the form

v—1
Alz) = 2" + Z a;z?
i=0

with a; € Fp and ag # 0. The bijection identifies a subgroup H with the polynomial
Ap(z) == [[,cy(z — @) and identifies a polynomial A with the group Hx of its
roots. For example, when H is the field of order ¢, then Ay (x) is the polynomial
pq(x) = 7 — x. For general H, note that the field generated by the coefficients of
Ap is the field of p* elements, where p* is the smallest power of p such that H is
stable under the p*-power Frobenius.

Now suppose f € F where F is the function field of a smooth projective curve
defined over k. We assume that f has a pole of order prime to p at some place
of F. Suppose A is a monic, separable, additive polynomial with coefficients in k.
Then we have a field extension

K = Ka = Flz]/(A(z) = ).

It is geometrically Galois over F and the Galois group Gal(F, K /F,F) is canonically
isomorphic to H4. This Galois group is stable under the r-power Frobenius since
A is assumed to have coefficients in k.

The next lemma is used in Section [2] to reduce questions about the field K4 s to
the analogous questions about the field K, ;.

Lemma 8.2.2. Let A be a monic, separable, additive polynomial with roots in Fy.
(1) Then there exists a monic, separable additive polynomial B such that the
composition Ao B is g,.

(2) Suppose f € F has a pole of order prime to p at some place of F. Suppose
Ao B = p,. Then Kay is a subfield of K ; and the geometric Galois

group Gal(F,K 4 ¢ /F,F) is a quotient of F,, namely B(F,).
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Proof. Let B be the polynomial identified with the subgroup A(F;). Then Bo A
has degree ¢ and kills F;, so must be equal to p,. Next, we note that the set of
additive polynomials with coefficients in F, together with the ring structure given
by addition and composition of polynomials is a (non-commutative) domain, and
©q is in its center. (Both of these are most easily checked by noting that the ring
in question is isomorphic to Drinfeld’s ring of twisted polynomials Fo{r} where
Ta = aP1 for a € Fy.) Since Bo A = p,, we see that Ao BoA=Aop=poA,
and canceling yields the first claim A o B = p,. The second claim follows directly
from the first. (]

Example 8.2.3. Assume that r is a power of an odd prime p and fix a positive
integer v. Let A(z) = 2" + x. The group H, of roots of A generates F, where
q=r?. Setting B = p,+, we have Ao B = g,. If f € F has a pole of order prime
to p at some place of F, then the field extension K4 y is a subextension of K, .

8.3. Slopes of Artin-Schreier curves. Next we review the definition of the New-
ton polygon of a curve C of genus g defined over a finite field from [CO09, Sections
1.16, 1.18, 3,5, 3.8, 4.38, 4.49, 10.17]. The Newton polygon of C is the Newton
polygon of (the p-divisible group of) its Jacobian J. It is a symmetric Newton
polygon of height 2¢g and dimension g; in other words, it is a lower convex polygon
in R2, starting at (0,0) and ending at (2g, g), whose break points are integral such
that the slopes A are rational numbers in the interval [0,1] and the slopes A and
1 — X occur with the same multiplicity. The Newton polygon is determined by its
sequence of slopes, written in ascending order, and these are the p-adic values of
the zeros of the relative Frobenius morphism 4. More precisely, if A is a simple
abelian variety defined over a finite field k of cardinality r, then Tate proved that
74 generates a field which is the center of End®(A) [CO09, Section 10.17]. Viewed
as an algebraic number, w4 has absolute value /7 in every embedding of Q(74)
in C (a Weil y/r-number). The slopes of the Newton polygon of A are the p-adic
valuations of 74 and the multiplicity of A in the Newton polygon is the sum of the
degrees [Q(ma), : Qp] over all places v of Q(74) above p such that A = v(7a)/v(r).
If 7 is not simple, then its slopes are the concatenation of the slopes of its simple
factors.

Next, for k a finite field of characteristic p, a power ¢ of p, and f € k(z) a
rational function with poles of order prime to p, we define a (Hodge) polygon
HP = HP(f,q) as follows. Write the polar divisor of f as divee(f) = > iv, a; P;
where the a; are all prime to p and the P; are distinct. Define a collection of slopes
by taking slopes 0 and 1 with multiplicity (m —1)(¢— 1) and, for each pole P; with
a; > 1, slopes 1/a;,2/as,...,(a; — 1)/a; each with multiplicity ¢ — 1. We have in
total 2gc, . slopes, which we place in ascending order and call sq,...,s25. Then
HP is defined to be the graph of the piecewise linear function % on [0,2¢g] with
1 (0) = 0 and with slope s; on [i — 1,1].

Note that NP(Cs4) and HP(f,q) have the same endpoints, namely (0,0) and
(29,9), and NP(Cy ) lies on or over HP(f,q) [Kat79]. The following is an im-
mediate consequence of [Zhu04, Theorem 1.1 and Corollary 1.3] (which is the case
p = ¢) and Lemma B2.T] above.

Theorem 8.3.1. Suppose C ~ P'. The Newton polygon NP(Cy,) coincides with
the Hodge polygon HP(f,q) if and only if p=1 (mod lem(a;)).
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The curve C4 s is ordinary if and only if the only slopes of its Newton polygon
are 0 and 1. As an example of the theorem, note that if all poles of f(z) € k(x)
are simple, then the congruence condition is empty and the Newton and Hodge
polygons coincide. Moreover, the latter has only slopes 0 and 1, giving another
proof that Cy 4 is ordinary in this case.

8.4. Slopes, p-ranks, and supersingular factors. In this subsection, we collect
a few remarks about slopes, p-ranks, and supersingular elliptic curves appearing in
Jacobians of Artin-Schreier curves. Throughout, C, ¢ is the Artin-Schreier cover of
C determined by the equation 29 — z = f.

By definition, Cg s is supersingular if and only if all of the slopes of its Newton
polygon equal 1/2 [CO09, Section 1.1]. If C4 s is supersingular, then there is an
isogeny J,.p ® k ~ @Y_, E for a supersingular elliptic curve E [Oor74, Theorem
4.2]. As seen in [CO09) Sections 1.1 and 5.3], if C, ¢ is supersingular, its Jacobian
has p-rank 0, but the converse is in general false when g4 f > 3.

Note that if the Jacobian of C4 ; has a supersingular elliptic curve as an isogeny
factor of multiplicity e (i.e., Jy 5 ® k ~ E¢ @ A), then 2e of its slopes are 1/2. The
converse is false unless e = g4, ¢; for every isogeny type other than the supersingular
one, there exists an absolutely simple abelian variety having that isogeny type
[LO74].

Suppose that dive, (f) = 2211 a; P; where as usual the P; are distinct k-valued
points of P! and the a; are prime to p. If some a; is even, then the Hodge polygon
of f has a segment of slope 1/2. If furthermore p = 1 (mod lcm(a;)), then by
Theorem [83.1], the Newton polygon of C, ; also has a segment of slope 1/2, and so
it is possible that the Jacobian Jg ; of C4 ; has supersingular factors.

One case where it does follow immediately that 7, s has supersingular factors is
when p is odd and f has exactly one pole of order 2 and no other poles. Indeed,
in this situation, the Newton and Hodge polygons are equal, and the latter is a
segment of slope 1/2. Since its length is ¢ — 1, it follows that over k, Jq,t 1s
isogenous to a supersingular elliptic curve to the power (¢ — 1)/2. More generally,
any Artin-Schreier curve that dominates this example will also have supersingular
factors. This includes the Artin-Schreier curves 2P — z = g(z)? for any rational
function g(x) having poles of order prime to p.

Finally, we note that a different parity condition on the a; leads to supersingu-
lar factors and therefore to slopes 1/2. Indeed, according to Proposition 28] if
> (a;+1)is odd and q is a power of r* = |k|?, then Cy , has a supersingular elliptic
curve as isogeny factor with multiplicity at least (,/g — 1)/2. (Note that the hy-
pothesis here implies that at least one of the a; is even, making a connection with
the previous paragraph.) This lower bound for the multiplicity of supersingular
curves as isogeny factors is often not sharp, as can be seen from the main result of
[vdGvdV95].

8.5. Endomorphism algebras of Artin-Schreier curves. The endomorphism
algebras of Artin-Schreier curves are known only in special cases. We include some
partial results here which are used multiple times in Sections [6land [l Throughout
this subsection, we assume that k contains the field of ¢ elements.

Let Q[H] be the group algebra of the group H = F,. By the Perlis-Walker
theorem [PW50],

Q[H] ~ Q Baes Q(¢p)
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where S is a set of representatives of the cosets of F;, C F;. Let W be @;71 with
F, acting by the direct sum of its ¢ — 1 non-trivial characters.

Let C4 ¢ be as in the previous subsection, and let J; s be its Jacobian. Consider
the endomorphism algebra End®(7, ;) = Endx(J, 1) ® Q.

If k contains the field of ¢ elements, then H = [, acts on Cy y. The action of H
on C, ; induces a homomorphism Q[H] — End’ (7, 7). Let End®(7, ;)" denote the
subalgebra of endomorphisms which commute with the action of H, in other words,
the subalgebra commuting with the image of Q[H] — End"(7, ). We consider the
composition Q[H] — End®(7,. ;) € End’(H'(C, s x k,Q,)), where £ # p is prime.
Proposition 8.5.1. Suppose C ~PL. There is a Q[H]-module isomorphism

H'(Cqp x k,Q) ~ WH

where R =2g, /(¢ —1) = =2+ (a; + 1).

Proof. Consider the representation p, ¢ determined by the action of H on
HY(C, s xk,Q,). By the Lefschetz fixed point theorem [MilI80, V.2.8], the character
X(pq,5) satisfies

X(p%f) = 2Xtriv - 2chg + Z Aia
i=1
where A; is the character of the Artin representation attached to the branch point

P; and Xqeg is the character of the regular representation. By Lemma RBT.2(2) and
[Sex79, V1], for o € F,,

Ai(o) = —(a; +1), UE]J.?q, o #1id,
(a; +1)(¢g—1), o=id.
Thus
25" (a;+ 1), o #id,
oo )lo) = 4 27 20 ) s
(g—D(=2+>"(a; +1)), o=id,
and therefore by Lemma BT.2(3),

—R, o #id,

X(pg.f)(0) = {(q —1)R, o=id,

which is the character of WE. O

Lemma 8.5.2. Suppose that k contains the field of q elements, so that Cyq — P!
is an Fy-Galois extension and H = F, acts on the Jacobian Jy 5 of Cq .

(1) The image of Q[H] — End®(J, ;) has dimension q — 1.

(2) If C, ¢ is ordinary and k is algebraic over F,, then End®(J, ) is commu-
tative of dimension 2g, ; and so End®(J, ;)" = End°(J, ) has dimension
2gq7f.

(3) If Cy ¢ is supersingular and k contains the field of p* elements, then

End”(Jg,f) = My(D)

where D is the quaternion algebra ramified at p and oo, and Endo(j%f)H
has dimension 4g3)f/(q —-1).
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Proof.

(1) This follows from Proposition B51]

(2) See [Tat66al, Theorem 2(c)].

(3) The fact that End’(7,, ;) = M,(D) can be found in [Tat66a, Theorem 2(d)].
(The assumption that F,2 C k guarantees that the endomorphism algebra
of a supersingular elliptic curve is D.) By part (1), the dimension of the
image of Q[H] — End’(J, f) is ¢ — 1. By the double centralizer theorem
[Kna07, Theorem 2.43], End’(J, ;) has dimension 492 ;/(q — 1). 0
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