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THE EKEDAHL-OORT TYPE OF JACOBIANS OF HERMITIAN
CURVES”

RACHEL PRIEST AND COLIN WEIR}

Abstract. The Ekedahl-Oort type is a combinatorial invariant of a principally polarized abelian
variety A defined over an algebraically closed field of characteristic p > 0. It characterizes the p-
torsion group scheme of A up to isomorphism. Equivalently, it characterizes (the mod p reduction
of) the Dieudonné module of A or the de Rham cohomology of A as modules under the Frobenius
and Vershiebung operators.

There are very few results about which Ekedahl-Oort types occur for Jacobians of curves. In
this paper, we consider the class of Hermitian curves, indexed by a prime power ¢ = p", which
are supersingular curves well-known for their exceptional arithmetic properties. We determine the
Ekedahl-Oort types of the Jacobians of all Hermitian curves. An interesting feature is that their
indecomposable factors are determined by the orbits of the multiplication-by-two map on Z/(2™ +1),
and thus do not depend on p. This yields applications about the decomposition of the Jacobians of
Hermitian curves up to isomorphism.
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1. Introduction. A crucial fact about a principally polarized abelian variety
A defined over an algebraically closed field k of characteristic p > 0 is that the
multiplication-by-p morphism of A is inseparable. If A has dimension g, then [p]
factors as V o F where the Frobenius morphism F' is purely inseparable of degree
p? and where V is the Verschiebung morphism. The isomorphism class of the p-
torsion group scheme A[p] is determined by the interaction between F and V. It
can be characterized by its Ekedahl-Oort type or by the structure of its Dieudonné
module. There are many deep results about the stratification of the moduli space A,
of principally polarized abelian varieties by Ekedahl-Oort type, see especially [Oor01]
and [EvdG09).

In contrast, there are almost no results about which Ekedahl-Oort types occur
for Jacobians of curves. There are existence results for Ekedahl-Oort types of low
codimension, for which the Jacobians are close to being ordinary [Pri09]. There is a
complete classification for hyperelliptic curves when p = 2 [EP13].

In this paper, we determine the Ekedahl-Oort type of the Hermitian curve X, for
every prime power ¢, see Theorem 5.13. More precisely, we determine the structure
and multiplicity of each indecomposable factor of the Dieudonné module for the p-
torsion group scheme of the Jacobian of X,. For the proof, we compute the module
structure of Hy (X,) under F and V. The Hermitian curves are remarkable for their
properties over finite fields, but the Ekedahl-Oort type and the Dieudonné module
are geometric invariants. Thus we work over k = F,, throughout the paper.

This introduction contains: (1.1) a review of the arithmetic properties of Hermi-
tian curves; (1.2) a result of Ekedahl that is the starting point for this work; (1.3) a
description of the main result, Theorem 5.13; (1.4) an overview of some applications of
this result to questions about the isomorphism class of Jacobians of Hermitian curves,
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about Selmer groups, and about the supersingular locus of Agy; (1.5) a comparison
with earlier work; and (1.6) an outline of the rest of the paper.

1.1. Hermitian curves. The Hermitian curves have received much scrutiny for
their remarkable arithmetic properties and applications to combinatorics and coding
theory. For a prime power ¢ = p", the Hermitian curve X, is the curve in P? defined
over [F, by the homogenization of the equation

Xq:yq+y=:vq+1.

The curve X is smooth and irreducible with genus g = ¢(g¢ —1)/2 and it has exactly
one point P, at infinity. The number of points on the Hermitian curve over Fg» is
#X4 (Fg2) = ¢3+1 and the curve X, is maximal over F 2 [Sti09, VI 4.4]. In fact, X, is
the unique curve of genus g which is maximal over F 2 [RS94]. This implies that X, is
the Deligne-Lusztig variety of dimension 1 associated with the group G = PGU(3,q)
[Han92, Proposition 3.2]. The automorphism group of X, is G, which has order
(¢® — 1)(¢® + 1), see [GSX00, Equation 2.1]; the Hermitian curves are the only
exceptions to the bound of 16g* for the order of the automorphism group of a curve
in positive characteristic [Sti73]. They can be characterized as certain ray class fields
[Lau99].

The zeta function of X, is

(1+ qt?)9
A Ee ) = T gy

[Han92, Proposition 3.3] and the only slope of the Newton polygon of the L-polynomial
L(t) = (1+¢t?)9 is 1/2. This means that X, is supersingular for every prime power q.
The supersingular condition is equivalent to the condition that the Jacobian Jac(Xj)
is isogenous to a product of supersingular elliptic curves [Oor74, Theorem 4.2]. It also
implies that Jac(X,) has no non-trivial p-torsion points over E,.

1.2. A result of Ekedahl. It is well-known that the Jacobian of the Hermitian
curve X, : y? +y = aPT! is superspecial, see Section 2.1.4 for definitions. Briefly,
the superspecial condition is equivalent to the condition that the Jacobian Jac(X,) is
isomorphic to a product of supersingular elliptic curves [Oor75, Theorem 2], see also
[Nyg81, Theorem 4.1]. Equivalently, (the mod p reduction of) the Dieudonné module
of the p-torsion group scheme of Jac(X,) is isomorphic to the sum of g copies of the
Dieudonné module of a supersingular elliptic curve:

(1) D(Jac(X,)) ~ (E/E(F + V))J.

(Here E = E[F, V] is the non-commutative ring generated by semi-linear operators F
and V with the relations FV = VF =0 and FA = MAF and AV =V for all A € k
and E(Ay,...) denotes the left ideal of E generated by Aj,...). The easiest way to
prove that Jac(X,) is superspecial is to show that the Cartier operator is the zero
operator on H%(X,, '), which implies that the kernel of Frobenius F is the kernel of
Verschiebung V' on the Dieudonné module.

There is an upper bound g < p(p — 1)/2 for the genus of a superspecial curve in
characteristic p, [Eke87, Theorem 1.1] and this upper bound is realized by X,. For
n > 2, it is thus impossible for X, to be superspecial.
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1.3. Main result. In this paper, we determine the E-module structure of the
Dieudonné module D(X,) := D(Jac(X,)[p]) for all prime powers ¢ = p™. This is the
same as determining the isomorphism class of the p-torsion group scheme of Jac(Xj).
In the main result, see Theorem 5.13, we prove that the distinct indecomposable
factors of D(X,) are in bijection with orbits of Z/(2" + 1) — {0} under (x2) where
(x2) denotes multiplication-by-two. The structure of each factor is determined by the
combinatorics of the orbit, as explained in Section 5.2. In particular, the a-number
of each factor is odd. We also determine the multiplicities of the factors. While these
multiplicities depend on p, the structure of each indecomposable factor depends only
on n. Theorem 5.13 determines the Ekedahl-Oort type v of Jac(Xpn»), although an
explicit formula for v is not easy to write down for general n. In particular, v has
27~1 break points where the behavior of the Ekedahl-Oort sequence switches between
the states of being constant and increasing, see Section 2.1.5 and Corollary 5.14.

Examples of D(X,n) for small n appear in Section 2.2 and Example 5.18. When
n = 2, the (x2) map on Z/5 — {0} has one orbit {1,2,4,3}. Theorem 5.13 implies
that the Dieudonné module of Jac(X,2) decomposes into g/2 copies of the Dieudonné
module of a supersingular (but not superspecial) abelian surface:

@ D(X,2) = (B/E(F? + V).

For one of the applications, we determine that the E-module E/E(F + V') appears
as a factor of D(X,) if and only if n is odd, in which case it appears with multiplicity
(p(p —1)/2)", see Corollary 5.16.

1.4. Applications. Theorem 5.13 gives partial information about the decom-
position of Jac(Xy), up to isomorphism, into indecomposable abelian varieties, see
Section 6.1. For example, when n is a power of 2, we prove that the dimension of
each factor in such a decomposition is a multiple of n. For another application, let
the elliptic rank of an abelian variety A be the largest non-negative integer r such
that there exist elliptic curves E, ..., E, and an abelian variety B of dimension g —r
and an isomorphism A ~ B x (x!_, E;) of abelian varieties without polarization.

APPLICATION 1.1. Ifn is even, then the elliptic rank of Jac(Xpn) is 0. If n is
odd, then the elliptic rank of Jac(Xpn) is at most (p(p —1)/2)".

The second application is about the Selmer groups for the multiplication-by-p
isogeny of a constant elliptic curve E over the function field of a Hermitian curve, see
Section 6.2. The third application is about Ekedahl-Oort strata with a-number just
less than g/2 which intersect but are not contained in the supersingular locus of Ay,
see Section 6.3.

1.5. Earlier work. After finishing this research, we became aware of some other
results about the cohomology of Hermitian curves. In [HJ90], the authors study
filtrations of the crystalline cohomology of Hermitian curves with the motivation of
understanding filtrations of Weyl modules of algebraic groups. In [Dum95, Dum99],
Dummigan analyzes Jac(X,) viewed as a constant abelian variety over the function
field of X,. His motivation is to study the structure of the Tate-Shafarevich group
1T of Jac(X,) and the determinant of the lattice End , (Jac(Xg)). In particular, he
proves that IIT is trivial if and only if n < 2 and the smallest power of p annihilating
11 is pl7/3). He uses the alternative equation u9t! + 9+ 4w+ = 0 for X, to find
a basis for the crystalline cohomology of the lifting X7 of X, over the Witt vectors
which is convenient for computing the action of F. As part of [Dum95], Dummigan
finds the structure of HJg(X,) as an F,2[G]-module and as an F,[G]-module.
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It appears that the blocks defined in Definition 4.2 are the indecomposable F 2 [G]-
modules of Hip(X,). It might be possible to cut Section 3 of this paper by referring
to [Dum95]. We decided to include the material in Section 3 because the method
in [Dum95] relies heavily on a property of the Hermitian curve which is quite rare,
namely that there is a decomposition of H, le(Xq) into one-dimensional eigenspaces for
a group of prime-to-p automorphisms. In contrast, the method in Section 3 involving
the action of F' and V on H}g (X,) can be used to compute the Ekedahl-Oort type for
a wide class of Jacobians. In addition, our description of the combinatorial structure
in terms of orbits of (x2) may be easier to work with than the circle diagrams of
[Dum95, Section 7].

1.6. Outline of paper. Section 2 contains background material about p-torsion
group schemes and the de Rham cohomology and some p-adic formulae. In Section
2.2, we give examples and explain the case n = 3 in order to give a conceptual
overview of the combinatorial structures found in the paper. The action of F' and
V on Hlz(X,) is computed in Section 3. A decomposition of Hly(X,) into blocks
permuted by F and V is developed in Section 4. Section 5 contains the main theorem
about the bijection between indecomposable factors of the Dieudonné module and
orbits of (x2). The applications are in Section 6.

The first author was partially supported by NSF grant DMS-11-01712. The sec-
ond author was partially supported by NSERC and AITF. We would like to thank
J. Achter, A. Hulpke, and F. Oort for helpful conversations and the referees for their
valuable comments.

2. Notation and background.
2.1. Classification of p-torsion group schemes.

2.1.1. Frobenius and Verschiebung. Suppose A is a principally polarized
abelian variety of dimension g defined over k. For example, A could be the Jacobian
of a k-curve of genus g. Consider the multiplication-by-p morphism [p] : A — A which
is a finite flat morphism of degree p?9. It factors as [p] = V o F. Here F : A — A®)
is the relative Frobenius morphism coming from the p-power map on the structure
sheaf; it is purely inseparable of degree p9. The Verschiebung morphism V : A®) — A
is the dual of Fqauar.

2.1.2. The p-torsion group scheme. The p-torsion group scheme of A, de-
noted A[p], is the kernel of [p]. It is a finite commutative group scheme annihilated
by p, again having morphisms F' and V. The polarization of A induces a symmetry
on Alp] as defined in [Oor01, 5.1]; when p > 2, this is an anti-symmetric isomorphism
from A[p] to the Cartier dual group scheme A[p]4“a! of A[p]. By [Oor01, 9.5, the p-
torsion group scheme A[p] is a polarized BTy group scheme over k (short for polarized
Barsotti-Tate truncated level 1 group scheme), as defined in [Oor01, 2.1, 9.2]. The
rank of Ap] is p?9.

Here is a brief summary of the classification [Oor01, Theorem 9.4 &12.3] of polar-
ized BT group schemes over k in terms of Dieudonné modules and Ekedahl-Oort type;
other useful references are [Kra] (unpublished - without polarization) and [Moo01] (for
p > 3). When p = 2, there are complications with the polarization which are resolved
in [Oor01, 9.2, 9.5, 12.2].

2.1.3. Covariant Dieudonné modules. One can describe the group scheme
Alp] using (the modulo p reduction of) the covariant Dieudonné module, see e.g.,
[Oor01, 15.3]. This is the dual of the contravariant theory found in [Dem86]. Briefly,
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consider the non-commutative ring E = k[F, V] generated by semi-linear operators F
and V with the relations FV = VF =0 and FA = M F and AV = VP for all A € k.
Let E(A4, ..., A,) denote the left ideal Y. _; EA; of E generated by {A4; | 1 <i <r}.
The category of commutative group schemes over k annihilated by p is equivalent to
the category of finite left E-modules. Given a BT; group scheme G over k£ we denote
by D(G) the Dieudonné module of G. If G has rank p?9, then D(G) has dimension 2g
as a k-vector space. For example, the Dieudonné module of a supersingular elliptic
curve is E/E(F + V), [Gor02, Ex. A.5.4].

2.1.4. The p-rank and a-number. Two invariants of (the p-torsion of)
an abelian variety are the p-rank and a-number. The p-rank of A is f =
dimp, Hom(y1p,, A[p]) where p, is the kernel of Frobenius on G,. Then p/ is the
cardinality of A[p](k). The a-number of A is a = dimy Hom(«,, A[p]) where «,, is the
kernel of Frobenius on G,. It is well-known that 0 < f < gand 1 <a+ f <g. Then
A is superspecial if a = g. The p-rank of G = A[p] is the dimension of V9D(G). The
a-number of A[p] equals g — dim(V2D(G)) [LO9S, 5.2.8].

2.1.5. The Ekedahl-Oort type. As in [Oor01, Sections 5 & 9], the isomor-
phism type of a BT; group scheme G over k can be encapsulated into combi-
natorial data. If G is symmetric with rank p29, then there is a final filtration
N1 C Ny C -+ C Nyy of D(G) as a k-vector space which is stable under the ac-
tion of V and F~! such that i = dim(N;), [Oor01, 5.4]. If w is a word in V and F~1,
then wD(G) is an object in the filtration; in particular, N, = VD(G) = F~1(0).

The FEkedahl-Oort type of G, also called the final type, is v = [v1,...,v,4] where
v; = dim(V(J;)). The p-rank is max{: | v; = i} and the a-number equals g — v,.
The Ekedahl-Oort type of G does not depend on the choice of a final filtration. There
is a restriction v; < v;41 < 1; + 1 on the final type. There are 29 Ekedahl-Oort
types of length ¢ since all sequences satisfying this restriction occur. By [Oor01, 9.4,
12.3], there are bijections between (i) Ekedahl-Oort types of length g; (ii) polarized
BT; group schemes over k of rank p?9; and (iii) principal quasi-polarized Dieudonné
modules of dimension 2g over k.

In the terminology of [EvdG09, Section 2.2], an integer 1 < i < g is a break
point of v if either v;_1 = v; # V41 or v;_1 # v; = vi41. The Ekedahl-Oort type is
determined by its break points, since these are the indices at which the behavior of
the sequence v; switches between the states of being constant and increasing. The
break points are the last indices of the canonical fragments of v.

2.1.6. The de Rham cohomology. By [Oda69, Section 5], there is an isomor-
phism of E-modules between the Dieudonné module of the p-torsion group scheme
Jac(Xg)[p] and the de Rham cohomology group H g (X,)-

Applying [0da69, Section 5], there is the following description of Hiy (X,). Recall
that dimy, Hiz (X,) = 2g. Consider the open cover U of X, given by U; = X\ {Px}
and Uz = X, \ {(0,y) | y? + y = 0}. For a sheaf F on X, let

COU, F) = {k = (k1,k2) | ki € T(U;, F)},
CYU,F):={p €T (U NUy, F)}.

The coboundary operator ¢ : CO(U, F) — C1(U, F) is defined by 6k = k; — £;j.
The closed de Rham cocycles are defined by

ZirU) = {(¢,w) € C'(U,0) x C°(U, Q") | dp = sw},
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that is, dp = w1 — ws. The de Rham coboundaries are defined by
BlirU) :=={(0k,dr) € Zig(U) | K € C°U,O)}.
Finally,
Hle(Xq) = H&R(Xq)(u) = Zir(U)/BirU).

There is an injective homomorphism A : H%(X,, Q') — HJ;(X,) denoted infor-
mally by w +— (0,w) where the second coordinate is defined by w; = w|y,. This
map is well-defined since d(0) = w|y, — wly, = dw. It is injective because, if
(0,w) = (0,w’) mod Blz (U), then w — ' = dr where k € C°(U,O) is such that
drk = 0; thus « is a constant function on X and so w —w’ = 0.

There is another homomorphism v : H}, (X,) — H' (X4, O) sending the cohomol-
ogy class of (¢,w) to the cohomology class of ¢. The choice of cocycle (¢, w) does not
matter, since the coboundary conditions on H}g (X,) and H'(X,, O) are compatible.
The homomorphisms A and « fit into a short exact sequence

0= HY(X,, Q') 2 Hip(X,) D HY(X,,0) = 0.

In Subsection 3.1, we construct a suitable section o : H'(X,, O) — Hig(X,) of v as
k-vector spaces.

2.1.7. The action of Frobenius and Verschiebung on H};(X,). The Frobe-
nius and Verschiebung operators F and V act on Hip(X,) as follows:

F(f,w):=(f?,0) and V(f,w):=(0,C(w)),

where C is the Cartier operator [Car57] on the sheaf Q!. The operator F is p-linear
and V is p~!-linear. In particular, ker(F) = H°(X,, Q') = im(V).

The three principal properties of the Cartier operator are that it annihilates exact
differentials, preserves logarithmic ones, and is p~!-linear. The Cartier operator can
be computed as follows. The element = € k(X,) forms a p-basis of k(X,) over k(X,)?,
i.e., every z € k(X,) can be written as z := z{ 4+ 2{z + --- + zb_,zP~" for uniquely
determined =z, ..., 2p—1 € k(Xy). Then C(zdz/x) := zodx/z.

2.2. Examples and conceptual overview. We illustrate the structure of the
p-torsion group schemes of the Jacobians of the Hermitian curves X, forn <3 as a
way of motivating later computations. The case n = 4 can be found in Example 5.18.

The p-rank of X, is zero since X, is supersingular. Let 7, ; denote the rank
of the ith iterate of the Cartier operator C on H°(X,, Q). The a-number of X, is
an = g — Tn,1. In Proposition 3.5, we prove that

i =p"(p+ 1) (p" " — 1) /2"

2.2.1. The case n = 1. When n = 1, then the rank of C is 711 = 0 and so
the a-number is a; = g. By definition, X; is superspecial. The Ekedahl-Oort type of
Jac(X,)[p] is [0, ...,0] and D(X,) = (E/E(F + V))9 as in (1).

2.2.2. The case n = 2. When n = 2, then ro; = ¢g/2 and r22 = 0. The
Ekedahl-Oort type v = [v1,...,v,] has values v, = g/2 and v,/ = 0. By the numer-
ical restrictions on v found in Section 2.1.5, this implies that v; = 0 and vg/94; =@
for 1 <i<g/2 sothat v=10,...,0,1,2,...,9/2].
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Using [Oor01, 9.1], the Dieudonné module is generated by variables Z; for 1 <
1 < 2g which are defined in terms of variables Y; and X; for 1 < i < g. Imprecisely
speaking, the variables Y; are used (in reverse order) for the indices where the value
in the Ekedahl-Oort type stays constant, and the variables X; are used for the indices
where the value in the Ekedahl-Oort type is increasing. In the case n = 2, this yields:

i [1<i<g/2]1+g/2<i<g|g+1<i<3g/2]1+3g/2<i<2g
Z; Yoir1-i Xi_g/2 Y1 _iy3q/2 Xi—yg

For 1 < < g, the actions of Frobenius and Verschiebung are defined by the rules:
F(X;) = Z;, F(Y;) =0, V(Z;) =0, V(Z2g41-i) = £Yi.

With respect to the ordered variables Z1, ..., Zag4, the action of F' and V" are given
by the following (each entry represents a square matrix of size ¢g/2):

0
0
—I
0

, Vo=

o O OO
S OO M~
o O OO
O O ~O
o O OO
o O OO
S OO N

Thus D(X,2) is generated by Z; with relation (F? + V?)Z; = 0 for 1 + 3g/2 <
i < 2g, proving D(X,2) = (E/E(F? + V?))9/2 as in (2).

2.2.3. The case n = 3. For n = 3 (or larger), the information gleaned from
ranks of iterates of the Cartier operator is not enough to determine the structure of
the p-torsion group scheme. When n = 3, vy = r3 1, vy, = r32 and v, , = 0. Since
r31 = 2732, the values v; remain 0 for 1 <7 < r3 5 and then increase by one at each
index for 732 < ¢ < r3;. Among the indices 731 < ¢ < g, it is clear that the values
v; must rise by a combined total of r3 5. In other words, the value v; must increase
at somewhat more than half of the indices ¢ in this range, but it is not clear at which
ones.

More information is required to determine the values v; for r3; < i < g, specif-
ically, the full structure of H}z(X,) as an E-module. We compute the actions of F
and V on a basis for Hjp(X,) in Section 3.3. The results are numerically intricate
and it is not initially clear how to find a filtration Ny C Ny C --- C Nag4 of HéR(Xq)
which is stable under the action of V and F~1.

At this stage, computer calculations for small p convinced us that the values v;
stay as small as possible in the range r31 < ¢ < g; in other words, that v; = r32
for r31 < i < g — r32 and then v; increases by one at each index in the range
g—r32 <i<g. We came to expect that the Ekedahl-Oort type has the break points
732, 13,1, and g —r3 2 when n = 3 and considered the implications of this hypothesis.

This hypothesis implies that the interval 1 < ¢ < 2g is divided into 8 canonical
fragments, six of size r3 » and two of size g — 3r3 2, for which the sequence v; switches
between the states of being constant and increasing. Labeling these as By, ..., Bs,
the technique of [Oor01, 9.1] implies that, for 1 <4 < 8,

F(B;) = By if i even and F(B;) = 0 if i odd;
and, for 1 <1 <4,

V(BZ) =0 and V(B4+1) = :tBQi,l.
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This implies that ID)(Xps) is generated by the r3 2 variables in Bg and the g — 3r3 2 =
(@)3 variables in Bg, subject to the relations that F? + V3 = 0 on Bg and
F +V =0 on Bs. On each block B;, exactly one of F~! and V is defined, and the
action on the blocks is the same as (x2) on Z/9 — {0}.

To prove this, we find a decomposition of H}g(X,) into blocks B;, which is
compatible with the condition that the final filtration must be a refinement of the
filtration:

O=TycThclyC---Clsg,

where

7 1 2 3 4 5 6 7 8
T;/T;—1 || B1 | Bs | Bs | By | Bo | B | B | Bs |

For example, this shows H°(X,,Q') = Span(Bi, Bs, Bs, By) and H(X,,0) =
Span(Bg, B4, Bﬁ, Bg)

We assign basis vectors of H%(X,, Q') and H'(X,,O) to blocks based on the
following rules, see Sections 4.1 and 4.2. Given 4,5 > 0 such that i +j < p3 — 2,
consider the p-adic expansions i = ig + i1p + i2p? and j = jo + j1p + jop?. Define
bo, b1 € Z/2 by by = 0 iff ig+jo < p—1 and by = 0 iff ig+i1p+jo+j1p < p>—1. Toa
basis vector w; ; = x'y/dx of H°(X,, '), we assign the vector (bg, b1, 1) € (Z/2)%. To
a basis vector f; ; = x}yj g of H'(X,,0), we assign the vector (bg, b1,0) € (Z/2)3.

We then assign the vectors to blocks by:

vector |[ (0,0,0) | (0,1,0) ] (1,0,0) | (1,1,0)

1
H (Xq7 O) block Bg BG B4 BQ ’
and
0 1 vector (07051) (07131) (17031) (13171)
H (Xq’ L ) block Bl B3 B5 B7 .

We conclude (and prove in Theorem 5.13) that the Dieudonné module of
Jac(X,s)[p] is:

3) D(Xps) = (E/E(F3 + V3))22 @ (E/E(F + V))9 3722,

2.2.4. The case n = 4. See Example 5.18 for the structure of the Dieudonné
module when n = 4.

2.2.5. Strategy for general n. For larger values of n we follow a similar strat-
egy. We find a basis of HJg(X,) using a basis of regular 1-forms w; ; = x’y/ dx for

H°(X,, Q') and a basis of functions f; ; = ﬁyl:l for H'(X,, 0). We compute the
image of F and V on HJg(X,) and form blocks spanned by basis vectors which have
the same behavior under iterates of F' and V. On each block, either F' acts bijectively
and V as the zero operator, or vice-versa. The structure of the Dieudonné module of
X, is determined by the (generalized) permutation of the blocks under F and V.

To provide some intuition for the main result, Theorem 5.13, we discuss in non-
precise terms how this structure is related to multiplication-by-2 on Z/(2" + 1). As

in the n = 3 case, the behavior of F' and V is determined by the p-adic expansions
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of i and j, specifically whether or not the base-p sum of 7 and j ‘carries’ in the k-th
digit for 0 < k < n. This allows us to index the blocks by binary vectors in (Z/2)".
Since Frobenius acts by multiplication-by-p on exponents, it acts like a ‘shift’ on the
base-p digits of ¢ and j, and thus by a ‘shift” on the binary vectors.

We re-index the blocks by non-zero elements of Z/(2" + 1). Exactly one of F~!
and V acts bijectively on each block; it acts like multiplication-by-2 on the index. In
the rest of the paper, we make this description precise, thus giving an explicit one-
to-one correspondence between the distinct indecomposable factors of the Dieudonné
module of X, and the orbits of (x2) on Z/(2™ + 1) — {0}.

2.3. Some p-adic formulae. Given a positive integer m < p", we fix some
notation. For 0 < h < n —1, let my, € {0,1,...,p — 1} be the hth coefficient in the
p-adic expansion of m:

m=mo+mip+---+m,_1p" "

For 1 < h <n,let
h—1 h—1
mz = Zmlpl and mg = Zmlplfl.
1=0 1=1

Note that m = mg+pm?I and m = m,_1p" ' +m} | with0 <mI m’  <pr=t-1.
Also

(4) mj = mo + pmi.
The following lemma will be useful in the proof of Proposition 4.7.

LEMMA 2.1. Suppose 1 <i,j < p™.
1. If i + 57 < pt —1 then izﬂ —i—j;{H < p"*tt — 1 and the converse is true if
io+jo>p—1.
2. If iff 44 <P =1 then (p" —1—il )+ (p" —1—ji) > p" — 1 and the
converse s true if io + jo <p — 1.
3. Also: if +j <p"—1if and only if p— 1+ ju_1 + p(i) +jF) <ph™' —1.
4. Also: i) +j;7 < p"—=1if and only if 2p" 1 —2— (i} + 5, ) p—p—sjn—1 > p"F1-1.

Proof.

1. The condition izﬂ—i—j,fﬂ < p"*T1—1is equivalent to the condition (i +j1 )p <
p"tt — (ig + jo + 1). The result follows since ig + jo + 1 < 2p — 1 and, under
the given condition, 79 + jo + 1 > p.

2. The condition izﬂ—i—j,fﬂ < ph*t1—1is equivalent to the condition (i +i)p <
"t — (ig + jo +1)/p. Using the bounds 1 < ig + jo + 1 and, under the given
condition, ig + jo + 1 < p, this condition is equivalent to z;{ + j,:f <ph—1,
which is equivalent to the condition (p* — 1 —dl) + (p" — 1 —jI) > ph — 1.

3. This follows from the facts that p(i; +j;7) < p"™ —2p when i} +j;F < p"—1
and p(if +7;7) > p"*t —p when i) +4, >p"—1land0<j,_1 <p-—1.

4. Similar to part (3).

h+1

|

3. The de Rham cohomology of Hermitian curves. In this section, we
compute the actions of F and V with respect to a chosen basis for Hip(X,). An
essential point is that these actions are scaled permutation matrices with respect to
this basis, see Corollary 3.3.
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3.1. A basis for the de Rham cohomology. Consider the following set of
lattice points of the plane:

On the Hermitian curve X, : y? +y = 297!, the functions x and y have poles at
P, with vp_ () = —q and vp_(y) = —(¢ + 1). Note that (¢,j) € A if and only if
i,7>0and ig+j(g+1) <29 —2.

LEMMA 3.1. A basis for H°(X,, Q') is given by the set
By := {wi; =2y dz | (i,5) € A}.

Proof. This is a special case of [Sul75, Lemma 1]. O
LEMMA 3.2. A basis for H'(X,, O) is given by the set

1 yq*1

By = {fm‘ - () € A}.

iyl T

Proof. To compute H'(X,, ), consider the open cover U of X, given by U; =
X\ {Px} and Uz = X, \ {(0,y) | y?+y = 0}. For i,j € Z, consider the functions
fi; € T(U1NU2,0). If 0 < j < g—1, the valuation of f; ; at P is:

Voo(fij) = —(q+1)(g—=1—=§)+q(i +1) =jlg+ 1) +ig— (¢* +q—1).

If also i +j < ¢ — 2, then v (fi;) < 0 and so f;; & I'(U2,0). If also ¢ > 0,
then f; ; has poles above z = 0 and so f; ; & I'(U1,O). Thus (the equivalence class
of) the function f; ; is non-zero in H'(X,,0) if i,j > 0 and i + j < ¢ — 2. These
functions f; ; are linearly independent in H'(X,, O) since their pole orders at Py, are
different. They form a basis for H!(X,, O) because there are g pairs (i, j) satisfying
these conditions. O

Given f € O, it is possible to write df = w(f)1 + w(f)2 where w(f); € ['(U;, Q).
Let fij = (fij,w(fij)1,w(fij)2) denote the image of f; ; in Hlg(X,).

In the rest of this section, we prove that this basis is convenient for computing
the actions of F' and V.

COROLLARY 3.3. With respect to the basis B = By U By, the actions of V and
F on H&R(Xq) are scaled permutation matrices, i.e., they have at most one non-zero
entry in each row and each column.

Proof. This follows from Lemma 3.4, Proposition 3.6 and Proposition 3.7. O

3.2. The action of V on H°(X,, Q). LEMMA 3.4. For (i,j) € A, write
i =g+ pil and j := jo + pil with 0 < ig,jo < p—1and 0 < il ;T <pr=t 1,
There is a constant dj ; # 0 such that the action of V on w;; € H°(X,, Q') is given
by:

0 if i+ jo<p-—1,
Vi(wij) = y £ o 1
ijWpn =1 (p—1—io)+iT ,pn 1 (io+jo—(p—1))+47 L 20+ Jo = p— 1.
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Proof. 1t suffices to computing the image of the Cartier operator C on wj ;:

C(xiyj dz) = :1ci£yjZ C (;Cio (;vq+1 — yq)jo dx)
T TN (0 (e (plat D) Go—) yal o
x'ny Z(l)( 1)C(x yT'x d;C)

Jo .
— Ty 3 () (e oty (et ).

Now C(z* dx) # 0 if and only if k = —1 mod p. The exponent of z satisfies
0<ip+jo—1<2p—2.

The value congruent to —1 mod p in this interval is i9+jo—! = p—1. Thus V(w; ;) =0
unless ig + jo > p — 1. If this is the case then substituting [ =ig + jo — (p — 1) gives
the desired result where

di; = ( ) ) —1)foto—(p=1),
’ io+jo—(p—1) =1
0

Let r,,; denote the rank of the ith iterate of the Cartier operator on H%(X,, Q')
and let a,, be the a-number of Jac(X,). The value of a,, was previously computed in
[Gro90, Proposition 14.10].

ProposITION 3.5.
1. The rank r,,; of C' on H°(X,, Q) is
i =p"(p+ 1) ("~ 1)/2"
2. The a-number a, of Jac(X,) is
an =p" (" + D(p—1)/4.

Proof. Note that w;; € Ker(C) iff io + jo < p — 1. More generally, w;; €
Ker(C") — Ker(C" ') if and only if:

iotjo=p—1, autjp=>2p—1,...00r2+jr22p—1, ir1+jro1 <p—1
This proves the first item. The second item follows since a,, = g — 1. O

3.3. The action of ' and V on an image of H'(X,,0) in Hjy(X,)-

3.3.1. The Action of Frobenius.

PROPOSITION 3.6. For (i,7) € A, write i = i,—1p" " +i} | and j = jo_1p" "'+
I with 0 <ip_1,jn—1 <p—1and 0 <if .5t <pr~!—1. Say Case A means
that it 1+ ji_, <p" ' —1 and Case B means that i), + ji_; > p"~t — 1. There
are constants c; j,d; j 7 0 such that the action of F on f” € Hig(X,) is given by:

(7)) = CUfmz,ﬁ(pfl)finfl,pji,ﬁjnfmnfl Case A
fi,j -

B0 (g 1) (pit 4 (1) —in1)a—1—(pst_ytdnrtin 1 t1) CBSC B
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Proof. First,

1 yr=P
yin1P" i P gin 1P il P TP
1 yi!

— —1=Jn— —in—1q+1
O e (yQ(p S tyaTh )

F(fij) =

Let ¢, = (—1)!(P"*/""), then

p—1—jn—1
yQ(pflfjnfl)yxfznflq‘i’l _ E : clx(q‘i’l)(p*l*‘]nfl7l)yl+1$*1n71q+1_

=0

The sum is a linear combination Y ¢;M; for 0 <1 <p—1— j,_1 where

M, = g9P=1=in—1=in1 =0y b Lyp—in-1=1 a1 ¢ = (~1)! (p -1 l—jn—l)_

Forl e I = {0,...,p — 2 — ju_1 — in—1}, the only pole of M; is at Ps; then
o1 = Zleh ClMl S F(Ul,O) For [ S IQ = {p —jn,1 — Z.nfl, N 1 —jnfl}, the
only poles of M; are above 0; then oo := Zleb My € T(Us, O).

Fix *=p—1-j,—1 — in,—1 and consider the non-zero constants c; ; := ¢;» and
d@j = _(jn—l + in_l + 1)61*. Let

-1 -1

. 1 y? M — Cij y?

T G e (1)) L R S it tp—1-i ‘
y In—1 px n—1 p xT ypjn—l In—1 "*lxp n—1TP n—1 T

Consider
* -+ q—1—j} op—ln—1—tn—1,.—pi} | —p—3+in_1
w(o™)1 ==¢ i, 1y n—2 P dx,

and

w(o'*)2 = diqu_l—jiflp_jnfl_infl_1:5‘1_1_101'2,1—;0—1-1-1'”,1 de.
One can check that w(c™); € T(U;, Q') and that d(o*) = w(o*)1 + w(0*)s. Thus
F(fij) = (0", w(c™)1,w(0")2) in Hle(Xq). In Case A, then (jszr—lp+jn—1 +in_1) +

(pit |+ p—1—in_1)<q— 1. In this case, d(o1) = —w(c*); and d(02) = —w(c*)2.
Taking the quotient by o1 and o2 yields that

F (fl"]) = ciprij;il-‘r(p—l)—in,l7pj:;71+jn,1+in,1 '

In Case B, then w(c*); is regular. In this case, d(o2+0*) = w(0*); = —d(o2). Taking
the quotient by o1 and o* + o9 yields that

F (fw‘) = i Wi 1)~ (it +(p—1)—in-1)sa—1— (st 1 Hin-1+in_1+1)"
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3.3.2. The Action of Verschiebung.

PROPOSITION 3.7. For (i,j) € A, write i = ig +ilp and j = jo + jlp with
0<ig,jo<p—1and0<il jT <pr=! —1. Leti* =p" Lig+ (p" ' —1—1iL) and

n
jJF=p" i p—-2- iq —jo) + (Pt =1 — 43I, There is a constant c; ; # 0 such that
the action of V on fi; € Hig(X,) is given by:

I

e 0 if ip +jo>p— 1.

Proof. Let

w(fig)=—(+ 1)y e do and w(fiy)2 = —( + Dy 22T " dy
One can check that w(f; ;)1 € T'(U1,Q') and w(fi ;)2 € T'(Us, Q') and that df; ; =
w(fi)1 +w(fij)e

Recall that V(f,w) := (0,C(w)). Since C(w(fi;)1) + C(w(fi;)2) = 0, it is only
necessary to compute C(—w(f; ;)1) which equals

C((i+ 1)y a2 da) = (io + 1)y‘””‘jg_1:1c_ig C(y* 7ot 2 da).

Now, C (yP~Jo~1lgz=0"2dz) = C ((:1:‘1+1 - yq)p7j071 xTh02 da:) which equals

p—1—jo 1 _ _
(p l JO) C (x(qul)(pflfJofl)(_y)qlelof2 da:) _
1=0

Note that

C (x(lﬁ‘l)(P—l—jO—l)(_y)qlz—io—Q d{E) _ (_1)lxp"71(p—l—jo—l)ypnfll C ($P—3—j0—i0—l dx) )

The exponent e = p — 3 — jo — ig — [ of = satisfies
—p—1<—-ig—2=p—-3—jo—ip—(p—1—jo)<e<p-3.

Recall that C(z¢dx) # 0 if and only if e = —1 mod p. Note that e = —p — 1 only

when ig = p — 1, in which case the term is trivialized by C as seen above. As such,
the only term which is not trivialized by C is when e = —1, i.e., when

l:p—2—i0—j0.

Thus V(fi;) = 0 if ig 4+ jo > p — 1. If ig 4 jo < p — 2, the claimed result follows by
substituting [ = p — 2 — ip — jo and using the non-zero constant

) —1—jo —2—ig—j
cg:z+1(” _ _)_wﬂwo.
5=l )p—Q—Jo—Zo =D
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4. Decomposition of the de Rham cohomology of Hermitian curves.
This is the main result of this section:

COROLLARY 4.1. There is a decomposition Hip(Xy) = Di1<i<on By such that
the morphisms V and F~1 act on the blocks By by multiplication-by-2 on the indices
modulo 2" + 1 as follows.

If 2"=1 41 < t <27, then there is an isomorphism V : By — Bat mod 2741

If1 <t < 2" then By C ker(V) = Im(F) and there is an isomorphism
F‘i1 : Bt — B2t.

In order to prove this, we partition the basis B = BoUB; for H}g (X,) into 2" sets
which are well-suited for studying the action of F' and V. The sets are first indexed
by vectors b € (Z/2)™ and then by non-zero ¢t € Z/(2™ + 1).

4.1. A binary vector decomposition. Given ¢,5 > 0 such that 0 < i+ j <
q — 2, recall the definitions of i;,j,j, i;{,j;{ from Section 2.3. For 0 < h < n — 2, let

b ) = 0 if i,y +ji, <p"tt-1,
’ 1 otherwise.

For example, by (i,j) = 0 when ig+jo < p—1 and b1 (i, 5) = 0 when ig+i1p+jo+j1p <
2
p“—1.

DEFINITION 4.2. For each element of the basis B for H}g(X,), define a vector
b= (bo,...,bn_1) € (Z/2)" as follows: If f ; € BN H(X,,0), let b,_1(i,j) = 0 and

b(fi;) = (bo(i,5)s - -, bu_2(i, ), 0).

If w,; € BN H(X,, Q), let b,—1(4,7) = 1 and

—

b(wiyj) = (bo(l,j), cee abn*Q(Z‘aj% 1)
Finally, for be (Z/2)™, consider the subspace
Hin(X,);:=Span{A € B | X =10}

For notational purposes, let Hig(X4)o = 0.

LEMMA 4.3. Given a vector b= (bg, . ..,bp_1) € (Z/2)", let ng (resp. ng) be the
number of adjacent terms of (bo, . ..,bn—2) which are equal (resp. different). Then

s bo—bn—2 ng+1+b,_2—bo
. plp+ D\ plp—1)
dim( i3 (X, )p) = (22 plp—1) |

Proof. The values bi (i, j) are determined by the behavior of the base-p expansion
of the sum i+ j+ 1. Namely, b, (4,j) = 1 if and only if the sum i+ j+1 ‘carries’ in the
k-th digit. Since i+ j < ¢ — 1, there is no ‘carrying’ out of the last digit; the addition
of 1 can be thought of as ‘carrying’ into the first digit. Then dim(Hjg(X,)z) is the
number of pairs (i, j) satisfying the ‘carrying pattern’ associated to b. It equals the
product of the numbers oy, of pairs of p-adic digits (ix, jx) as 0 < k < n — 1, where
o = #{(ik, k) | 0 < iky i <p— 1, ik +jk <p—1—[by —by—1[}. O
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4.2. A congruence decomposition. To index blocks with integers instead of
binary vectors, consider this bijection T : (Z/2)" — Z/(2™ + 1) — {0}.

DEFINITION 4.4. Given b = (by, ..., bn_1) € (Z/2)™:
1. if bp_y =1, let T(b) = 2" b + - - - 2b, 5 + 1;
2. if by_y =0, let T(b) = 2" — (2" Lby + - - - 2bp,_).

When 7 is even (resp. odd), the coordinates of the vector T~1(r) are the coeffi-
cients of the binary expansion of r (resp. written in reverse order).

4.3. Block structure. Consider the decomposition Hjp(Xy) = @i<i<on By
where By := Span{\A € B | T(X) =t} for 1 < t < 2". Corollary 4.1 is an im-
mediate consequence of the next result.

THEOREM 4.5. The actions of V and F on H}g(X,) satisfy the following:
1. if 1<t <277t then V(By) = 0;
2. if 2" 41 <t < 27, then there is an isomorphism V |B,: Bt = Bat—on_1;
3. if t is odd, then F(B;) =0;
4. if t is even, then there is an isomorphism F' |p,: By — By/s.

The proof of Theorem 4.5 occupies the rest of the section.

4.4. The action of F' and V in terms of binary vectors. In this section,
we show that F and V act on Hjg(X,) by permuting the subspaces Hjp(X,); for
be (Z/2)™. The next definition summarizes the change in the binary vector under
the action of " and V.

DEFINITION 4.6. Let ¢ be the transposition (0,1). Given b = (bo,...,bn_1),
define Vb and Fb as follows:
1. Action of V on H°(X,,Q'): If b,—1 =1 and by = 0, let Vb =0.
Ifb,—1 =1and bg =1, let Vb= (b1, ..., bpn—2,0,1), (left shift with flip in last
two positions).
2. Action of V on H*(X,,0): If b,y =0 and by = 1, let Vb = 0.
If by_1 = 0 and by = 0, let Vb = ((b1), ..., 1lbn_2),1,1), (left shift with flip
in all positions).
3. Action of F on H(X,, QY): If b, 1 = 1, let Fb=0.
4. Action of F on H'(X,, O):
[A] If by_y = 0 and by_5 = 0, let Fb = (1,bo, . ..,bn_3,0), (right shift with
flip in first position).
[B] If b,y = 0 and bp_p = 1, let Fb = (0, ¢(bo), - .., t(bn_s),1), (right shift
with flip in all interior positions).

PROPOSITION 4.7. For each binary vector b € (Z/2)"™:

VHle(Xq)i; = Hle(Xq)\?b and FH&R(Xq)E = H&R(Xq)ﬁb-

Proof. The proof that the image of F' or V is in the claimed block is divided into
cases as in Definition 4.6.
1. Action of V on H%(X,,QY): If w;; € Hig(X,)z, the claim is that V(w; ;) €
H(}R(Xq)\;b' Note that bnfl(wiyj) =1 by definition. If bo(wiyj) = 0 then
V(w;,;) = 0 by Lemma 3.4.
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Suppose bo(w; ;) = 1, i.e., ig + jo > p — 1. By Definition 4.6(1), it suffices
to show that bx_1(V(wi ;) = bk(w; ;) for k € {1...n —1}. By definition,
br(wi,;) = 0 if and only if 4, +j;7, < p**! — 1. By Lemma 2.1(1), since
10 + jo > p — 1, this is equivalent to z;f + jg < p* —1. By Lemma 3.4, this
is equivalent to by—1(V(w;;)) = 0. In particular, b,_2(V(w; ;)) = 0 since
14+ <p” -1 . .

2. Action of V on H'(X,,0): If f;; € Hig(X,);, the claim is that V(f;;) €
Hln(Xg),- Note that b,—1(fi;) = 0 by definition. If by(f;;) = 1 then
V(fi;) = 0 by Proposition 3.7.

Suppose bo(fij) = 0, i.e., ig + jo < p — 1. By Definition 4.6(2), it suffices
to show bg(fi ;) = 0 if and only if by_1(V(fi;)) =1 for 1 <k <n—1. By
definition, by, (f; ;) = 0 means that i1+ <P —1. By Lemma 2.1(2),
this is equivalent to (p¥ —1—iT)+ (pk —1—4I) > p¥ —1. This is equivalent to
br_1(V(fi;)) = 1 by Proposition 3.7. In particular, b, o(V(f;;)) = 1 since

bn-1(fi3) = 0.
3. Action of F on H(X,, QY): If w; j € Hip(X,)z, then F(w; ;) = 0 by Section
2.1.7

4. Action of F on H'(X,, O):

For [A], given fi; € Hig(X,); such that F(f;;) € H'(X,,O), the claim
is that F(fi;) € Hiz(Xy)m. By Proposition 3.6, F(fi;) € H'(X,,0)
when b, _5(fi ;) = 0. By Definition 4.6(3), it suffices to show by, (F(fi;)) =
bn_1(fi;) for 1 < h < n—1. By definition, by_1(fi;j) = 0 if and only if
i +j < p"—1. By Lemma 2.1(3), this is equivalent to p— 1+ j,—1 +p(i} +
4i7) < "' — 1. By Proposition 3.6[A], this is equivalent to by, (F(f;;)) = 0.
Also notice that bo(F(f;;)) = 1since p— 14 j,_1 >p— 1.

For [B], given f;; € H}y(X,); such that F(f; ;) € H(X,,Q), the claim is
that F(fi;) € Hiz(X,) g, By Proposition 3.6, F(f; ;) € H°(X,, Q) when
bn_2(fij) = 1. By Definition 4.6(4), it suffices to show by_1(f; ;) = 0 if
and only if by (F(fi;)) = 1 for 1 < k < n — 1. By definition, by_1(fi;) =
0 if and only if i} + j < p¥ — 1. By Lemma 2.1(4), this is equivalent
to 2p*t — 2 — (i + ;7 )p — p — ju_1 > pFt! — 1. By Proposition 3.6[B],
this is equivalent to bx(F(fi;)) = 1. Also note that bo(F(f;;)) = 0 since
pP=2=jn1<p-1L

Here is a sketch of 3 ways to prove that F' or V surjects onto the claimed block.
The first method is to compute an explicit pre-image in H, le(Xq)B for a given element
of Hig(Xq)m, or Hig(Xg)y,- We omit this calculation. The second method is to
prove that the blocks Hig(X,); are irreducible Fy2[G]-modules using [HJ90, 4.7].
The third method is to use Corollary 3.3 to show that F' and V either trivialize or
act injectively on a block; in the latter case, the action must also be surjective by a
dimension count from Lemma 4.3. O

—

Proof of Theorem 4.5. Suppose b € (Z/2)™ is such that T(b) = t.

1. If T(I;) < 271 then either b, = 1 and bg = 0, or b,_; = 0 and by = 1.
Then VH&R(XQ)E = 0 by Lemma 3.4 in the former case and by Proposition
3.7 in the latter case.

2. If T(b) > 271, then either b,_; =1 and by = 1, or b,_y = 0 and by = 0. In
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the former case, by Definition 4.6(1) and Proposition 4.7(1),

T(Vh) =2""oy 4+ 2%, o+ 1
=2(2" 42"y o+ 2b 0+ 1) — 2" — 1 =2t — (2" + 1).

In the latter case, by Definition 4.6(2) and Proposition 4.7(2),

TVE) =2"" 1 —by)+-+22(1 —bp_s) +2+1
=2(2" = 2"y — ... —2b, 9) —2" —1=2t— (2" +1).

3. If T(b) is odd, then b, 1 = 1 and B, C H°(X,, Q). Then F(B;) = 0 by
Proposition 4.7(3).

4. Suppose T'(b) is even. If b,_o = 0, then Proposition 4.7(4)[A] implies that

-,

T(Fb) = 2" — (2" + 2" + 2" by + ... — 2b,,_3) = t/2.
If by_2 = 1, then Propositon 4.7(4)[B] implies that

T(Fb) =2""2(1 —b)+2" 31— b)) + ... +2(1 —bp_3) + 1
="t 92y — . —2b, 3 — b, o =1/2.

O

5. The Dieudonné modules of the Hermitian curves. In this section, we
prove Theorem 5.13 which determines the structure of the p-torsion group scheme
Jac(X,)[p] for all primes p and n € N. The result is phrased in terms of the Dieudonné
module, which we denote by

D(Xpn) == D(Jac(Xpn)[p]).

Specifically, we prove that the distinct indecomposable factors of D(X,») are in bi-
jection with orbits of Z/(2™ + 1) — {0} under (x2) and compute the multiplicity of
each factor. In Section 5.2, we explain how the structure of each indecomposable
factor is determined from the combinatorics of the orbit. From this, one can com-
pute the Ekedahl-Oort type of Jac(X,)[p] in any specific case but it is hard (and
non-illuminating) to find formulae in general.

5.1. Combinatorial properties of orbits. Two elements s,t € Z/(2"+1)—{0}

are in the same orbit under (x2) if and only if 2's = ¢ mod 2" + 1 for some i € Z.

Every orbit o of Z/(2™ +1) — {0} under (x2) is symmetric in that (—1)o = o, because
"= —1mod 2" + 1.

DEFINITION 5.1.  Let 0 = (01...,0,) be an orbit of Z/(2™ + 1) — {0} under
(x2). Let a¢ = 0.
1. The length |o| of o is r.
2. An entry o; € o is a local mazimum if 0,1 < o; > o0;41. and is a local
minimum if o,_1 > 0; < 0;41. Let Max(c) (resp. Min(c)) be the set of local

maximums (resp. minimums) of o.
3. The a-number of o is a(c) = #Max(c) = #Min(0).

LEMMA 5.2. If o is an orbit of Z/(2™ + 1) — {0} under (x2), then |o| is even
and a(o) is odd.
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Proof. The length is even since o is symmetric under —1.

Without loss of generality, suppose 01 = min{o; € o}. Since o is symmetric
under —1, the absolute maximum of the entries in o is oz 1. More generally, o14; =
—0ozq;mod Z/(2" +1). Thus o can be divided into two parts, termed the left half
and the right half.

Consider the number of local minimums and local maximums in o, excluding o
and oz 1. On each half, the number of local minimums equals the number of local
maximums, by an increasing/decreasing argument. By symmetry, the number of local
minimums in the left half equals the number of local maximums in the right half. It
follows that the number of local maximums other than oz 41 is even, so a(o) is odd. O

The next definition measures the distances between the local maximums and
minimums of o.

DEFINITION 5.3.
1. If o; € Min(o), the left distance of o; is £(0;) = min{j € N | 0;,_; € Max(0)};
and the right distance of o; is p(0;) = min{j € N | 0,4, € Max(0)}.
2. If o0; € Min(o), the left parent of o; is L(o;) where L(0;) := 0i_y(s,);
and the right parent of o; is R(0;) where R(0;) := 04 p(5,)-

REMARK 5.4. The structure of an orbit is determined by the binary expansion
of its minimal element, see Proposition 5.11. The symmetric property of the orbits
can be used to show that the number of orbits of length 2n is the number of binary
self-reciprocal polynomials of degree 2n; which is found in sequence A000048 in the
Online Encyclopedia of Integer Sequences [OEI]. The total number of orbits is found
in sequence A000016 in [OEI].

5.1.1. Short orbits. Most orbits of Z/(2"+1)—{0} under {x2) have maximum
length 2n. The following results about short orbits are used in Proposition 5.11,
Corollary 5.16 and Applications 6.1 and 6.4.

LEMMA 5.5. Suppose n = ck for k € N odd and let L = (2" +1)/(2°+1). The
multiplication-by-L group homomorphism Z/(2°4+1) — Z/(2"+1), given by a — La,
induces a bijection

B:0— o

between orbits o of Z/(2¢4+1)—{0} under (x2) and orbits o, of (L)N(Z/(2"+1)—{0})
under (x2).

Proof. Omitted. O

LEMMA 5.6. Suppose ¢ is an orbit of Z/ (2™ 4+ 1) — {0} under (x2) with |6] < 2n.
Then n = ck for some k € N odd and 6 = oy, for some orbit o of Z/(2°+ 1) — {0}
under (X2).

Proof. Let 6 be an orbit of length 2¢ where ¢ < n. Without loss of generality,
suppose o1 = min{o; € 6}. Let L = ged(o7,2" 1) and write 03 = LM. Let M~! be
the inverse of M modulo 2" + 1. Then oy, = (L,2L,...,2°L,—L,—2L,..., —2°L)
is another orbit of Z/(2™ + 1) — {0} under (x2) with length 2¢ and a-number 1. The
sequence L, 2L, ..., 2°L is strictly increasing and 2°L < 2™ 4 1. Now, c is the smallest
positive integer such that 2°L = —L mod 2™ + 1. Thus (2¢+ 1)L = m(2" + 1) for
some m € Z. However, The fact that L < (2" 4 1)/2¢ implies that (24 1)L = 2" +1

and so n = ck for some k € N odd. Let 0 = £6 := (%,...,%). Then o is an orbit

L
of Z/(2¢ 4+ 1) — {0} under (x2) and § =o. O
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5.2. The construction of a Dieudonné module for each orbit. We define
a Dieudonné module D(o) for every orbit o of Z/(2™ + 1) — {0} under (x2) in terms
of generators and relations. In the next subsection we prove that these modules are
in fact the indecomposable factors of the Dieudonneé module of Xn.

For convenience, we replace an entry o; € o by a variable B,,. If 0; € Max(o),
then By, is a generator block. If o; € Min(o), then By, is a relation block.

DEFINITION 5.7. Let 0 = (01...,0,) be an orbit of Z/(2™ + 1) — {0} under
(x2). The Dieudonné module D(o) is the quotient of the left E-module generated by
variables

{Bo,;

o; € Max(0)},
by the left ideal of relations generated by
(VY By + FP°)Bpyy = 0| for all o; € Min(o)}.

The following diagram illustrates the definition.

Bi(oy Br(o)
o)

Vf(gx ‘A
B.,

ExaMPLE 5.8. The orbit of 1 in Z/(2™ + 1) — {0} under (x2) is o =
(1,2,...,2%,2" —1,...,2" L + 1), Tt has a(oc) = 1. The generator block is Ban.
The relation block is By. Also £(o1) = p(o1) = n. Thus

D(0) ~ E/E(F" + V™).

This is the Dieudonné module of the unique symmetric BT; group scheme of rank
p?" having p-rank 0 and a-number 1. This group scheme, which we denote by I, 1,
has Ekedahl-Oort type [0,1,2,...,n — 1]; see [Pri08, Lemma 3.1] for details.

EXAMPLE 5.9. When n = 4, an orbit of (x2) on Z/17 is ¢ =
{3,6,12,7,14,11,5,10} as illustrated below.

Bi2 Big
Bg By B11 Bio
Bg Bg
It has a(o) = 3. The generator blocks are Bia, B14 and Big and the relation blocks

are Bs, By, and Bs. The relations are FBi4+ VB2 =0 and FByg+ V2B14 = 0 and
F2By, + VByy =0. Thus

B3

D(0) = (EB12 ® EB14 @ EB1g)/E(FBiy + VB2, FByg + V2B, F? By + V Byy).

Then D(0) ~ D(I4,3) where I 3 is the rank 8 BT; with Ekedahl-Oort type [0,0,1, 1]
[EP13, Remark 5.13].
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LEMMA 5.10. The left E-module D(o) is symmetric, is trivialized by both F and
V', has dimension |o|, and has a-number a(c).

Proof. First, D(o) is symmetric since o is symmetric. Second, the relations
FV = VF = 0 imply that V“9+1 B,y = 0 and FP)F1Bg .y = 0 for each
o; € Min(o). Since every generator block is both a left and a right parent, powers of
F and V trivialize all the generator blocks. Third, the dimension equals the number
of distinct images of the generator blocks under powers of F' and of V', which is exactly
|o|. Finally, the a-number equals the number of generators as an E-module. O

PROPOSITION 5.11. If o' and o are distinct orbits of Z/(2™ + 1) — {0} under
(x2), then D(o) % D(do”).

Proof. By Lemma 5.10(3), the structure of D(o) determines |o|. The bijection S
in Lemma 5.5 preserves the E-module structure of the Dieudonné module: D(op,) ~
D(c). By Lemmas 5.5 and 5.6, it suffices to restrict to the case |o| = 2n. Without
loss of generality, suppose o3 = min{o; € ¢}. By minimality, o; < 2"~! (otherwise
—o01 < 1) and o7 is odd. Notice that o; > ;41 if and only if o; > 271 (the last bit
of 0; equals 1). Since o; = 20,1 mod 2" + 1, the last bit of o; is the penultimate bit
of o;,_1. By induction, o; > o;41 if and only if the (n — i — 1)st bit of o7 equals 1 for
1 <i<n—1. Thus the structure of D(0) determines the binary expansion of ¢1. O

5.3. Main Theorem. For all primes p and n € N, we find the structure of
the Dieudonné module D(Xn) of the p-torsion group scheme of the Jacobian of the
Hermitian curve X,». The E-module structure of D(Xp») is determined by its distinct
indecomposable factors, which are in bijection with orbits of Z/(2™ + 1) — {0} under
(x2), and their multiplicities. The E-module structure of each indecomposable factor
is determined by the combinatorics of the corresponding orbit, as described in Section
5.2.

DEFINITION 5.12. If 1 <t < 2™ and s = 2t mod 2" + 1, then dimg(Bs) =
dimy (B:) by Theorem 4.5(2)(4). If o is an orbit of Z/(2™ + 1) — {0} under (x2), its
multiplicity is m(o) := dimy(By,) for any o; € o.

The multiplicity m(o) was computed in Lemma 4.3.

THEOREM 5.13. For all primes p and n € N, there is a bijection between orbits
of Z/ (2™ + 1) — {0} under (x2) and distinct indecomposable factors in the Dieudonné
module D(X,) of Jac(X,)[p] given by o — D(o). The multiplicity of D(o) in D(X,)

is m(o).

Proof. Suppose o is an orbit of Z/(2"™ 4+ 1) — {0} under (x2). Consider

W, := Span,, ., By, C Hig(X,)-

0,0
By Theorem 4.5, W, is stable under the action of V and F~1.

Write o = (o1,...,0.), choosing o1 to be a local minimum with maximal left
distance. Let B = B,,. Define a word w = w, - --w; in the variables F~1and V as
follows: w; = F~1if 1 <o; <2 land w; =V if 2771 +1 < g; < 2. By Corollary
4.1, the word w yields an isomorphism w : B — B; (it is p~"-linear). Applying
Corollary 3.3 shows that w is represented by a generalized permutation matriz, namely
a matrix with exactly one non-zero entry in each row and column, with respect to
the basis B N B. This implies that an iterate of w can be represented by a diagonal
matrix.
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In fact, w itself can be represented by a diagonal matrix; in other words, that there
is a basis of eigenvectors for w. To see this, consider the final filtration for the E-
module W, as described in Section 2.1.5. First, W, has rank p™™ where m = dim(B).
It has a canonical filtration 0 = My C My C --- C M, where dim(M;) = im. Here
each M; is a union of blocks B; from the orbit; in particular, M, = W, and M; = B.
The final filtration N7 € Ny C -+ C Ny, is a refinement of the canonical filtration,
80 Ny = M;. It is a filtration of W, as a k-vector space which is stable under the
action of V and F~! such that i = dim(NV;).

Let 21 denote a non-zero element of Ny C M; = B. Since the final filtration is
stable under F~! and V, the element y; = wy(z1) = F~(x1) generates Ny, 11/M;.
Similarly, Njp+1/M; is generated by an image of 2; under a portion of the word w.
Going through the whole word, w(z1) is a generator for Ni/Ngy. Thus w(z1) is a
constant multiple of x7.

Thus there is an E-module isomorphism W, ~ D(¢)™(). By Proposition 5.11,
the factors D(o) of D(X,) are distinct and are in bijection with orbits Z/(2"+1) — {0}
under (x2) 0

Recall the definition of break points from Section 2.1.5.

COROLLARY 5.14. The Ekedahl-Oort type v of X, has 2"~! break points; in
other words, the sequence v; alternates between being constant and increasing on 27"
intervals for 1 < i < g. This pattern is consistent for all primes p, although the
formulae for the break points depends on p.

Proof. By Theorem 5.13, the canonical filtration is constructed by successively
adjoining the blocks B;. The behavior of F and V is consistent across each block.
Thus there are 2" canonical fragments, the first half of which determine break points
of v. O

5.4. Indecomposable factors of D(X,») with a-number 1. For ¢ € N, recall
from Example 5.8 that I.; is the unique symmetric BT; group scheme of rank p2°
having p-rank 0 and a-number 1. In this section, we find the multiplicity of D(1.1) =
E/E(F¢+V¢) in D(X,n). As motivation, note that (17 1) occurs in D(X ) exactly
when there is a block By such that F(B;) = V(B;). This can only occur when n is
even and ¢t = (2"*! +2)/3, in which case the orbit is o = (t/2,1).

We will need the following result about multiplicities of short orbits. If W is an
indecomposable factor of D(X,e) and if n = ck for some odd k € N, then W is an
indecomposable factor of D(X,») associated with a short orbit by Lemma 5.5. The
next result compares the multiplicity of W in D(X,) and D(X,»).

PROPOSITION 5.15. Suppose n = ck for k € N odd and let L = (2" +1)/(2°+1).
The multiplicity M (o) of D(o) in D(X,e) and the multiplicity M (o) of D(or) in
D(X,n) are related by the formula: M(op) = M(o)¥.

Proof. Note that M (o) = dimg(B;) where t = min{o; € o}. Also, M(or) =
dimy,(Br¢) because Lt = min{o; € o1}. Since ¢ is odd, b(t) € (Z/2) is the binary
expansion of t — 1. Note that L = (2% — 1)(2"72¢ + 2n~4¢ 4 ... 4+ 29) + 1. Now
t(2% — 1) = (t — 1)2% 4+ 2% — ¢ has binary expansion ((b(t)),b(t))) of length 2a.
Thus Lt — 1 = (2% — 1)(2"72% + 27744 4 ... 4+ 29) 4 (¢ — 1) has binary expansion
(b(t), o(b(t)), B(t), . .., t(b(t)), b(t)), where the sequence has k terms of length a. As
t < 2"~ the result follows from Lemma 4.3. O

Recall from Proposition 3.5 that the rank of C* on H°(X,, Q') is 7, = p"(p +
1)1(pn71 _ 1)/21+1
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COROLLARY 5.16.

1. The Dieudonné module D(I, 1) occurs with multiplicity ry n—1 in D(Xpn).

2. The Dieudonné module D(I. 1) appears as an indecomposable factor of D(X,n)
if and only if n = ck for some odd k € N, in which case the multiplicity of
D(Ie1) in D(Xpn) is M(Ie1) == (Tee—1)".

3. If n € N is even, then the multiplicity of D(I11) in D(X,n) is zero. If n € N
is odd, then the multiplicity of D(I1,1) in D(Xpn) is (p(p — 1)/2)".

REMARK 5.17. Corollary 5.16 is equivalent to the fact that Ker(F™) = Ker(V")
has dimension 2g — ry ,—1 in Hjp(Xpe) or the fact that Im(F™) = Im(V™) has
dimension 7y, 1 in Hjp(Xpn).

Proof.

1. By Example 5.8, D(I,,1) = D(o) for the orbit ¢ containing 1. Then M (o)
equals the dimension of By = V" Bjyn, which equals the rank r,, ,—1 of C on
HO(X,, Q).

2. By part 1, one can suppose that 1 < ¢ < n. Then rank(D(I.1)) < p*".
Thus, if D(1;,1) occurs in D(Xpn ), then D(I. 1) = D(6) for a short orbit & of
Z/(2"+1)—{0}. By Lemma 5.6, n = ck for some k € N odd. Suppose n = ck
for some k € N odd. By part 1, D(I. 1) appears in D(X,) with multiplicity
Tc,c—1. The result then follows from Lemma 5.5 and Proposition 5.15.

3. This follows from part 2, setting ¢ = 1.

a

As an example, consider the case n = 4, which involves the rank 8 group scheme
1, 3 from Example 5.9.

ExXAMPLE 5.18. The Dieudonné module ID(X,,4) of Jac(Xp4)[p] is:
(®) D(Xp1) = (B/E(F* + V)2 @ (D(I5)) 770,

Proof. The orbit ¢ = {1,2,4,8,16,15,13,9} has D(c) = D(l4,1). The mul-
tiplicity of D(Iy1) is determined by Corollary 5.16(1). There is one other orbit
o' = {3,6,12,7,14,11,5,10} of (x2) on Z/17. By Example 5.9, D(0') = D(Iy3).
The multiplicity of D(Iy 3) equals (29 — 8r4,3)/8. O

6. Applications.

6.1. Decomposition of Jacobians of Hermitian curves. The fact that
Jac(X,n) is supersingular is equivalent to the fact that it decomposes, up to isogeny,
into a product of supersingular elliptic curves:

Jac(Xpn) ~ x9_ E;.

A more refined problem is about the decomposition of Jac(Xp») up to isomorphism.
Consider an isomorphism

JaC(Xpn) ~ Xij\ilAi

of abelian varieties without polarization, where each A; is indecomposable and g =
N .
Y oing dim(A4;).
When n = 1, Section 2.2.1 and [Oor75, Theorem 2] imply that the Jacobian of
X, is isomorphic to a product of supersingular elliptic curves:

Jac(X,) ~ x?_, E;.
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For n > 2, we did not find any results about the decomposition of Jac(X,») up
to isomorphism in the literature. In this section, we use Theorem 5.13 to provide
constraints on this decomposition.

6.1.1. Elliptic rank. If A is an abelian variety, its elliptic rank is the largest
non-negative integer r such that there exist elliptic curves Fj, ..., E, and an abelian
variety B of dimension g—r and an isomorphism A ~ B x (x!_, E;) of abelian varieties
without polarization.

APPLICATION 6.1. Ifn is even, then the elliptic rank of Jac(Xpn) is 0. If n is
odd, then the elliptic rank of Jac(Xpn) is at most (p(p —1)/2)".

Proof. If Jac(Xpn) ~ B x (XxI_, E;), then each E; is supersingular and D(E;) ~
E/E(F + V). The result follows from Corollary 5.16(3) since the elliptic rank is
bounded by the multiplicity of D(I1 1) in D(X,~). O

6.1.2. A partition condition on the decomposition. We determine a par-
tition condition on the decomposition of the Jacobian Jac(Xp,») up to isomorphism,
starting with a simple-to-state application.

APPLICATION 6.2. Suppose n = 2¢ for some e € N and suppose Jac(Xpn) =~
xN . A;. Then n | dim(A;) for 1 <i < N and N < g/n. In particular, when n = 2,
then dim(A;) is even for all1 <i < N.

Proof. If n = 2¢, then all orbits o of Z/(2" + 1) — {0} have length exactly 2n. By
Lemma 5.10, dim(D(¢)) = 2n. Also D(4;) has dimension 2dim(A4;) and is a direct
sum of Dieudonné modules of dimension 2n. O

DEFINITION 6.3. Consider two partitions n; and np defined as follows. If
J ~ x| A;, where each A; is an indecomposable abelian variety, let 7; = {dim(A4;) |
1 <i < N} If D(Xpn) = ®_,D;, where each D; is an indecomposable symmetric
Dieudonné module, let np = {dim(D;) | 1 <i < d}.

It is clear that the partition 7p is a refinement of the partition n;. For any g¢,
this observation can be used to compute a lower bound for the partition 7; which is
the set of dimensions of the indecomposable factors in the decomposition of Jac(X,n)
up to isomorphism. In particular, this yields the upper bound N < »°_m(c). For
example, when n = 3, then N < g — 2732 ~ g/2.

6.2. Application to Selmer groups. Let A be an abelian variety defined over
the function field K of X, with ¢ = p™. Let f: A — A’ be an isogeny of abelian
varieties over K. Recall that the Tate-Shafarevich group III(K, A) is the kernel of
HY(K,A) — [], H'(K,, A) where the product is taken over all places v of K. Let
II(K, A) ¢ be the kernel of the induced map II(K,A) — III(K,A’). Also define
the local Selmer group Sel(K,, f) to be the image of the coboundary map A'(K,) —
H'(K,,Ker(f)) and the global Selmer group to be the subset of H'(K, Ker(f)) which
restrict to elements of Sel(K,, f) for all v. There is an exact sequence

0— A(K)/f(A(K)) — Sel(K, f) — TI(K,A)s — 0.

In [Dum99, Theorems 1 & 2], the author determines the group structure of III
in the case when A is Jac(X,) or A is a supersingular elliptic factor of Jac(X,). Here
is a quick application about this topic.
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APPLICATION 6.4. Let E be a constant elliptic curve over the function field K of
X,. If E is ordinary, then Sel(K, [p]) has rank 21,1 = p"(p + 1)(p" "1 —1)/2.

Proof. The result follows from Proposition 3.5 because the rank of Sel(XK, [p]) is
twice the rank of C [Ulm91, Proposition 3.3]. O

6.3. Application about the supersingular locus. The moduli space 4, of
principally polarized abelian varieties of dimension g can be stratified by Ekedahl-
Oort type into locally closed strata. By [Oorl3, Lemma 10.13], the stratum for the
Ekedahl-Oort type v is contained in the supersingular locus S, if and only if v, =0
where s = [g/2].

Each generic point of S, has a-number 1 [LO98, Section 4.9]. By Example 5.8,
the unique Ekedahl-Oort type with p-rank 0 and a-number 1 has vy = s — 1 which is
not zero for g > 3. Thus this Ekedahl-Oort stratum intersects but is not contained in
Sy.

For all p, we give infinitely many new examples of Ekedahl-Oort strata which
intersect but are not contained in S;. What is significant is that each has large a-
number, namely just a bit smaller than g/2. Note that a < |(g—1)/2] is the smallest
upper bound for a which guarantees that v # 0.

APPLICATION 6.5. Let ¢ = p™ withn > 3 and let g = q(q—1)/2. The Hermitian

curve Xq has a-number $[1 — Bpnqi_zl_l]. Its Ekedahl-Oort stratum intersects, but is
not contained in, the supersingular locus of Ag.

Proof. The Jacobian of the Hermitian curve X~ is supersingular and has dimen-
sion g. Let v be its Ekedahl-Oort type and let 7 be the strata of A, with Ekedahl-Oort
type v. By Proposition 3.5, v; = 0 if and only if i <7y, ,—1 = p"(p+1)" " (p—1)/2™.
By [Oorl3, Lemma 10.13], n C Sy if and only if vy = 0 where s = [g/2]. This
condition is not satisfied for n > 3. O
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