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THE EKEDAHL-OORT TYPE OF JACOBIANS OF HERMITIAN

CURVES∗

RACHEL PRIES† AND COLIN WEIR‡

Abstract. The Ekedahl-Oort type is a combinatorial invariant of a principally polarized abelian
variety A defined over an algebraically closed field of characteristic p > 0. It characterizes the p-
torsion group scheme of A up to isomorphism. Equivalently, it characterizes (the mod p reduction
of) the Dieudonné module of A or the de Rham cohomology of A as modules under the Frobenius
and Vershiebung operators.

There are very few results about which Ekedahl-Oort types occur for Jacobians of curves. In
this paper, we consider the class of Hermitian curves, indexed by a prime power q = pn, which
are supersingular curves well-known for their exceptional arithmetic properties. We determine the
Ekedahl-Oort types of the Jacobians of all Hermitian curves. An interesting feature is that their
indecomposable factors are determined by the orbits of the multiplication-by-two map on Z/(2n+1),
and thus do not depend on p. This yields applications about the decomposition of the Jacobians of
Hermitian curves up to isomorphism.
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1. Introduction. A crucial fact about a principally polarized abelian variety
A defined over an algebraically closed field k of characteristic p > 0 is that the
multiplication-by-p morphism of A is inseparable. If A has dimension g, then [p]
factors as V ◦ F where the Frobenius morphism F is purely inseparable of degree
pg and where V is the Verschiebung morphism. The isomorphism class of the p-
torsion group scheme A[p] is determined by the interaction between F and V . It
can be characterized by its Ekedahl-Oort type or by the structure of its Dieudonné
module. There are many deep results about the stratification of the moduli space Ag

of principally polarized abelian varieties by Ekedahl-Oort type, see especially [Oor01]
and [EvdG09].

In contrast, there are almost no results about which Ekedahl-Oort types occur
for Jacobians of curves. There are existence results for Ekedahl-Oort types of low
codimension, for which the Jacobians are close to being ordinary [Pri09]. There is a
complete classification for hyperelliptic curves when p = 2 [EP13].

In this paper, we determine the Ekedahl-Oort type of the Hermitian curve Xq for
every prime power q, see Theorem 5.13. More precisely, we determine the structure
and multiplicity of each indecomposable factor of the Dieudonné module for the p-
torsion group scheme of the Jacobian of Xq. For the proof, we compute the module
structure of H1

dR(Xq) under F and V . The Hermitian curves are remarkable for their
properties over finite fields, but the Ekedahl-Oort type and the Dieudonné module
are geometric invariants. Thus we work over k = Fp throughout the paper.

This introduction contains: (1.1) a review of the arithmetic properties of Hermi-
tian curves; (1.2) a result of Ekedahl that is the starting point for this work; (1.3) a
description of the main result, Theorem 5.13; (1.4) an overview of some applications of
this result to questions about the isomorphism class of Jacobians of Hermitian curves,
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about Selmer groups, and about the supersingular locus of Ag; (1.5) a comparison
with earlier work; and (1.6) an outline of the rest of the paper.

1.1. Hermitian curves. The Hermitian curves have received much scrutiny for
their remarkable arithmetic properties and applications to combinatorics and coding
theory. For a prime power q = pn, the Hermitian curve Xq is the curve in P2 defined
over Fp by the homogenization of the equation

Xq : yq + y = xq+1.

The curve Xq is smooth and irreducible with genus g = q(q − 1)/2 and it has exactly
one point P∞ at infinity. The number of points on the Hermitian curve over Fq2 is
#Xq

(

Fq2
)

= q3+1 and the curveXq is maximal over Fq2 [Sti09, VI 4.4]. In fact, Xq is
the unique curve of genus g which is maximal over Fq2 [RS94]. This implies that Xq is
the Deligne-Lusztig variety of dimension 1 associated with the group G = PGU(3, q)
[Han92, Proposition 3.2]. The automorphism group of Xq is G, which has order
q3(q2 − 1)(q3 + 1), see [GSX00, Equation 2.1]; the Hermitian curves are the only
exceptions to the bound of 16g4 for the order of the automorphism group of a curve
in positive characteristic [Sti73]. They can be characterized as certain ray class fields
[Lau99].

The zeta function of Xq is

Z(Xq/Fq, t) =
(1 + qt2)g

(1− t)(1 − qt)
,

[Han92, Proposition 3.3] and the only slope of the Newton polygon of the L-polynomial
L(t) = (1+qt2)g is 1/2. This means that Xq is supersingular for every prime power q.
The supersingular condition is equivalent to the condition that the Jacobian Jac(Xq)
is isogenous to a product of supersingular elliptic curves [Oor74, Theorem 4.2]. It also
implies that Jac(Xq) has no non-trivial p-torsion points over Fp.

1.2. A result of Ekedahl. It is well-known that the Jacobian of the Hermitian
curve Xp : yp + y = xp+1 is superspecial, see Section 2.1.4 for definitions. Briefly,
the superspecial condition is equivalent to the condition that the Jacobian Jac(Xp) is
isomorphic to a product of supersingular elliptic curves [Oor75, Theorem 2], see also
[Nyg81, Theorem 4.1]. Equivalently, (the mod p reduction of) the Dieudonné module
of the p-torsion group scheme of Jac(Xp) is isomorphic to the sum of g copies of the
Dieudonné module of a supersingular elliptic curve:

(1) D(Jac(Xp)) ≃ (E/E(F + V ))g .

(Here E = k[F, V ] is the non-commutative ring generated by semi-linear operators F
and V with the relations FV = V F = 0 and Fλ = λpF and λV = V λp for all λ ∈ k
and E(A1, . . .) denotes the left ideal of E generated by A1, . . .). The easiest way to
prove that Jac(Xp) is superspecial is to show that the Cartier operator is the zero
operator on H0(Xp,Ω

1), which implies that the kernel of Frobenius F is the kernel of
Verschiebung V on the Dieudonné module.

There is an upper bound g ≤ p(p− 1)/2 for the genus of a superspecial curve in
characteristic p, [Eke87, Theorem 1.1] and this upper bound is realized by Xp. For
n ≥ 2, it is thus impossible for Xq to be superspecial.
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1.3. Main result. In this paper, we determine the E-module structure of the
Dieudonné module D(Xq) := D(Jac(Xq)[p]) for all prime powers q = pn. This is the
same as determining the isomorphism class of the p-torsion group scheme of Jac(Xq).
In the main result, see Theorem 5.13, we prove that the distinct indecomposable
factors of D(Xq) are in bijection with orbits of Z/(2n + 1) − {0} under 〈×2〉 where
〈×2〉 denotes multiplication-by-two. The structure of each factor is determined by the
combinatorics of the orbit, as explained in Section 5.2. In particular, the a-number
of each factor is odd. We also determine the multiplicities of the factors. While these
multiplicities depend on p, the structure of each indecomposable factor depends only
on n. Theorem 5.13 determines the Ekedahl-Oort type ν of Jac(Xpn), although an
explicit formula for ν is not easy to write down for general n. In particular, ν has
2n−1 break points where the behavior of the Ekedahl-Oort sequence switches between
the states of being constant and increasing, see Section 2.1.5 and Corollary 5.14.

Examples of D(Xpn) for small n appear in Section 2.2 and Example 5.18. When
n = 2, the 〈×2〉 map on Z/5 − {0} has one orbit {1, 2, 4, 3}. Theorem 5.13 implies
that the Dieudonné module of Jac(Xp2) decomposes into g/2 copies of the Dieudonné
module of a supersingular (but not superspecial) abelian surface:

(2) D(Xp2) = (E/E(F 2 + V 2))g/2.

For one of the applications, we determine that the E-module E/E(F +V ) appears
as a factor of D(Xq) if and only if n is odd, in which case it appears with multiplicity
(p(p− 1)/2)

n
, see Corollary 5.16.

1.4. Applications. Theorem 5.13 gives partial information about the decom-
position of Jac(Xq), up to isomorphism, into indecomposable abelian varieties, see
Section 6.1. For example, when n is a power of 2, we prove that the dimension of
each factor in such a decomposition is a multiple of n. For another application, let
the elliptic rank of an abelian variety A be the largest non-negative integer r such
that there exist elliptic curves E1, . . . , Er and an abelian variety B of dimension g− r
and an isomorphism A ≃ B × (×r

i=1Ei) of abelian varieties without polarization.

Application 1.1. If n is even, then the elliptic rank of Jac(Xpn) is 0. If n is
odd, then the elliptic rank of Jac(Xpn) is at most (p(p− 1)/2)

n
.

The second application is about the Selmer groups for the multiplication-by-p
isogeny of a constant elliptic curve E over the function field of a Hermitian curve, see
Section 6.2. The third application is about Ekedahl-Oort strata with a-number just
less than g/2 which intersect but are not contained in the supersingular locus of Ag,
see Section 6.3.

1.5. Earlier work. After finishing this research, we became aware of some other
results about the cohomology of Hermitian curves. In [HJ90], the authors study
filtrations of the crystalline cohomology of Hermitian curves with the motivation of
understanding filtrations of Weyl modules of algebraic groups. In [Dum95, Dum99],
Dummigan analyzes Jac(Xq) viewed as a constant abelian variety over the function
field of Xq. His motivation is to study the structure of the Tate-Shafarevich group
X of Jac(Xq) and the determinant of the lattice EndFq2

(Jac(Xq)). In particular, he
proves that X is trivial if and only if n ≤ 2 and the smallest power of p annihilating
X is p⌊n/3⌋. He uses the alternative equation uq+1 + vq+1 +wq+1 = 0 for Xq to find
a basis for the crystalline cohomology of the lifting X∗

q of Xq over the Witt vectors
which is convenient for computing the action of F . As part of [Dum95], Dummigan
finds the structure of H1

dR(Xq) as an Fq2 [G]-module and as an Fp[G]-module.
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It appears that the blocks defined in Definition 4.2 are the indecomposable Fq2 [G]-
modules of H1

dR(Xq). It might be possible to cut Section 3 of this paper by referring
to [Dum95]. We decided to include the material in Section 3 because the method
in [Dum95] relies heavily on a property of the Hermitian curve which is quite rare,
namely that there is a decomposition ofH1

dR(Xq) into one-dimensional eigenspaces for
a group of prime-to-p automorphisms. In contrast, the method in Section 3 involving
the action of F and V on H1

dR(Xq) can be used to compute the Ekedahl-Oort type for
a wide class of Jacobians. In addition, our description of the combinatorial structure
in terms of orbits of 〈×2〉 may be easier to work with than the circle diagrams of
[Dum95, Section 7].

1.6. Outline of paper. Section 2 contains background material about p-torsion
group schemes and the de Rham cohomology and some p-adic formulae. In Section
2.2, we give examples and explain the case n = 3 in order to give a conceptual
overview of the combinatorial structures found in the paper. The action of F and
V on H1

dR(Xq) is computed in Section 3. A decomposition of H1
dR(Xq) into blocks

permuted by F and V is developed in Section 4. Section 5 contains the main theorem
about the bijection between indecomposable factors of the Dieudonné module and
orbits of 〈×2〉. The applications are in Section 6.

The first author was partially supported by NSF grant DMS-11-01712. The sec-
ond author was partially supported by NSERC and AITF. We would like to thank
J. Achter, A. Hulpke, and F. Oort for helpful conversations and the referees for their
valuable comments.

2. Notation and background.

2.1. Classification of p-torsion group schemes.

2.1.1. Frobenius and Verschiebung. Suppose A is a principally polarized
abelian variety of dimension g defined over k. For example, A could be the Jacobian
of a k-curve of genus g. Consider the multiplication-by-p morphism [p] : A → A which
is a finite flat morphism of degree p2g. It factors as [p] = V ◦ F . Here F : A → A(p)

is the relative Frobenius morphism coming from the p-power map on the structure
sheaf; it is purely inseparable of degree pg. The Verschiebung morphism V : A(p) → A
is the dual of FAdual .

2.1.2. The p-torsion group scheme. The p-torsion group scheme of A, de-
noted A[p], is the kernel of [p]. It is a finite commutative group scheme annihilated
by p, again having morphisms F and V . The polarization of A induces a symmetry
on A[p] as defined in [Oor01, 5.1]; when p > 2, this is an anti-symmetric isomorphism
from A[p] to the Cartier dual group scheme A[p]dual of A[p]. By [Oor01, 9.5], the p-
torsion group scheme A[p] is a polarized BT1 group scheme over k (short for polarized
Barsotti-Tate truncated level 1 group scheme), as defined in [Oor01, 2.1, 9.2]. The
rank of A[p] is p2g.

Here is a brief summary of the classification [Oor01, Theorem 9.4 &12.3] of polar-
ized BT1 group schemes over k in terms of Dieudonné modules and Ekedahl-Oort type;
other useful references are [Kra] (unpublished - without polarization) and [Moo01] (for
p ≥ 3). When p = 2, there are complications with the polarization which are resolved
in [Oor01, 9.2, 9.5, 12.2].

2.1.3. Covariant Dieudonné modules. One can describe the group scheme
A[p] using (the modulo p reduction of) the covariant Dieudonné module, see e.g.,
[Oor01, 15.3]. This is the dual of the contravariant theory found in [Dem86]. Briefly,
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consider the non-commutative ring E = k[F, V ] generated by semi-linear operators F
and V with the relations FV = V F = 0 and Fλ = λpF and λV = V λp for all λ ∈ k.
Let E(A1, . . . , Ar) denote the left ideal

∑r
i=1 EAi of E generated by {Ai | 1 ≤ i ≤ r}.

The category of commutative group schemes over k annihilated by p is equivalent to
the category of finite left E-modules. Given a BT1 group scheme G over k we denote
by D(G) the Dieudonné module of G. If G has rank p2g, then D(G) has dimension 2g
as a k-vector space. For example, the Dieudonné module of a supersingular elliptic
curve is E/E(F + V ), [Gor02, Ex. A.5.4].

2.1.4. The p-rank and a-number. Two invariants of (the p-torsion of)
an abelian variety are the p-rank and a-number. The p-rank of A is f =
dimFp

Hom(µp, A[p]) where µp is the kernel of Frobenius on Gm. Then pf is the
cardinality of A[p](k). The a-number of A is a = dimk Hom(αp, A[p]) where αp is the
kernel of Frobenius on Ga. It is well-known that 0 ≤ f ≤ g and 1 ≤ a+ f ≤ g. Then
A is superspecial if a = g. The p-rank of G = A[p] is the dimension of V gD(G). The
a-number of A[p] equals g − dim(V 2D(G)) [LO98, 5.2.8].

2.1.5. The Ekedahl-Oort type. As in [Oor01, Sections 5 & 9], the isomor-
phism type of a BT1 group scheme G over k can be encapsulated into combi-
natorial data. If G is symmetric with rank p2g, then there is a final filtration
N1 ⊂ N2 ⊂ · · · ⊂ N2g of D(G) as a k-vector space which is stable under the ac-
tion of V and F−1 such that i = dim(Ni), [Oor01, 5.4]. If w is a word in V and F−1,
then wD(G) is an object in the filtration; in particular, Ng = V D(G) = F−1(0).

The Ekedahl-Oort type of G, also called the final type, is ν = [ν1, . . . , νg] where
νi = dim(V (Ni)). The p-rank is max{i | νi = i} and the a-number equals g − νg.
The Ekedahl-Oort type of G does not depend on the choice of a final filtration. There
is a restriction νi ≤ νi+1 ≤ νi + 1 on the final type. There are 2g Ekedahl-Oort
types of length g since all sequences satisfying this restriction occur. By [Oor01, 9.4,
12.3], there are bijections between (i) Ekedahl-Oort types of length g; (ii) polarized
BT1 group schemes over k of rank p2g; and (iii) principal quasi-polarized Dieudonné
modules of dimension 2g over k.

In the terminology of [EvdG09, Section 2.2], an integer 1 ≤ i ≤ g is a break
point of ν if either νi−1 = νi 6= νi+1 or νi−1 6= νi = νi+1. The Ekedahl-Oort type is
determined by its break points, since these are the indices at which the behavior of
the sequence νi switches between the states of being constant and increasing. The
break points are the last indices of the canonical fragments of ν.

2.1.6. The de Rham cohomology. By [Oda69, Section 5], there is an isomor-
phism of E-modules between the Dieudonné module of the p-torsion group scheme
Jac(Xq)[p] and the de Rham cohomology group H1

dR(Xq).
Applying [Oda69, Section 5], there is the following description of H1

dR(Xq). Recall
that dimk H

1
dR(Xq) = 2g. Consider the open cover U of Xq given by U1 = Xq \ {P∞}

and U2 = Xq \ {(0, y) | y
q + y = 0}. For a sheaf F on Xq, let

C0(U ,F) := {κ = (κ1, κ2) | κi ∈ Γ(Ui,F)},

C1(U ,F) := {φ ∈ Γ(U1 ∩ U2,F)}.

The coboundary operator δ : C0(U ,F) → C1(U ,F) is defined by δκ = κi − κj .
The closed de Rham cocycles are defined by

Z1
dR(U) := {(φ, ω) ∈ C1(U ,O)× C0(U ,Ω1) | dφ = δω},
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that is, dφ = ω1 − ω2. The de Rham coboundaries are defined by

B1
dR(U) := {(δκ, dκ) ∈ Z1

dR(U) | κ ∈ C0(U ,O)}.

Finally,

H1
dR(Xq) ∼= H1

dR(Xq)(U) := Z1
dR(U)/B

1
dR(U).

There is an injective homomorphism λ : H0(Xq,Ω
1) → H1

dR(Xq) denoted infor-
mally by ω 7→ (0, ω) where the second coordinate is defined by ωi = ω|Ui

. This
map is well-defined since d(0) = ω|U1 − ω|U2 = δω. It is injective because, if
(0, ω) ≡ (0, ω′) mod B1

dR(U), then ω − ω′ = dκ where κ ∈ C0(U ,O) is such that
δκ = 0; thus κ is a constant function on X and so ω − ω′ = 0.

There is another homomorphism γ : H1
dR(Xq) → H1(Xq,O) sending the cohomol-

ogy class of (φ, ω) to the cohomology class of φ. The choice of cocycle (φ, ω) does not
matter, since the coboundary conditions on H1

dR(Xq) and H1(Xq,O) are compatible.
The homomorphisms λ and γ fit into a short exact sequence

0 → H0(Xq,Ω
1)

λ
−→ H1

dR(Xq)
γ
−→ H1(Xq,O) → 0.

In Subsection 3.1, we construct a suitable section σ : H1(Xq,O) → H1
dR(Xq) of γ as

k-vector spaces.

2.1.7. The action of Frobenius and Verschiebung on H1
dR(Xq). The Frobe-

nius and Verschiebung operators F and V act on H1
dR(Xq) as follows:

F (f, ω) := (fp, 0) and V (f, ω) := (0, C(ω)),

where C is the Cartier operator [Car57] on the sheaf Ω1. The operator F is p-linear
and V is p−1-linear. In particular, ker(F ) = H0(Xq,Ω

1) = im(V ).
The three principal properties of the Cartier operator are that it annihilates exact

differentials, preserves logarithmic ones, and is p−1-linear. The Cartier operator can
be computed as follows. The element x ∈ k(Xq) forms a p-basis of k(Xq) over k(Xq)

p,
i.e., every z ∈ k(Xq) can be written as z := zp0 + zp1x + · · · + zpp−1x

p−1 for uniquely
determined z0, . . . , zp−1 ∈ k(Xq). Then C(z dx/x) := z0 dx/x.

2.2. Examples and conceptual overview. We illustrate the structure of the
p-torsion group schemes of the Jacobians of the Hermitian curves Xpn for n ≤ 3 as a
way of motivating later computations. The case n = 4 can be found in Example 5.18.

The p-rank of Xq is zero since Xq is supersingular. Let rn,i denote the rank
of the ith iterate of the Cartier operator C on H0(Xq,Ω

1). The a-number of Xq is
an = g − rn,1. In Proposition 3.5, we prove that

rn,i = pn(p+ 1)i(pn−i − 1)/2i+1.

2.2.1. The case n = 1. When n = 1, then the rank of C is r1,1 = 0 and so
the a-number is a1 = g. By definition, X1 is superspecial. The Ekedahl-Oort type of
Jac(Xp)[p] is [0, . . . , 0] and D(Xp) = (E/E(F + V ))g as in (1).

2.2.2. The case n = 2. When n = 2, then r2,1 = g/2 and r2,2 = 0. The
Ekedahl-Oort type ν = [ν1, . . . , νg] has values νg = g/2 and νg/2 = 0. By the numer-
ical restrictions on ν found in Section 2.1.5, this implies that νi = 0 and νg/2+i = i
for 1 ≤ i ≤ g/2, so that ν = [0, . . . , 0, 1, 2, . . . , g/2].
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Using [Oor01, 9.1], the Dieudonné module is generated by variables Zi for 1 ≤
i ≤ 2g which are defined in terms of variables Yi and Xi for 1 ≤ i ≤ g. Imprecisely
speaking, the variables Yi are used (in reverse order) for the indices where the value
in the Ekedahl-Oort type stays constant, and the variables Xi are used for the indices
where the value in the Ekedahl-Oort type is increasing. In the case n = 2, this yields:

i 1 ≤ i ≤ g/2 1 + g/2 ≤ i ≤ g g + 1 ≤ i ≤ 3g/2 1 + 3g/2 ≤ i ≤ 2g
Zi Yg+1−i Xi−g/2 Y1−i+3g/2 Xi−g

For 1 ≤ i ≤ g, the actions of Frobenius and Verschiebung are defined by the rules:

F (Xi) = Zi, F (Yi) = 0, V (Zi) = 0, V (Z2g+1−i) = ±Yi.

With respect to the ordered variables Z1, . . . , Z2g, the action of F and V are given
by the following (each entry represents a square matrix of size g/2):

F =









0 I 0 0
0 0 0 I
0 0 0 0
0 0 0 0









, V =









0 0 I 0
0 0 0 0
0 0 0 −I
0 0 0 0









.

Thus D(Xp2) is generated by Zi with relation (F 2 + V 2)Zi = 0 for 1 + 3g/2 ≤

i ≤ 2g, proving D(Xp2) = (E/E(F 2 + V 2))g/2 as in (2).

2.2.3. The case n = 3. For n = 3 (or larger), the information gleaned from
ranks of iterates of the Cartier operator is not enough to determine the structure of
the p-torsion group scheme. When n = 3, νg = r3,1, νr3,1 = r3,2 and νr3,2 = 0. Since
r3,1 = 2r3,2, the values νi remain 0 for 1 ≤ i ≤ r3,2 and then increase by one at each
index for r3,2 < i ≤ r3,1. Among the indices r3,1 < i ≤ g, it is clear that the values
νi must rise by a combined total of r3,2. In other words, the value νi must increase
at somewhat more than half of the indices i in this range, but it is not clear at which
ones.

More information is required to determine the values νi for r3,1 < i < g, specif-
ically, the full structure of H1

dR(Xq) as an E-module. We compute the actions of F
and V on a basis for H1

dR(Xq) in Section 3.3. The results are numerically intricate
and it is not initially clear how to find a filtration N1 ⊂ N2 ⊂ · · · ⊂ N2g of H1

dR(Xq)
which is stable under the action of V and F−1.

At this stage, computer calculations for small p convinced us that the values νi
stay as small as possible in the range r3,1 < i ≤ g; in other words, that νi = r3,2
for r3,1 < i ≤ g − r3,2 and then νi increases by one at each index in the range
g− r3,2 < i ≤ g. We came to expect that the Ekedahl-Oort type has the break points
r3,2, r3,1, and g− r3,2 when n = 3 and considered the implications of this hypothesis.

This hypothesis implies that the interval 1 ≤ i ≤ 2g is divided into 8 canonical
fragments, six of size r3,2 and two of size g− 3r3,2, for which the sequence νi switches
between the states of being constant and increasing. Labeling these as B1, . . . , B8,
the technique of [Oor01, 9.1] implies that, for 1 ≤ i ≤ 8,

F (Bi) = Bi/2 if i even and F (Bi) = 0 if i odd;

and, for 1 ≤ i ≤ 4,

V (Bi) = 0 and V (B4+i) = ±B2i−1.
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This implies that D(Xp3) is generated by the r3,2 variables in B8 and the g − 3r3,2 =

(p(p−1)
2 )3 variables in B6, subject to the relations that F 3 + V 3 = 0 on B8 and

F + V = 0 on B6. On each block Bi, exactly one of F−1 and V is defined, and the
action on the blocks is the same as 〈×2〉 on Z/9− {0}.

To prove this, we find a decomposition of H1
dR(Xq) into blocks Bi, which is

compatible with the condition that the final filtration must be a refinement of the
filtration:

0 = T0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ T8,

where

i 1 2 3 4 5 6 7 8
Ti/Ti−1 B1 B5 B3 B7 B2 B6 B4 B8

.

For example, this shows H0(Xq,Ω
1) = Span(B1, B3, B5, B7) and H1(Xq,O) =

Span(B2, B4, B6, B8).
We assign basis vectors of H0(Xq,Ω

1) and H1(Xq,O) to blocks based on the
following rules, see Sections 4.1 and 4.2. Given i, j ≥ 0 such that i + j ≤ p3 − 2,
consider the p-adic expansions i = i0 + i1p + i2p

2 and j = j0 + j1p + j2p
2. Define

b0, b1 ∈ Z/2 by b0 = 0 iff i0+ j0 < p−1 and b1 = 0 iff i0+ i1p+ j0+ j1p < p2−1. To a
basis vector ωi,j = xiyjdx of H0(Xq,Ω

1), we assign the vector (b0, b1, 1) ∈ (Z/2)3. To

a basis vector fi,j =
1

xiyj

yq−1

x of H1(Xq,O), we assign the vector (b0, b1, 0) ∈ (Z/2)3.
We then assign the vectors to blocks by:

H1(Xq,O)
vector (0, 0, 0) (0, 1, 0) (1, 0, 0) (1, 1, 0)
block B8 B6 B4 B2

,

and

H0(Xq,Ω
1)

vector (0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 1, 1)
block B1 B3 B5 B7

.

We conclude (and prove in Theorem 5.13) that the Dieudonné module of
Jac(Xp3)[p] is:

(3) D(Xp3) = (E/E(F 3 + V 3))r3,2 ⊕ (E/E(F + V ))g−3r3,2 .

2.2.4. The case n = 4. See Example 5.18 for the structure of the Dieudonné
module when n = 4.

2.2.5. Strategy for general n. For larger values of n we follow a similar strat-
egy. We find a basis of H1

dR(Xq) using a basis of regular 1-forms ωi,j = xiyj dx for

H0(Xq,Ω
1) and a basis of functions fi,j =

1
xiyj

yq−1

x for H1(Xq,O). We compute the

image of F and V on H1
dR(Xq) and form blocks spanned by basis vectors which have

the same behavior under iterates of F and V . On each block, either F acts bijectively
and V as the zero operator, or vice-versa. The structure of the Dieudonné module of
Xq is determined by the (generalized) permutation of the blocks under F and V .

To provide some intuition for the main result, Theorem 5.13, we discuss in non-
precise terms how this structure is related to multiplication-by-2 on Z/(2n + 1). As
in the n = 3 case, the behavior of F and V is determined by the p-adic expansions
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of i and j, specifically whether or not the base-p sum of i and j ‘carries’ in the k-th
digit for 0 ≤ k < n. This allows us to index the blocks by binary vectors in (Z/2)n.
Since Frobenius acts by multiplication-by-p on exponents, it acts like a ‘shift’ on the
base-p digits of i and j, and thus by a ‘shift’ on the binary vectors.

We re-index the blocks by non-zero elements of Z/(2n + 1). Exactly one of F−1

and V acts bijectively on each block; it acts like multiplication-by-2 on the index. In
the rest of the paper, we make this description precise, thus giving an explicit one-
to-one correspondence between the distinct indecomposable factors of the Dieudonné
module of Xq and the orbits of 〈×2〉 on Z/(2n + 1)− {0}.

2.3. Some p-adic formulae. Given a positive integer m < pn, we fix some
notation. For 0 ≤ h ≤ n − 1, let mh ∈ {0, 1, . . . , p − 1} be the hth coefficient in the
p-adic expansion of m:

m = m0 +m1p+ · · ·+mn−1p
n−1.

For 1 ≤ h ≤ n, let

m+
h :=

h−1
∑

l=0

mlp
l and mT

h :=

h−1
∑

l=1

mlp
l−1.

Note that m = m0+pmT
n and m = mn−1p

n−1+m+
n−1 with 0 ≤ mT

n ,m
+
n−1 ≤ pn−1−1.

Also

(4) m+
h = m0 + pmT

h .

The following lemma will be useful in the proof of Proposition 4.7.

Lemma 2.1. Suppose 1 ≤ i, j ≤ pn.
1. If iTh + jTh < ph − 1 then i+h+1 + j+h+1 < ph+1 − 1 and the converse is true if

i0 + j0 ≥ p− 1.
2. If i+h+1 + j+h+1 < ph+1 − 1 then (ph − 1− iTh ) + (ph − 1− jTh ) ≥ ph − 1 and the

converse is true if i0 + j0 < p− 1.
3. Also: i+h + j+h < ph − 1 if and only if p− 1 + jn−1 + p(i+h + j+h ) < ph+1 − 1.
4. Also: i+h +j+h < ph−1 if and only if 2ph+1−2−(i+h+j+h )p−p−jn−1 ≥ ph+1−1.

Proof.
1. The condition i+h+1+j+h+1 < ph+1−1 is equivalent to the condition (iTh+jTh )p <

ph+1 − (i0 + j0 + 1). The result follows since i0 + j0 + 1 ≤ 2p− 1 and, under
the given condition, i0 + j0 + 1 ≥ p.

2. The condition i+h+1+j+h+1 < ph+1−1 is equivalent to the condition (iTh+jTh )p <

ph+1 − (i0+ j0+1)/p. Using the bounds 1 ≤ i0 + j0+1 and, under the given
condition, i0 + j0 + 1 < p, this condition is equivalent to iTh + jTh ≤ ph − 1,
which is equivalent to the condition (ph − 1− iTh ) + (ph − 1− jTh ) ≥ ph − 1.

3. This follows from the facts that p(i+h +j+h ) ≤ ph+1−2p when i+h +j+h < ph−1
and p(i+h + j+h ) ≥ ph+1 − p when i+h + j+h ≥ ph − 1 and 0 ≤ jn−1 ≤ p− 1.

4. Similar to part (3).

3. The de Rham cohomology of Hermitian curves. In this section, we
compute the actions of F and V with respect to a chosen basis for H1

dR(Xq). An
essential point is that these actions are scaled permutation matrices with respect to
this basis, see Corollary 3.3.
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3.1. A basis for the de Rham cohomology. Consider the following set of
lattice points of the plane:

∆ := {(i, j) | i, j ∈ Z, i, j ≥ 0, i+ j ≤ q − 2}.

On the Hermitian curve Xq : yq + y = xq+1, the functions x and y have poles at
P∞, with vP∞

(x) = −q and vP∞
(y) = −(q + 1). Note that (i, j) ∈ ∆ if and only if

i, j ≥ 0 and iq + j(q + 1) ≤ 2g − 2.

Lemma 3.1. A basis for H0(Xq,Ω
1) is given by the set

B0 := {ωi,j := xiyj dx | (i, j) ∈ ∆}.

Proof. This is a special case of [Sul75, Lemma 1].

Lemma 3.2. A basis for H1(Xq,O) is given by the set

B1 :=

{

fi,j :=
1

xiyj
yq−1

x
| (i, j) ∈ ∆

}

.

Proof. To compute H1(Xq,O), consider the open cover U of Xq given by U1 =
Xq \ {P∞} and U2 = Xq \ {(0, y) | y

q + y = 0}. For i, j ∈ Z, consider the functions
fi,j ∈ Γ(U1 ∩ U2,O). If 0 ≤ j ≤ q − 1, the valuation of fi,j at P∞ is:

v∞(fi,j) = −(q + 1)(q − 1− j) + q(i + 1) = j(q + 1) + iq − (q2 + q − 1).

If also i + j ≤ q − 2, then v∞(fi,j) < 0 and so fi,j 6∈ Γ(U2,O). If also i ≥ 0,
then fi,j has poles above x = 0 and so fi,j 6∈ Γ(U1,O). Thus (the equivalence class
of) the function fi,j is non-zero in H1(Xq,O) if i, j ≥ 0 and i + j ≤ q − 2. These
functions fi,j are linearly independent in H1(Xq,O) since their pole orders at P∞ are
different. They form a basis for H1(Xq,O) because there are g pairs (i, j) satisfying
these conditions.

Given f ∈ O, it is possible to write df = ω(f)1 + ω(f)2 where ω(f)i ∈ Γ(Ui,Ω
1).

Let f̃i,j = (fi,j , ω(fi,j)1, ω(fi,j)2) denote the image of fi,j in H1
dR(Xq).

In the rest of this section, we prove that this basis is convenient for computing
the actions of F and V .

Corollary 3.3. With respect to the basis B = B0 ∪ B1, the actions of V and
F on H1

dR(Xq) are scaled permutation matrices, i.e., they have at most one non-zero
entry in each row and each column.

Proof. This follows from Lemma 3.4, Proposition 3.6 and Proposition 3.7.

3.2. The action of V on H0(Xq,Ω
1). Lemma 3.4. For (i, j) ∈ ∆, write

i := i0 + piTn and j := j0 + pjTn with 0 ≤ i0, j0 ≤ p − 1 and 0 ≤ iTn , j
T
n ≤ pn−1 − 1.

There is a constant d′i,j 6= 0 such that the action of V on ωi,j ∈ H0(Xq,Ω
1) is given

by:

V (ωi,j) =

{

0 if i0 + j0 < p− 1,

d′ijωpn−1(p−1−i0)+iTn ,pn−1(i0+j0−(p−1))+jTn
if i0 + j0 ≥ p− 1.
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Proof. It suffices to computing the image of the Cartier operator C on ωi,j :

C(xiyj dx) = xiTn yj
T
n C

(

xi0 (xq+1 − yq)j0 dx
)

= xiTn yj
T
n

j0
∑

l=0

(

j0
l

)

(−1)l C
(

x(q+1)(j0−l)yqlxi0 dx
)

= xiTn yj
T
n

j0
∑

l=0

(

j0
l

)

(−1)lxpn−1(j0−l)yp
n−1l C

(

xi0+j0−l dx
)

.

Now C(xk dx) 6= 0 if and only if k ≡ −1 mod p. The exponent of x satisfies

0 ≤ i0 + j0 − l ≤ 2p− 2.

The value congruent to −1 mod p in this interval is i0+j0−l = p−1. Thus V (ωi,j) = 0
unless i0 + j0 ≥ p− 1. If this is the case then substituting l = i0 + j0 − (p− 1) gives
the desired result where

d′ij =

(

j0
i0 + j0 − (p− 1)

)

(−1)i0+j0−(p−1).

Let rn,i denote the rank of the ith iterate of the Cartier operator on H0(Xq,Ω
1)

and let an be the a-number of Jac(Xq). The value of an was previously computed in
[Gro90, Proposition 14.10].

Proposition 3.5.

1. The rank rn,i of C
i on H0(Xq,Ω

1) is

rn,i = pn(p+ 1)i(pn−i − 1)/2i+1.

2. The a-number an of Jac(Xq) is

an = pn(pn−1 + 1)(p− 1)/4.

Proof. Note that ωi,j ∈ Ker(C) iff i0 + j0 < p − 1. More generally, ωi,j ∈
Ker(Cr)−Ker(Cr−1) if and only if:

i0 + j0 ≥ p− 1, i1 + j1 ≥ p− 1, . . . , ir−2 + jr−2 ≥ p− 1, ir−1 + jr−1 < p− 1.

This proves the first item. The second item follows since an = g − rn,1.

3.3. The action of F and V on an image of H1(Xq,O) in H1
dR(Xq).

3.3.1. The Action of Frobenius.

Proposition 3.6. For (i, j) ∈ ∆, write i = in−1p
n−1+ i+n−1 and j = jn−1p

n−1+

j+n−1 with 0 ≤ in−1, jn−1 ≤ p− 1 and 0 ≤ i+n−1, j
+
n−1 ≤ pn−1 − 1. Say Case A means

that i+n−1 + j+n−1 < pn−1 − 1 and Case B means that i+n−1 + j+n−1 ≥ pn−1 − 1. There

are constants ci,j , di,j 6= 0 such that the action of F on f̃i,j ∈ H1
dR(Xq) is given by:

F
(

f̃i,j

)

=

{

cijfpi+n−1+(p−1)−in−1,pj
+
n−1+jn−1+in−1

Case A

dijω(q−1)−(pi+n−1+(p−1)−in−1),q−1−(pj+n−1+jn−1+in−1+1) Case B.
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Proof. First,

F (fi,j) =
1

yjn−1pn+j+n−1pxin−1pn+i+n−1p

yqp−p

xp

=
1

y(j
+
n−1+1)px(i+n−1+1)p

yq−1

x

(

yq(p−1−jn−1)yx−in−1q+1
)

.

Let cl = (−1)l
(

p−1−jn−1

l

)

, then

yq(p−1−jn−1)yx−in−1q+1 =

p−1−jn−1
∑

l=0

clx
(q+1)(p−1−jn−1−l)yl+1x−in−1q+1.

The sum is a linear combination
∑

clMl for 0 ≤ l ≤ p− 1− jn−1 where

Ml = xq(p−1−jn−1−in−1−l)yl+1xp−jn−1−l and cl = (−1)l
(

p− 1− jn−1

l

)

.

For l ∈ I1 = {0, . . . , p − 2 − jn−1 − in−1}, the only pole of Ml is at P∞; then
σ1 :=

∑

l∈I1
clM1 ∈ Γ(U1,O). For l ∈ I2 = {p − jn−1 − in−1, . . . , p − 1 − jn−1}, the

only poles of Ml are above 0; then σ2 :=
∑

l∈I2
clM1 ∈ Γ(U2,O).

Fix l∗ = p− 1 − jn−1 − in−1 and consider the non-zero constants ci,j := cl∗ and
di,j := −(jn−1 + in−1 + 1)cl∗ . Let

σ∗ :=
1

y(j
+
n−1+1)px(i+n−1+1)p

yq−1

x
Ml∗ =

ci,j

ypj
+
n−1+jn−1+in−1xpi+n−1+p−1−in−1

yq−1

x
.

Consider

ω(σ∗)1 := ci,ji
+
n−1y

q−1−j+n−2p−jn−1−in−1x−pi+n−1−p−3+in−1 dx,

and

ω(σ∗)2 := di,jy
q−1−j+n−1p−jn−1−in−1−1xq−1−pi+n−1−p−1+in−1 dx.

One can check that ω(σ∗)i ∈ Γ(Ui,Ω
1) and that d(σ∗) = ω(σ∗)1 + ω(σ∗)2. Thus

F (f̃i,j) ≡ (σ∗, ω(σ∗)1, ω(σ
∗)2) in H1

dR(Xq). In Case A, then (j+n−1p+ jn−1 + in−1) +

(pi+n−1 + p− 1 − in−1) < q − 1. In this case, d(σ1) = −ω(σ∗)1 and d(σ2) = −ω(σ∗)2.
Taking the quotient by σ1 and σ2 yields that

F
(

f̃i,j

)

= ci,jfpi+n−1+(p−1)−in−1,pj
+
n−1+jn−1+in−1

.

In Case B, then ω(σ∗)1 is regular. In this case, d(σ2+σ∗) = ω(σ∗)1 = −d(σ2). Taking
the quotient by σ1 and σ∗ + σ2 yields that

F
(

f̃i,j

)

= di,jω(q−1)−(pi+n−1+(p−1)−in−1),q−1−(pj+n−1+jn−1+in−1+1).
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3.3.2. The Action of Verschiebung.

Proposition 3.7. For (i, j) ∈ ∆, write i = i0 + iTnp and j = j0 + jTn p with
0 ≤ i0, j0 ≤ p− 1 and 0 ≤ iTn , j

T
n ≤ pn−1 − 1. Let i∗ = pn−1i0 + (pn−1 − 1 − iTn ) and

j∗ = pn−1(p − 2 − i0 − j0) + (pn−1 − 1 − jTn ). There is a constant c′i,j 6= 0 such that

the action of V on f̃i,j ∈ H1
dR(Xq) is given by:

V
(

f̃i,j

)

=

{

c′i,jωi∗,j∗ if i0 + j0 < p− 1

0 if i0 + j0 ≥ p− 1.

Proof. Let

ω(fi,j)1 = −(i+ 1)yq−j−1x−i−2 dx and ω(fi,j)2 = −(j + 1)yq−j−2x−i−1 dy

One can check that ω(fi,j)1 ∈ Γ(U1,Ω
1) and ω(fi,j)2 ∈ Γ(U2,Ω

1) and that dfi,j =
ω(fi,j)1 + ω(fi,j)2.

Recall that V (f, ω) := (0, C(ω)). Since C(ω(fi,j)1) + C(ω(fi,j)2) = 0, it is only
necessary to compute C(−ω(fi,j)1) which equals

C
(

(i + 1)yq−j−1x−i−2 dx
)

= (i0 + 1)yq/p−jTn −1x−iTn C
(

yp−j0−1x−i0−2 dx
)

.

Now, C
(

yp−j0−1x−i0−2 dx
)

= C
(

(

xq+1 − yq
)p−j0−1

x−i0−2 dx
)

which equals

p−1−j0
∑

l=0

(

p− 1− j0
l

)

C
(

x(q+1)(p−1−j0−l)(−y)qlx−i0−2 dx
)

.

Note that

C
(

x(q+1)(p−1−j0−l)(−y)qlx−i0−2 dx
)

= (−1)lxpn−1(p−1−j0−l)yp
n−1l C

(

xp−3−j0−i0−l dx
)

.

The exponent e = p− 3− j0 − i0 − l of x satisfies

−p− 1 ≤ −i0 − 2 = p− 3− j0 − i0 − (p− 1− j0) ≤ e ≤ p− 3.

Recall that C(xe dx) 6= 0 if and only if e ≡ −1 mod p. Note that e = −p − 1 only
when i0 = p − 1, in which case the term is trivialized by C as seen above. As such,
the only term which is not trivialized by C is when e = −1, i.e., when

l = p− 2− i0 − j0.

Thus V (f̃i,j) = 0 if i0 + j0 ≥ p − 1. If i0 + j0 ≤ p− 2, the claimed result follows by
substituting l = p− 2− i0 − j0 and using the non-zero constant

c′i,j = (i0 + 1)

(

p− 1− j0
p− 2− j0 − i0

)

(−1)p−2−i0−j0 .
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4. Decomposition of the de Rham cohomology of Hermitian curves.

This is the main result of this section:

Corollary 4.1. There is a decomposition H1
dR(Xq) = ⊕1≤t≤2nBt such that

the morphisms V and F−1 act on the blocks Bt by multiplication-by-2 on the indices
modulo 2n + 1 as follows.

If 2n−1 + 1 ≤ t ≤ 2n, then there is an isomorphism V : Bt → B2t mod 2n+1.
If 1 ≤ t ≤ 2n−1, then Bt ⊂ ker(V ) = Im(F ) and there is an isomorphism

F−1 : Bt → B2t.

In order to prove this, we partition the basis B = B0∪B1 for H1
dR(Xq) into 2n sets

which are well-suited for studying the action of F and V . The sets are first indexed
by vectors ~b ∈ (Z/2)n and then by non-zero t ∈ Z/(2n + 1).

4.1. A binary vector decomposition. Given i, j ≥ 0 such that 0 ≤ i + j ≤
q − 2, recall the definitions of i+k , j

+
k , iTk , j

T
k from Section 2.3. For 0 ≤ h ≤ n− 2, let

bh(i, j) =

{

0 if i+h+1 + j+h+1 < ph+1 − 1,

1 otherwise.

For example, b0(i, j) = 0 when i0+j0 < p−1 and b1(i, j) = 0 when i0+i1p+j0+j1p <
p2 − 1.

Definition 4.2. For each element of the basis B for H1
dR(Xq), define a vector

~b = (b0, . . . , bn−1) ∈ (Z/2)n as follows: If f̃i,j ∈ B ∩H1(Xq,O), let bn−1(i, j) = 0 and

~b(f̃i,j) = (b0(i, j), . . . , bn−2(i, j), 0).

If ωi,j ∈ B ∩H0(Xq,Ω
1), let bn−1(i, j) = 1 and

~b(ωi,j) = (b0(i, j), . . . , bn−2(i, j), 1).

Finally, for ~b ∈ (Z/2)n, consider the subspace

H1
dR(Xq)~b := Span{λ ∈ B | ~λ = ~b}.

For notational purposes, let H1
dR(Xq)0 = 0.

Lemma 4.3. Given a vector ~b = (b0, . . . , bn−1) ∈ (Z/2)n, let ns (resp. nd) be the
number of adjacent terms of (b0, . . . , bn−2) which are equal (resp. different). Then

dim(H1
dR(Xq)~b) =

(

p(p+ 1)

2

)ns+1+b0−bn−2
(

p(p− 1)

2

)nd+1+bn−2−b0

.

Proof. The values bk(i, j) are determined by the behavior of the base-p expansion
of the sum i+ j+1. Namely, bk(i, j) = 1 if and only if the sum i+ j+1 ‘carries’ in the
k-th digit. Since i+ j < q− 1, there is no ‘carrying’ out of the last digit; the addition
of 1 can be thought of as ‘carrying’ into the first digit. Then dim(H1

dR(Xq)~b) is the

number of pairs (i, j) satisfying the ‘carrying pattern’ associated to ~b. It equals the
product of the numbers αk of pairs of p-adic digits (ik, jk) as 0 ≤ k ≤ n − 1, where
αk = #{(ik, jk) | 0 ≤ ik, jk ≤ p− 1, ik + jk ≤ p− 1− |bk − bk−1|}.
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4.2. A congruence decomposition. To index blocks with integers instead of
binary vectors, consider this bijection T : (Z/2)n → Z/(2n + 1)− {0}.

Definition 4.4. Given ~b = (b0, . . . , bn−1) ∈ (Z/2)n:

1. if bn−1 = 1, let T (~b) = 2n−1b0 + · · · 2bn−2 + 1;

2. if bn−1 = 0, let T (~b) = 2n − (2n−1b0 + · · · 2bn−2).

When r is even (resp. odd), the coordinates of the vector T−1(r) are the coeffi-
cients of the binary expansion of r (resp. written in reverse order).

4.3. Block structure. Consider the decomposition H1
dR(Xq) = ⊕1≤t≤2nBt

where Bt := Span{λ ∈ B | T (~λ) = t} for 1 ≤ t ≤ 2n. Corollary 4.1 is an im-
mediate consequence of the next result.

Theorem 4.5. The actions of V and F on H1
dR(Xq) satisfy the following:

1. if 1 ≤ t ≤ 2n−1, then V (Bt) = 0;
2. if 2n−1 + 1 ≤ t ≤ 2n, then there is an isomorphism V |Bt

: Bt → B2t−2n−1;
3. if t is odd, then F (Bt) = 0;
4. if t is even, then there is an isomorphism F |Bt

: Bt → Bt/2.

The proof of Theorem 4.5 occupies the rest of the section.

4.4. The action of F and V in terms of binary vectors. In this section,
we show that F and V act on H1

dR(Xq) by permuting the subspaces H1
dR(Xq)~b for

~b ∈ (Z/2)n. The next definition summarizes the change in the binary vector under
the action of F and V .

Definition 4.6. Let ι be the transposition (0, 1). Given ~b = (b0, . . . , bn−1),

define ~V b and ~Fb as follows:
1. Action of V on H0(Xq,Ω

1): If bn−1 = 1 and b0 = 0, let ~V b = 0.

If bn−1 = 1 and b0 = 1, let ~V b = (b1, . . . , bn−2, 0, 1), (left shift with flip in last
two positions).

2. Action of V on H1(Xq,O): If bn−1 = 0 and b0 = 1, let ~V b = 0.

If bn−1 = 0 and b0 = 0, let ~V b = (ι(b1), . . . , ι(bn−2), 1, 1), (left shift with flip
in all positions).

3. Action of F on H0(Xq,Ω
1): If bn−1 = 1, let ~Fb = 0.

4. Action of F on H1(Xq,O):

[A] If bn−1 = 0 and bn−2 = 0, let ~Fb = (1, b0, . . . , bn−3, 0), (right shift with
flip in first position).

[B] If bn−1 = 0 and bn−2 = 1, let ~Fb = (0, ι(b0), . . . , ι(bn−3), 1), (right shift
with flip in all interior positions).

Proposition 4.7. For each binary vector ~b ∈ (Z/2)n:

V H1
dR(Xq)~b

∼= H1
dR(Xq) ~V b and FH1

dR(Xq)~b
∼= H1

dR(Xq) ~Fb.

Proof. The proof that the image of F or V is in the claimed block is divided into
cases as in Definition 4.6.

1. Action of V on H0(Xq,Ω
1): If ωi,j ∈ H1

dR(Xq)~b, the claim is that V (ωi,j) ∈
H1

dR(Xq) ~V b. Note that bn−1(ωi,j) = 1 by definition. If b0(ωi,j) = 0 then
V (ωi,j) = 0 by Lemma 3.4.
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Suppose b0(ωi,j) = 1, i.e., i0 + j0 ≥ p − 1. By Definition 4.6(1), it suffices
to show that bk−1(V (ωi,j)) = bk(ωi,j) for k ∈ {1 . . . n − 1}. By definition,
bk(ωi,j) = 0 if and only if i+k+1 + j+k+1 < pk+1 − 1. By Lemma 2.1(1), since

i0 + j0 ≥ p − 1, this is equivalent to iTk + jTk < pk − 1. By Lemma 3.4, this
is equivalent to bk−1(V (ωi,j)) = 0. In particular, bn−2(V (ωi,j)) = 0 since
i+ j < pn − 1.

2. Action of V on H1(Xq,O): If f̃i,j ∈ H1
dR(Xq)~b, the claim is that V (f̃i,j) ∈

H1
dR(Xq) ~V b. Note that bn−1(f̃i,j) = 0 by definition. If b0(f̃i,j) = 1 then

V (f̃i,j) = 0 by Proposition 3.7.

Suppose b0(f̃i,j) = 0, i.e., i0 + j0 < p − 1. By Definition 4.6(2), it suffices

to show bk(f̃i,j) = 0 if and only if bk−1(V (f̃i,j)) = 1 for 1 ≤ k ≤ n − 1. By

definition, bh(f̃i,j) = 0 means that i+h+1+ j+h+1 < ph+1−1. By Lemma 2.1(2),

this is equivalent to (pk−1−iTk )+(pk−1−jTk ) ≥ pk−1. This is equivalent to

bk−1(V (f̃i,j)) = 1 by Proposition 3.7. In particular, bn−2(V (f̃i,j)) = 1 since

bn−1(f̃i,j) = 0.
3. Action of F on H0(Xq,Ω

1): If ωi,j ∈ H1
dR(Xq)~b, then F (ωi,j) = 0 by Section

2.1.7
4. Action of F on H1(Xq,O):

For [A], given f̃i,j ∈ H1
dR(Xq)~b such that F (f̃i,j) ∈ H1(Xq,O), the claim

is that F (f̃i,j) ∈ H1
dR(Xq) ~Fb. By Proposition 3.6, F (f̃i,j) ∈ H1(Xq,O)

when bn−2(f̃i,j) = 0. By Definition 4.6(3), it suffices to show bh(F (f̃i,j)) =

bh−1(f̃i,j) for 1 ≤ h ≤ n − 1. By definition, bh−1(f̃i,j) = 0 if and only if
i+h + j+h < ph−1. By Lemma 2.1(3), this is equivalent to p−1+ jn−1+p(i+h +

j+h ) < ph+1 − 1. By Proposition 3.6[A], this is equivalent to bh(F (f̃i,j)) = 0.

Also notice that b0(F (f̃i,j)) = 1 since p− 1 + jn−1 ≥ p− 1.

For [B], given f̃i,j ∈ H1
dR(Xq)~b such that F (f̃i,j) ∈ H0(Xq,Ω

1), the claim is

that F (f̃i,j) ∈ H1
dR(Xq) ~Fb. By Proposition 3.6, F (f̃i,j) ∈ H0(Xq,Ω

1) when

bn−2(f̃i,j) = 1. By Definition 4.6(4), it suffices to show bk−1(f̃i,j) = 0 if

and only if bk(F (f̃i,j)) = 1 for 1 ≤ k ≤ n − 1. By definition, bk−1(f̃i,j) =
0 if and only if i+k + j+k < pk − 1. By Lemma 2.1(4), this is equivalent
to 2pk+1 − 2 − (i+k + j+k )p − p − jn−1 ≥ pk+1 − 1. By Proposition 3.6[B],

this is equivalent to bk(F (f̃i,j)) = 1. Also note that b0(F (f̃i,j)) = 0 since
p− 2− jn−1 < p− 1.

Here is a sketch of 3 ways to prove that F or V surjects onto the claimed block.
The first method is to compute an explicit pre-image in H1

dR(Xq)~b for a given element
of H1

dR(Xq) ~Fb or H1
dR(Xq) ~V b. We omit this calculation. The second method is to

prove that the blocks H1
dR(Xq)~b are irreducible Fq2 [G]-modules using [HJ90, 4.7].

The third method is to use Corollary 3.3 to show that F and V either trivialize or
act injectively on a block; in the latter case, the action must also be surjective by a
dimension count from Lemma 4.3.

Proof of Theorem 4.5. Suppose ~b ∈ (Z/2)n is such that T (~b) = t.

1. If T (~b) ≤ 2n−1, then either bn−1 = 1 and b0 = 0, or bn−1 = 0 and b0 = 1.
Then V H1

dR(Xq)~b = 0 by Lemma 3.4 in the former case and by Proposition
3.7 in the latter case.

2. If T (~b) > 2n−1, then either bn−1 = 1 and b0 = 1, or bn−1 = 0 and b0 = 0. In
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the former case, by Definition 4.6(1) and Proposition 4.7(1),

T (V~b) = 2n−1b1 + · · ·+ 22bn−2 + 1

= 2(2n−1 + 2n−1b1 + · · ·+ 2bn−2 + 1)− 2n − 1 = 2t− (2n + 1).

In the latter case, by Definition 4.6(2) and Proposition 4.7(2),

T (V~b) = 2n−1(1− b1) + · · ·+ 22(1− bn−2) + 2 + 1

= 2(2n − 2n−1b0 − . . .− 2bn−2)− 2n − 1 = 2t− (2n + 1).

3. If T (~b) is odd, then bn−1 = 1 and Bt ⊂ H0(Xq,Ω
1). Then F (Bt) = 0 by

Proposition 4.7(3).

4. Suppose T (~b) is even. If bn−2 = 0, then Proposition 4.7(4)[A] implies that

T (F~b) = 2n − (2n + 2n−1 + 2n−2b0 + . . .− 2bn−3) = t/2.

If bn−2 = 1, then Propositon 4.7(4)[B] implies that

T (F~b) = 2n−2(1 − b0) + 2n−3(1− b1) + . . .+ 2(1− bn−3) + 1

= 2n−1 − 2n−2b0 − . . .− 2bn−3 − bn−2 = t/2.

5. The Dieudonné modules of the Hermitian curves. In this section, we
prove Theorem 5.13 which determines the structure of the p-torsion group scheme
Jac(Xq)[p] for all primes p and n ∈ N. The result is phrased in terms of the Dieudonné
module, which we denote by

D(Xpn) := D(Jac(Xpn)[p]).

Specifically, we prove that the distinct indecomposable factors of D(Xpn) are in bi-
jection with orbits of Z/(2n + 1) − {0} under 〈×2〉 and compute the multiplicity of
each factor. In Section 5.2, we explain how the structure of each indecomposable
factor is determined from the combinatorics of the orbit. From this, one can com-
pute the Ekedahl-Oort type of Jac(Xq)[p] in any specific case but it is hard (and
non-illuminating) to find formulae in general.

5.1. Combinatorial properties of orbits. Two elements s, t ∈ Z/(2n+1)−{0}
are in the same orbit under 〈×2〉 if and only if 2is ≡ t mod 2n + 1 for some i ∈ Z.
Every orbit σ of Z/(2n+1)−{0} under 〈×2〉 is symmetric in that (−1)σ = σ, because
2n ≡ −1 mod 2n + 1.

Definition 5.1. Let σ = (σ1 . . . , σr) be an orbit of Z/(2n + 1) − {0} under
〈×2〉. Let σ0 = σr.

1. The length |σ| of σ is r.
2. An entry σi ∈ σ is a local maximum if σi−1 < σi > σi+1. and is a local

minimum if σi−1 > σi < σi+1. Let Max(σ) (resp. Min(σ)) be the set of local
maximums (resp. minimums) of σ.

3. The a-number of σ is a(σ) = #Max(σ) = #Min(σ).

Lemma 5.2. If σ is an orbit of Z/(2n + 1) − {0} under 〈×2〉, then |σ| is even
and a(σ) is odd.
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Proof. The length is even since σ is symmetric under −1.
Without loss of generality, suppose σ1 = min{σi ∈ σ}. Since σ is symmetric

under −1, the absolute maximum of the entries in σ is σ r
2
+1. More generally, σ1+i ≡

−σ r
2+i mod Z/(2n + 1). Thus σ can be divided into two parts, termed the left half

and the right half.
Consider the number of local minimums and local maximums in σ, excluding σ1

and σ r
2+1. On each half, the number of local minimums equals the number of local

maximums, by an increasing/decreasing argument. By symmetry, the number of local
minimums in the left half equals the number of local maximums in the right half. It
follows that the number of local maximums other than σ r

2+1 is even, so a(σ) is odd.

The next definition measures the distances between the local maximums and
minimums of σ.

Definition 5.3.

1. If σi ∈ Min(σ), the left distance of σi is ℓ(σi) = min{j ∈ N | σi−j ∈ Max(σ)};
and the right distance of σi is ρ(σi) = min{j ∈ N | σi+j ∈ Max(σ)}.

2. If σi ∈ Min(σ), the left parent of σi is L(σi) where L(σi) := σi−ℓ(σi);
and the right parent of σi is R(σi) where R(σi) := σi+ρ(σi).

Remark 5.4. The structure of an orbit is determined by the binary expansion
of its minimal element, see Proposition 5.11. The symmetric property of the orbits
can be used to show that the number of orbits of length 2n is the number of binary
self-reciprocal polynomials of degree 2n; which is found in sequence A000048 in the
Online Encyclopedia of Integer Sequences [OEI]. The total number of orbits is found
in sequence A000016 in [OEI].

5.1.1. Short orbits. Most orbits of Z/(2n+1)−{0} under 〈×2〉 have maximum
length 2n. The following results about short orbits are used in Proposition 5.11,
Corollary 5.16 and Applications 6.1 and 6.4.

Lemma 5.5. Suppose n = ck for k ∈ N odd and let L = (2n + 1)/(2c + 1). The
multiplication-by-L group homomorphism Z/(2c+1) →֒ Z/(2n+1), given by α 7→ Lα,
induces a bijection

β : σ 7→ σL

between orbits σ of Z/(2c+1)−{0} under 〈×2〉 and orbits σL of 〈L〉∩(Z/(2n+1)−{0})
under 〈×2〉.

Proof. Omitted.

Lemma 5.6. Suppose σ̂ is an orbit of Z/(2n+1)−{0} under 〈×2〉 with |σ̂| < 2n.
Then n = ck for some k ∈ N odd and σ̂ = σL for some orbit σ of Z/(2c + 1) − {0}
under 〈×2〉.

Proof. Let σ̂ be an orbit of length 2c where c < n. Without loss of generality,
suppose σ1 = min{σi ∈ σ̂}. Let L = gcd(σ1, 2

n−1) and write σ1 = LM . Let M−1 be
the inverse of M modulo 2n + 1. Then σM−1 = (L, 2L, . . . , 2cL,−L,−2L, . . . ,−2cL)
is another orbit of Z/(2n + 1)− {0} under 〈×2〉 with length 2c and a-number 1. The
sequence L, 2L, . . . , 2cL is strictly increasing and 2cL < 2n+1. Now, c is the smallest
positive integer such that 2cL ≡ −L mod 2n + 1. Thus (2c + 1)L = m(2n + 1) for
some m ∈ Z. However, The fact that L < (2n +1)/2c implies that (2c +1)L = 2n +1
and so n = ck for some k ∈ N odd. Let σ = 1

L σ̂ := (σ1

L , . . . , σr

L ). Then σ is an orbit
of Z/(2c + 1)− {0} under 〈×2〉 and σ̂ = σL.
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5.2. The construction of a Dieudonné module for each orbit. We define
a Dieudonné module D(σ) for every orbit σ of Z/(2n + 1)− {0} under 〈×2〉 in terms
of generators and relations. In the next subsection we prove that these modules are
in fact the indecomposable factors of the Dieudonneé module of Xpn .

For convenience, we replace an entry σi ∈ σ by a variable Bσi
. If σi ∈ Max(σ),

then Bσi
is a generator block. If σi ∈ Min(σ), then Bσi

is a relation block.

Definition 5.7. Let σ = (σ1 . . . , σr) be an orbit of Z/(2n + 1) − {0} under
〈×2〉. The Dieudonné module D(σ) is the quotient of the left E-module generated by
variables

{Bσi
| σi ∈ Max(σ)},

by the left ideal of relations generated by

{V ℓ(σi)BL(σi) + F ρ(σi)BR(σi) = 0 | for all σi ∈ Min(σ)}.

The following diagram illustrates the definition.

BL(σi)

V ℓ(σi)
##F

FF
FF

FF
F

BR(σi)

Fρ(σi)
{{xx
xx
xx
xx

Bσi

Example 5.8. The orbit of 1 in Z/(2n + 1) − {0} under 〈×2〉 is σ =
(1, 2, . . . , 2n, 2n − 1, . . . , 2n−1 + 1). It has a(σ) = 1. The generator block is B2n .
The relation block is B1. Also ℓ(σ1) = ρ(σ1) = n. Thus

D(σ) ≃ E/E(Fn + V n).

This is the Dieudonné module of the unique symmetric BT1 group scheme of rank
p2n having p-rank 0 and a-number 1. This group scheme, which we denote by In,1,
has Ekedahl-Oort type [0, 1, 2, . . . , n− 1]; see [Pri08, Lemma 3.1] for details.

Example 5.9. When n = 4, an orbit of 〈×2〉 on Z/17 is σ =
{3, 6, 12, 7, 14, 11, 5, 10} as illustrated below.

B12

V

!!D
DD

DD
DD

D
B14

V

""E
EE

EE
EE

E

B6

F−1

==zzzzzzzz
B7

F−1

==zzzzzzzz
B11

V

!!D
DD

DD
DD

D
B10

V

!!D
DD

DD
DD

D

B3

F−1

==||||||||
B5

F−1

==zzzzzzzz
B3

It has a(σ) = 3. The generator blocks are B12, B14 and B10 and the relation blocks
are B3, B7, and B5. The relations are FB14 + V B12 = 0 and FB10 + V 2B14 = 0 and
F 2B12 + V B10 = 0. Thus

D(σ) = (EB12 ⊕ EB14 ⊕ EB10)/E(FB14 + V B12, FB10 + V 2B14, F
2B12 + V B10).

Then D(σ) ≃ D(I4,3) where I4,3 is the rank 8 BT1 with Ekedahl-Oort type [0, 0, 1, 1]
[EP13, Remark 5.13].
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Lemma 5.10. The left E-module D(σ) is symmetric, is trivialized by both F and
V , has dimension |σ|, and has a-number a(σ).

Proof. First, D(σ) is symmetric since σ is symmetric. Second, the relations
FV = V F = 0 imply that V ℓ(σi)+1BL(σi) = 0 and F ρ(σi)+1BR(σi) = 0 for each
σi ∈ Min(σ). Since every generator block is both a left and a right parent, powers of
F and V trivialize all the generator blocks. Third, the dimension equals the number
of distinct images of the generator blocks under powers of F and of V , which is exactly
|σ|. Finally, the a-number equals the number of generators as an E-module.

Proposition 5.11. If σ′ and σ are distinct orbits of Z/(2n + 1) − {0} under
〈×2〉, then D(σ) 6≃ D(σ′).

Proof. By Lemma 5.10(3), the structure of D(σ) determines |σ|. The bijection β
in Lemma 5.5 preserves the E-module structure of the Dieudonné module: D(σL) ≃
D(σ). By Lemmas 5.5 and 5.6, it suffices to restrict to the case |σ| = 2n. Without
loss of generality, suppose σ1 = min{σi ∈ σ}. By minimality, σ1 < 2n−1 (otherwise
−σ1 < σ1) and σ1 is odd. Notice that σi > σi+1 if and only if σi > 2n−1 (the last bit
of σi equals 1). Since σi = 2σi−1 mod 2n+1, the last bit of σi is the penultimate bit
of σi−1. By induction, σi > σi+1 if and only if the (n− i− 1)st bit of σ1 equals 1 for
1 ≤ i ≤ n− 1. Thus the structure of D(σ) determines the binary expansion of σ1.

5.3. Main Theorem. For all primes p and n ∈ N, we find the structure of
the Dieudonné module D(Xpn) of the p-torsion group scheme of the Jacobian of the
Hermitian curveXpn . The E-module structure of D(Xpn) is determined by its distinct
indecomposable factors, which are in bijection with orbits of Z/(2n + 1)− {0} under
〈×2〉, and their multiplicities. The E-module structure of each indecomposable factor
is determined by the combinatorics of the corresponding orbit, as described in Section
5.2.

Definition 5.12. If 1 ≤ t ≤ 2n and s ≡ 2t mod 2n + 1, then dimk(Bs) =
dimk(Bt) by Theorem 4.5(2)(4). If σ is an orbit of Z/(2n + 1)− {0} under 〈×2〉, its
multiplicity is m(σ) := dimk(Bσi

) for any σi ∈ σ.

The multiplicity m(σ) was computed in Lemma 4.3.

Theorem 5.13. For all primes p and n ∈ N, there is a bijection between orbits
of Z/(2n +1)−{0} under 〈×2〉 and distinct indecomposable factors in the Dieudonné
module D(Xq) of Jac(Xq)[p] given by σ → D(σ). The multiplicity of D(σ) in D(Xq)
is m(σ).

Proof. Suppose σ is an orbit of Z/(2n + 1)− {0} under 〈×2〉. Consider

Wσ := Spanσi∈σBσi
⊂ H1

dR(Xq).

By Theorem 4.5, Wσ is stable under the action of V and F−1.
Write σ = (σ1, . . . , σr), choosing σ1 to be a local minimum with maximal left

distance. Let B = Bσ1 . Define a word ω = ωr · · ·ω1 in the variables F−1 and V as
follows: ωi = F−1 if 1 ≤ σi ≤ 2n−1 and ωi = V if 2n−1 + 1 ≤ σi ≤ 2n. By Corollary
4.1, the word ω yields an isomorphism ω : B → B; (it is p−r-linear). Applying
Corollary 3.3 shows that ω is represented by a generalized permutation matrix, namely
a matrix with exactly one non-zero entry in each row and column, with respect to
the basis B ∩ B. This implies that an iterate of ω can be represented by a diagonal
matrix.
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In fact, ω itself can be represented by a diagonal matrix; in other words, that there
is a basis of eigenvectors for ω. To see this, consider the final filtration for the E-
module Wσ as described in Section 2.1.5. First, Wσ has rank prm where m = dim(B).
It has a canonical filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr where dim(Mi) = im. Here
each Mi is a union of blocks Bj from the orbit; in particular, Mr = Wσ and M1 = B.
The final filtration N1 ⊂ N2 ⊂ · · · ⊂ Nrm is a refinement of the canonical filtration,
so Nim = Mi. It is a filtration of Wσ as a k-vector space which is stable under the
action of V and F−1 such that i = dim(Ni).

Let x1 denote a non-zero element of N1 ⊂ M1 = B. Since the final filtration is
stable under F−1 and V , the element y1 = ω1(x1) = F−1(x1) generates Nm+1/M1.
Similarly, Nim+1/Mi is generated by an image of x1 under a portion of the word ω.
Going through the whole word, ω(x1) is a generator for N1/N0. Thus ω(x1) is a
constant multiple of x1.

Thus there is an E-module isomorphism Wσ ≃ D(σ)m(σ). By Proposition 5.11,
the factors D(σ) of D(Xq) are distinct and are in bijection with orbits Z/(2n+1)−{0}
under 〈×2〉

Recall the definition of break points from Section 2.1.5.

Corollary 5.14. The Ekedahl-Oort type ν of Xq has 2n−1 break points; in
other words, the sequence νi alternates between being constant and increasing on 2n−1

intervals for 1 ≤ i ≤ g. This pattern is consistent for all primes p, although the
formulae for the break points depends on p.

Proof. By Theorem 5.13, the canonical filtration is constructed by successively
adjoining the blocks Bt. The behavior of F and V is consistent across each block.
Thus there are 2n canonical fragments, the first half of which determine break points
of ν.

5.4. Indecomposable factors of D(Xpn) with a-number 1. For c ∈ N, recall
from Example 5.8 that Ic,1 is the unique symmetric BT1 group scheme of rank p2c

having p-rank 0 and a-number 1. In this section, we find the multiplicity of D(Ic,1) =
E/E(F c + V c) in D(Xpn). As motivation, note that D(I1,1) occurs in D(Xpn) exactly
when there is a block Bt such that F (Bt) = V (Bt). This can only occur when n is
even and t = (2n+1 + 2)/3, in which case the orbit is σ = (t/2, t).

We will need the following result about multiplicities of short orbits. If W is an
indecomposable factor of D(Xpc) and if n = ck for some odd k ∈ N, then W is an
indecomposable factor of D(Xpn) associated with a short orbit by Lemma 5.5. The
next result compares the multiplicity of W in D(Xpc) and D(Xpn).

Proposition 5.15. Suppose n = ck for k ∈ N odd and let L = (2n +1)/(2c+1).
The multiplicity M(σ) of D(σ) in D(Xpc) and the multiplicity M(σL) of D(σL) in
D(Xpn) are related by the formula: M(σL) = M(σ)k.

Proof. Note that M(σ) = dimk(Bt) where t = min{σi ∈ σ}. Also, M(σL) =

dimk(BLt) because Lt = min{σi ∈ σL}. Since t is odd, ~b(t) ∈ (Z/2)a is the binary
expansion of t − 1. Note that L = (2a − 1)(2n−2a + 2n−4a + · · · + 2a) + 1. Now

t(2a − 1) = (t − 1)2a + 2a − t has binary expansion (ι(~b(t)),~b(t))) of length 2a.
Thus Lt − 1 = t(2a − 1)(2n−2a + 2n−4a + · · · + 2a) + (t − 1) has binary expansion

(~b(t), ι(~b(t)),~b(t), . . . , ι(~b(t)),~b(t)), where the sequence has k terms of length a. As
t < 2n−1 the result follows from Lemma 4.3.

Recall from Proposition 3.5 that the rank of Ci on H0(Xq,Ω
1) is rn,i = pn(p +

1)i(pn−i − 1)/2i+1.
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Corollary 5.16.

1. The Dieudonné module D(In,1) occurs with multiplicity rn,n−1 in D(Xpn).
2. The Dieudonné module D(Ic,1) appears as an indecomposable factor of D(Xpn)

if and only if n = ck for some odd k ∈ N, in which case the multiplicity of
D(Ic,1) in D(Xpn) is M(Ic,1) := (rc,c−1)

k.
3. If n ∈ N is even, then the multiplicity of D(I1,1) in D(Xpn) is zero. If n ∈ N

is odd, then the multiplicity of D(I1,1) in D(Xpn) is (p(p− 1)/2)
n
.

Remark 5.17. Corollary 5.16 is equivalent to the fact that Ker(Fn) = Ker(V n)
has dimension 2g − rn,n−1 in H1

dR(Xpn) or the fact that Im(Fn) = Im(V n) has
dimension rn,n−1 in H1

dR(Xpn).

Proof.
1. By Example 5.8, D(In,1) = D(σ) for the orbit σ containing 1. Then M(σ)

equals the dimension of B1 = V nB2n , which equals the rank rn,n−1 of C on
H0(Xq,Ω

1).
2. By part 1, one can suppose that 1 ≤ c < n. Then rank(D(Ic,1)) < p2n.

Thus, if D(Ic,1) occurs in D(Xpn), then D(Ic,1) = D(σ̂) for a short orbit σ̂ of
Z/(2n+1)−{0}. By Lemma 5.6, n = ck for some k ∈ N odd. Suppose n = ck
for some k ∈ N odd. By part 1, D(Ic,1) appears in D(Xpc) with multiplicity
rc,c−1. The result then follows from Lemma 5.5 and Proposition 5.15.

3. This follows from part 2, setting c = 1.

As an example, consider the case n = 4, which involves the rank 8 group scheme
I4,3 from Example 5.9.

Example 5.18. The Dieudonné module D(Xp4) of Jac(Xp4)[p] is:

(5) D(Xp4) = (E/E(F 4 + V 4))r4,3 ⊕ (D(I4,3))
r4,1−3r4,3 .

Proof. The orbit σ = {1, 2, 4, 8, 16, 15, 13, 9} has D(σ) = D(I4,1). The mul-
tiplicity of D(I4,1) is determined by Corollary 5.16(1). There is one other orbit
σ′ = {3, 6, 12, 7, 14, 11, 5, 10} of 〈×2〉 on Z/17. By Example 5.9, D(σ′) = D(I4,3).
The multiplicity of D(I4,3) equals (2g − 8r4,3)/8.

6. Applications.

6.1. Decomposition of Jacobians of Hermitian curves. The fact that
Jac(Xpn) is supersingular is equivalent to the fact that it decomposes, up to isogeny,
into a product of supersingular elliptic curves:

Jac(Xpn) ∼ ×g
i=1Ei.

A more refined problem is about the decomposition of Jac(Xpn) up to isomorphism.
Consider an isomorphism

Jac(Xpn) ≃ ×N
i=1Ai

of abelian varieties without polarization, where each Ai is indecomposable and g =
∑N

i=1 dim(Ai).
When n = 1, Section 2.2.1 and [Oor75, Theorem 2] imply that the Jacobian of

Xp is isomorphic to a product of supersingular elliptic curves:

Jac(Xp) ≃ ×g
i=1Ei.
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For n ≥ 2, we did not find any results about the decomposition of Jac(Xpn) up
to isomorphism in the literature. In this section, we use Theorem 5.13 to provide
constraints on this decomposition.

6.1.1. Elliptic rank. If A is an abelian variety, its elliptic rank is the largest
non-negative integer r such that there exist elliptic curves E1, . . . , Er and an abelian
variety B of dimension g−r and an isomorphism A ≃ B×(×r

i=1Ei) of abelian varieties
without polarization.

Application 6.1. If n is even, then the elliptic rank of Jac(Xpn) is 0. If n is
odd, then the elliptic rank of Jac(Xpn) is at most (p(p− 1)/2)

n
.

Proof. If Jac(Xpn) ≃ B × (×r
i=1Ei), then each Ei is supersingular and D(Ei) ≃

E/E(F + V ). The result follows from Corollary 5.16(3) since the elliptic rank is
bounded by the multiplicity of D(I1,1) in D(Xpn).

6.1.2. A partition condition on the decomposition. We determine a par-
tition condition on the decomposition of the Jacobian Jac(Xpn) up to isomorphism,
starting with a simple-to-state application.

Application 6.2. Suppose n = 2e for some e ∈ N and suppose Jac(Xpn) ≃
×N

i=1Ai. Then n | dim(Ai) for 1 ≤ i ≤ N and N ≤ g/n. In particular, when n = 2,
then dim(Ai) is even for all 1 ≤ i ≤ N .

Proof. If n = 2e, then all orbits σ of Z/(2n +1)−{0} have length exactly 2n. By
Lemma 5.10, dim(D(σ)) = 2n. Also D(Ai) has dimension 2 dim(Ai) and is a direct
sum of Dieudonné modules of dimension 2n.

Definition 6.3. Consider two partitions ηJ and ηD defined as follows. If
J ≃ ×N

i=1Ai, where each Ai is an indecomposable abelian variety, let ηJ = {dim(Ai) |
1 ≤ i ≤ N}. If D(Xpn) = ⊕δ

i=1Di, where each Di is an indecomposable symmetric
Dieudonné module, let ηD = {dim(Di) | 1 ≤ i ≤ δ}.

It is clear that the partition ηD is a refinement of the partition ηJ . For any q,
this observation can be used to compute a lower bound for the partition ηJ which is
the set of dimensions of the indecomposable factors in the decomposition of Jac(Xpn)
up to isomorphism. In particular, this yields the upper bound N ≤

∑

σ m(σ). For
example, when n = 3, then N ≤ g − 2r3,2 ∼ g/2.

6.2. Application to Selmer groups. Let A be an abelian variety defined over
the function field K of Xq with q = pn. Let f : A → A′ be an isogeny of abelian
varieties over K. Recall that the Tate-Shafarevich group X(K,A) is the kernel of
H1(K,A) →

∏

v H
1(Kv, A) where the product is taken over all places v of K. Let

X(K,A)f be the kernel of the induced map X(K,A) → X(K,A′). Also define
the local Selmer group Sel(Kv, f) to be the image of the coboundary map A′(Kv) →
H1(Kv,Ker(f)) and the global Selmer group to be the subset of H1(K,Ker(f)) which
restrict to elements of Sel(Kv, f) for all v. There is an exact sequence

0 → A′(K)/f(A(K)) → Sel(K, f) → X(K,A)f → 0.

In [Dum99, Theorems 1 & 2], the author determines the group structure of X

in the case when A is Jac(Xq) or A is a supersingular elliptic factor of Jac(Xq). Here
is a quick application about this topic.
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Application 6.4. Let E be a constant elliptic curve over the function field K of
Xq. If E is ordinary, then Sel(K, [p]) has rank 2rn,1 = pn(p+ 1)(pn−1 − 1)/2.

Proof. The result follows from Proposition 3.5 because the rank of Sel(K, [p]) is
twice the rank of C [Ulm91, Proposition 3.3].

6.3. Application about the supersingular locus. The moduli space Ag of
principally polarized abelian varieties of dimension g can be stratified by Ekedahl-
Oort type into locally closed strata. By [Oor13, Lemma 10.13], the stratum for the
Ekedahl-Oort type ν is contained in the supersingular locus Sg if and only if νs = 0
where s = ⌈g/2⌉.

Each generic point of Sg has a-number 1 [LO98, Section 4.9]. By Example 5.8,
the unique Ekedahl-Oort type with p-rank 0 and a-number 1 has νs = s− 1 which is
not zero for g ≥ 3. Thus this Ekedahl-Oort stratum intersects but is not contained in
Sg.

For all p, we give infinitely many new examples of Ekedahl-Oort strata which
intersect but are not contained in Sg. What is significant is that each has large a-
number, namely just a bit smaller than g/2. Note that a ≤ ⌊(g− 1)/2⌋ is the smallest
upper bound for a which guarantees that νs 6= 0.

Application 6.5. Let q = pn with n ≥ 3 and let g = q(q− 1)/2. The Hermitian

curve Xq has a-number g
2 [1 − p

q
pn−2−1
q−1 ]. Its Ekedahl-Oort stratum intersects, but is

not contained in, the supersingular locus of Ag.

Proof. The Jacobian of the Hermitian curve Xpn is supersingular and has dimen-
sion g. Let ν be its Ekedahl-Oort type and let η be the strata of Ag with Ekedahl-Oort
type ν. By Proposition 3.5, νi = 0 if and only if i ≤ rn,n−1 = pn(p+1)n−1(p− 1)/2n.
By [Oor13, Lemma 10.13], η ⊂ Sg if and only if νs = 0 where s = ⌈g/2⌉. This
condition is not satisfied for n ≥ 3.
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244 (1957), pp. 426–428.

[Dem86] M. Demazure, Lectures on p-divisible groups, Lecture Notes in Mathematics, vol. 302,
Springer-Verlag, Berlin, 1986, Reprint of the 1972 original.

[Dum95] N. Dummigan, The determinants of certain Mordell-Weil lattices, Amer. J. Math., 117:6
(1995), pp. 1409–1429.

[Dum99] , Complete p-descent for Jacobians of Hermitian curves, Compositio Math., 119:2
(1999), pp. 111–132.

[Eke87] T. Ekedahl, On supersingular curves and abelian varieties, Math. Scand., 60:2 (1987),
pp. 151–178.

[EP13] A. Elkin and R. Pries, Ekedahl-Oort strata of hyperelliptic curves in characteristic 2,
Algebra Number Theory, 7:3 (2013), pp. 507–532.

[EvdG09] T. Ekedahl and G. van der Geer, Cycle classes of the E-O stratification on the
moduli of abelian varieties, Algebra, arithmetic, and geometry: in honor of Yu. I.
Manin. Vol. I, Progr. Math., vol. 269, Birkhäuser Boston Inc., Boston, MA, 2009,
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Norm. Sup. (4), 2 (1969), pp. 63–135.

[OEI] The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[Oor74] F. Oort, Subvarieties of moduli spaces, Invent. Math., 24 (1974), pp. 95–119.
[Oor75] , Which abelian surfaces are products of elliptic curves?, Math. Ann., 214 (1975),

pp. 35–47.
[Oor01] , A stratification of a moduli space of abelian varieties, Moduli of abelian varieties

(Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 345–416.
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