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ABSTRACT. We study the p-adic valuations of roots of L-functions associ-
ated with certain families of exponential sums of Laurent polynomials f &€
Fq [xfd, R ,zfl]. The families we consider are reflection and Kloosterman
variants of diagonal polynomials. Using decomposition theorems of Wan, we
determine the Newton and Hodge polygons of a non-degenerate Laurent poly-
nomial in one of these families.

1. Introduction

Let g be a power of a prime p and [ be the finite field of ¢ elements. Let (, € C
be a fixed primitive pth root of unity. For k € N, consider the trace homomorphism
Try : Fye — Fp,. Given a Laurent polynomial f(z1,...,2,) € Fy [zt ... 2 its
k-th exponential sum is

Sih =3 Gl € QG).

x; G]F;k

The L-function of the exponential sum of f is defined as
L*(f,T) = SE(f)—
1D =ew (S50

A theorem of Dwork-Bombieri-Grothendieck states that
dy
% i= 1-— OéiT
L (f,T): Hdzl( )’
Hj:l (1 - ﬂj T)
where «;, 3; are non-zero algebraic integers for 1 <7 < d; and 1 < j < dy. Thus

S = B4+ 85, —ak - — .
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The values d; and ds depend on geometric and cohomological properties of the
motive defined by f. A theorem of Deligne [5] implies that the complex absolute
values satisfy |o;| = ¢“/? and |3;] = ¢“/? for some weights u;,v; € Z N [0,2n].
Also, for each prime ¢ # p, the values «;, §; are f-adic units.

There are many open questions about the p-adic valuation of the roots and
poles of L*(f,T). Write |as|, = ¢77, |65, = ¢~°, where the p-adic valuation
is normalized such that |¢|, = 1/¢. Deligne’s integrality theorem implies that
ri,s; € QN [0,n]. If f is diagonal, then «;, 3, are roots of products of Gauss
sums and the slopes r;, s; can be determined using Stickelberger’s theorem. In this
paper, we use Wan’s decomposition theory [12] to study two families of Laurent
polynomials that are not diagonal. We briefly explain the results, referring to
Section 2 for definitions and background material.

Given a Laurent polynomial f, one can define its Newton polytope A which
is an n-dimensional integral convex polyhedron in R™ determined by the dominant
terms of f. Using A, one can define a non-degeneracy condition on f. Also, one
can assign a weight function to lattice points of R™. One can associate to A its
Hodge numbers and Hodge polygon HP(A), a lower convex polygon in R? starting
at the origin, by counting the number of lattice points of a given weight.

If f is non-degenerate and A is general enough, then L*(f,T)"1""" is a poly-
nomial of degree n!V(A) by results of Adolphson and Sperber [1]. In this case,
information about the p-adic valuations of the roots of L*(f, T)(’l)n_1 is encapsu-
lated in the Newton polygon NP(f), another lower convex polygon in R? starting at
the origin. Grothendieck’s specialization theorem implies that there exists a generic
Newton polygon GNP(A,F,) := inf; NP(f) where f ranges over all non-degenerate
Laurent polynomials over F, with Newton polytope A. If f is nondegenerate and
dim(A) = n, then by [1], the endpoints of the three polygons meet and

NP(f) > GNP(A,F,) > HP(A).

There are important theorems and open questions about when NP(f) = HP(A)
or GNP(A,F,) = HP(A), e.g., [1], [10]. In this paper, we consider two families of
Laurent polynomials f that are deformations of diagonal polynomials. In Section
3, we apply Wan’s decomposition theory [12] to determine congruence conditions
on p for which NP(f) = HP(A). In Section 4, we compute the Hodge numbers of
HP(f) under certain numeric restrictions.

Here are the two families we consider. Fix m = (mq,...,my) € N" and let
fom=a7t 4+ ---+al. For 1 <j<n, define

Gl o= Fm ol ™ ™
and 4
K) o= fom + (@1 -2) 7

An effective lower bound for the Newton polygon for NP(G%M) is given by

Hodge-Stickelberger polygon as described in [4, Theorem 6.4], see also further re-

sults in [3]. We say that f € F,[zi',... 25! is a reflection variant of f, z if
A(f) = A(G? ) for some 1 < j < n. We say that f € Fy[zf',...,2f] is a

Kloosterman variant of f, m if A(f) = A(Ki,m) for some 1 < j <n.

Our motivation to study this problem came from the information that it yields
about Newton polygons of varieties defined over F,. Consider the affine toric Artin-
Schreier variety Vy in A"™! defined by the affine equation y? —y = f(z1,...2,)
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where f(x1,...,2,) €F [az:1 L ...,z as above. The p-adic Newton polygons of
L(f/F,,T) and L(Vf/IFq, T') are the same after scaling by a factor of p— 1, denoted
by NP(V) = (p— 1)NP(f).

Further decomposition methods for Newton polygons are developed in [9].
Other related work can be found in [6], [7].

2. Background material

Consider a Laurent polynomial f € Fy[zF',... ,z;*!]. Then f is of the form

f= Z] L a; V5 where a; #0, V; = (v1,...,0n;) € Z", and &7 = 2" ...z
for1 <j<J.

2.1. The Hodge polygon. The Newton polytope A(f) of f is the convex
polygon generated by the origin 0 and the lattice points V;i. Note that A is an
integral polytope, namely its vertices have integral coordinates. Without loss of
generality, we assume that dim(A) =n. Let V(A) denote the volume of A. If § is
a subset of A(f), let f° = Z ajzVi.

DEFINITION 2.1. A Laurent polynomial f is non-degenerate with respect to A
and p if for each closed face § of A(f) not containing 0, the partial derivatives
{g—g, ceey az } have no common zeros with xy -z, # 0 over Fy.

Let A(A) denote the space of all Laurent polynomials with Newton polytope
A, parametrized by their (non-vertex) coefficients (a;). It is a smooth irreducible
affine variety defined over F,,. The subspace M,(A) C A(A) of all nondegenerate
Laurent polynomials is the complement of a discriminant locus in A(A). It is known
that M,,(A) is Zariski dense and open in A(A) for each prime p; in other words, a
generic Laurent polynomial with Newton polytope A is non-degenerate. We assume
throughout that f € M,(A).

DEFINITION 2.2. (1) The cone C(A) =3, A vRZ? of A is the monoid
generated by vectors in A.
(2) If & is a codimension one face of A, with equation > ., c;x; = 1 for

¢; € Q, the denominator D(6) is min{d | dc; € Z, 1 < i < n}.

(3) The denominator D(A) is the least common multiple of D(6) for all codi-
mension one faces & of A not containing 0.

(4) If u = (u1,...,u,) € Q", the weight w(u) is the smallest c € Q=% such
that uw € cA = {cZ | £ € A}. (If there is no such rational number c, then
w(u) = o00).

The weight w(u) is finite if and only if u € C'(A). Here is an equivalent way to
define the weight. If u € C((A), then the ray uR=? intersects a codimension one face
of A not containing 0. If i ciw; = 1is the equation of &, then w(u) = Y"1 | ¢;u;.
Thus w(u) € D(é)Z>O

We now define the Hodge numbers by counting the number of lattice points of
a given weight k/D.

DEFINITION 2.3. If k € Z=0,

et Wa = u € w(u) = =745 ; be the number of lattice points in
1) let Wa(k) = #{uezZ" Diay) be th ber of |
7™ with weight k/D(A).
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(2) let Ha(k) = >0 o(—1) <7Z> Wa(k —iD(A)) (the Hodge number).

For example, when n = 2, Ha(k) = Wa(k) — 2Wa(k — m) + Wa(k — 2m).
The Hodge number Ha (k) is the number of lattice points of weight k/D(A) in a
fundamental domain of A which corresponds to a basis of the p-adic cohomology
used to compute the L-polynomial. Therefore, Ha(k) > 0 if k > 0 and Ha(k) =0
if K > nD(A). Furthermore,

nD(A)

> Ha(k)=nlV(A).
k=0

DEFINITION 2.4. The Hodge polygon HP(A) is the lower convex polygon in
R? that starts at 0 and has a side of slope k/D with horizontal length Ha(k) for
0 < k <nD. In other words, it is the polygon with vertices at the origin and, for
0<j<nD, at the point

(; Ha(k), ﬁ kgom(k)) .

2.2. Newton polygon. When f is nondegenerate with respect to A(f), then
L*(f,T)Y""" is a polynomial of degree N = n!V(A) [1, Corollary 3.14]. Write
L*(f, 1)V =14 O T+ -+ COxTN with C; € Z[(,]. For C € Z[(,), write
ord,(C) = ord,(C)/log,(q) where |C], = p o) The p-adic Newton polygon
NP(f) of f is the lower convex hull in R? of the points (i,o0rd,(C;)) for 0 <i < N.
The Newton polygon NP(f) has a segment with slope « and horizontal length ¢, if
and only if L*(f, T)(_l)%1 has a root of p-adic valuation r; = « with multiplicity
lo. Results about the slopes of the Newton polygon of f yield results about the
p-adic Riemann hypothesis on the distribution of the roots of L*(f, T)(*l)n_1 in
Q,.

" By Grothendieck’s specialization theorem, for each prime p, there exists a
generic Newton polygon GNP(A,F,) := inf; NP(f) where f ranges over all f €
M,,(A) defined over F,,.

THEOREM 2.5. [1, Corollary 3.11] If p is prime and if f € Mp(A), then the
endpoints of the three polygons meet and

NP(f) > GNP(A;F,) > HP(A).

It is natural to ask what the slopes of GNP(A, p) are and how they vary with
p. In particular, it is natural to ask for which A and p the generic Newton polygon
equals the Hodge polygon. Also, one would like to understand when the Newton
polygon of f equals the Hodge polygon. In this context, Wan proved:

THEOREM 2.6. [10, Theorem 3] There is a computable integer D*(A) = 0 mod
D(A) such that if p=1mod D*(A) then GNP(A,F,) = HP(A).

= HP(A(f))-
HP(f) for all
= A are

A non-degenerate Laurent polynomial f is ordinary if NP(f)
In [12, Theorem 1.8], Wan gives conditions under which NP(f) =
f € My(A), in other words, for which all non-degenerate f with A(f)
ordinary.
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The proofs of these results are quite deep. Wan constructs an overconvergent
o-module £(A) of rank n!V(A) on M,(A) such that the L-function of any non-
degenerate f with Newton polytope A can be computed on the fiber £(A)f of £(A)
at the corresponding point of M,(A), i.e.,

L*(f, )" = det(I — TFrobs|E(A);).

The Newton polygon of L*(f, T)(_l)w1 can be computed from the “linear algebra
data” E(A)y. A general theorem shows that for a family of F-crystals [8] or o-
modules [11], the Newton polygon goes up under specialization. This implies that
there is a Zariski dense and open subspace U C M,(A) such that for every f € U,

the Newton polygon of L*(f,T)"D""" equals GNP(A,p).

3. Newton polygons of non-diagonal Laurent polynomials

In this section, we apply Wan’s decomposition theory to study two families
of non-diagonal Laurent polynomials. A Laurent polynomial f is diagonal if it is
the sum of n monomials and n = dim(A(f)). We first survey some results about
the diagonal case from [12, Section 2]. Suppose f = 22:1 a;7Vi where a; # 0,
Vi = (v1jy...,0n,) € Z", and TV := z™ ...z for 1 < j < n. Let A = A(f)
and suppose dim(A) = n. We will need the following definition.

DEFINITION 3.1. The polytope A is indecomposable if the (n — 1)-dimensional
face generated by Vi,...,V, contains no lattice points other than its vertices.

Linear algebra techniques are useful for studying the Hodge polygon in the
diagonal case. Let M be the non-singular n x n matrix M = (V1,...,V,). The
Laurent polynomial f is non-degenerate with respect to A and p if and only if
p1det(M). Integral lattice points @ of the fundamental domain

I =RV; +---+RV,, mod ZV; + --- + ZV,,

are in bijection with the set S(A) of solutions = (r1,...,r,) of M7’ = 0mod 1
with r; € QN[0,1). This bijection preserves size in that the weight w(#) equals the
norm || = Z?zl r;. Now S(A) is a finite abelian group under addition modulo 1.
Let D* be its largest invariant factor. Consider the multiplication-by-p automor-
phism [p] on S(A), denoted ¥ — {pr}. The automorphism [p] is weight-preserving
if p=1 mod D*.

Using Gauss sums and the Stickelberger theorem, one proves that the p-adic
valuation of a root a of L*(f/IFq,T)(’l)W1 can be expressed in terms of the av-
erage norm of an element ¥ € S(A) under [p] [12, Corollary 2.3]. Specifically, the
horizontal length of the slope s portion of the Newton polygon equals the number
of elements r € S(A) whose average norm is s [12, Corollary 2.4]. This yields the
following.

THEOREM 3.2. [12, Section 2.3] Let A be a simplex containing 0 with dim(A) =
n. Then

(1) NP(f) = HP(A) for all f € Mp(A) supported only on the interior and
vertices of A if p=1mod D*.
(2) GNP(A,F,) = HP(A) if p = 1 mod D*.

For the main result, we need to strengthen Theorem 3.2 in a certain case.
Suppose m = (mq,...,m,) € N* and f, 5 = " +--- 4+ 2. Suppose f is a
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Laurent polynomial such that A(f) = A(f,,m). Notice that f is non-degenerate
with respect to A and p if and only if p D* = LCM(my, ... my,).

LEMMA 3.3. Let A = A(fp,m) with fpm =" + - +zm.
(1) Suppose f € My(A) is supported only on the interior and vertices of A.
Then NP(f) = HP(A) if and only if p =1 mod D*.
(2) If mq,...,m, are pairwise relatively prime, then GNP(A,F,) = HP(A)
if and only if p =1 mod D*.

PROOF. (1) The sufficiency statement follows from Theorem 3.2. For
the other direction, if f is ordinary then each boundary restriction ;"
is ordinary by Wan’s boundary decomposition theorem [10, Section 5].
Hence p = 1 mod m; for 1 < i < n which implies p = 1 mod D*.

(2) The polytope A is indecomposable if and only if mq,...,m, are pairwise
relatively prime. Then the statement follows from part (1) and Theorem
3.2.

O

The facial decomposition theory of Wan allows one to study the Newton poly-
gon of a non-diagonal Laurent polynomial by dividing A into smaller diagonal
polytopes.

THEOREM 3.4. [10, Theorem 8] Suppose f is non-degenerate and dim(A(f)) =
n. Let §1,...,0 be the codimension 1 faces of A(f) which do not contain 0. Then
f is ordinary if and only if f% is ordinary for each i.

As illustrations of Wan’s facial decomposition theory, we study two deformation
families of basic diagonal polynomials.

DEFINITION 3.5. Fiz m = (mq,...,my,) € N* and let f, z = " +-- -+ 2],

A Laurent polynomial f € Fq[xf17 oy ) s

rYn

(1) a reflection variant of fn m if A(f) = A(Gfl ) for some 1 < j < n where
GI o= fom 2™ ;™

(2) a Kloosterman variant of fn.m if A(f) = A(K?

n,m

) for some 1 < j<mn
where

KZz,ﬁ‘L = fnﬁv + (1'1 e "rj)_l'

If n =2 and my = my = 1, then K3 (1,1) is the classical Kloosterman polyno-
mial, and it is well-known in this case that the Newton polygon has slopes 0 and 1

each with multiplicity one. Pictures and basic facts about the polytopes for Gzl,m

and K ZL . can be found in Section 4. Here is our main result.
,

COROLLARY 3.6. Suppose f is a reflection variant or a Kloosterman variant
of fa,m for some 1 < j <n. Write A= A(G), ;) or A =A(K], ) as appropriate.
(1) Then f is non-degenerate if and only if pt D* = LCM(myq,...,my).

(2) NP(f) = HP(A) for all f € My(A) supported only on the interior and
vertices of A if and only if p =1 mod D*.

(3) If ma,...,my are pairwise relatively prime, then GNP(A,F,) = HP(A)
if and only if p =1 mod D*.
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PROOF. This proof follows essentially from Lemma 3.3. The proof of each part
relies on the decomposition of A into different faces. By [10], one can measure
whether f is non-degenerate, whether the generic Newton polygon and the Hodge
polygon coincide, and whether the Newton polygon and the Hodge polygon coincide
by seeing whether these properties are true for the restriction f° of f to each face
0 of A.

For the reflection case, after a change of variables of the form z; — =z
can restrict to the face of f, 5 = G%}m not containing 0. The result then follows
from Lemma 3.3. ]

For the Kloosterman case, there is a unique face not containing —1; = —>7_, ¢; =
(-1,...,—1,0,...,0). It is the same face as in Lemma 3.3; in particular, D*
LCM(my,...,my,) for this face and its vertices are the only lattice points with
integral coordinates on this face if and only if mq,..., m, are pairwise relatively
prime.

There are j other faces of A not containing 0. We consider the face § through
,fj and v; = mye; for 2 < ¢ < n. The argument for the other faces is similar. By
Lemma 4.8, ¢ is contained in the hyperplane

+1

o, one

1 1 m+n-—1
— o+ —xy, — —————x1 = 1.
ma mpy m

The integral lattice points @ of the fundamental domain
[ =R(—1;) +Rvg 4 - - - + Rv,, mod Z(—1;) + Zvg + - - - + Zv,

are the set
{(0,ug,...,uy) €Z™ | 0 < u; < my;}.

Thus I' ~ x? ,Z/m; and Dj = LCM(ma,...,m,) is the largest invariant factor
of I". The multiplication-by-p map on I' is thus weight-preserving if p = 1 mod
Dji. Since Dj divides D*, the face J places no new constraints on the condition
CGNP(A,F,) = HP(A). Furthermore, if § does not contain 0, then there are no
lattice points on § other than the vertices. Thus the face § places no new constraints
on the condition NP(f) = HP(A) for all f € M,(A).

Conversely, if f is ordinary then its restriction to each face f? is ordinary. Then
p=1mod D* by Lemma 3.3. O

REMARK 3.7. By [1, Corollary 3.14], if f is non-degenerate, then L*(f, T)(_l)W1
is a polynomial of degree n!V (A). In the reflection case,

n7

V(A(G? 1) =27V (G ) =2 f[ m;/n).

For the Kloosterman case, write sy for the kth symmetric product in mq,...,m;.
For example, s; = ngl m;. Then, see Lemma 4.8,

V(A(KD ) = <5j+Z(—1)iisj_1_i> IT mi/n.

i=j+1
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4. Computation of Hodge polygons

In this section, we describe the Hodge polygons for two types of Laurent poly-
nomials: the reflection variants Gfl . in Section 4.2; and the Kloosterman variants

K’ _ in Section 4.3. Each of these is a generalization of the diagonal case which

we review in Section 4.1. We give explicit formulae for the Hodge numbers under
certain numeric restrictions on m.

Fix n € Nand m = (mq,...,m,) € N*. Let v; = m;€; where €; is the standard
basis vector of R™; in other words, v1 = (m1,0...,0), vo = (0,m2,0,...,0), etc.
Write & = (z1,...,%,).

4.1. Diagonal Case. Recall that a Laurent polynomial f € F, [z, ... ]
is diagonal if it is the sum of n monomials and dim(A(f)) = n. If f is diagonal,
each reciprocal zero of its L-function can be computed using Gauss sums, yielding
a theoretical understanding of the Newton Polygon of the diagonal case. The diag-
onal case is still interesting, however, since nontrivial combinatorial and arithmetic

problems arise in computing the Newton Polygon.
n
Let f =5 aijJ', with a; € Fg, be a diagonal, non-degenerate Laurent poly-
j=1
nomial. Let’s recall the definition of Gauss sums.

DEFINITION 4.1. Let x be the Teichmuller character of . For 0 <k < q—2,
the Gauss sum Gy (q) over Fy is defined as:

Gil(q) = — Y x(a)~F¢@.

aclFy

Gauss sums satisfy certain interpolation relations which yield formulas for the
exponential sums S} (f) [12, 16]. For example,

n
Si(f) =Y GV = (1" > [T x(a)*Gr.(9).
ijJF; kiVi+...4+knVy,=0 mod g—11i=1
Combining this with the Hasse-Davenport relation, Wan obtains an explicit for-
mula for L*(f, T)(’l)n_1 in [12, Theorem 2.1]. By applying Stickelberger’s Theo-
rem, it is possible to determine the p-adic absolute values of the reciprocal zeros
of L*(f,T )(_1)%1. In particular, the Newton Polygon is independent of the coeffi-
n
cients a; and one can suppose f = > x"5 without loss of generality.
=1
We now restrict to the special cjase of Laurent polynomials of the form f, » =
S°r @, The vertices of the polytope A := A(f, ) are {v1,...,v,,0} and the
volume is V(A) = [[j_, m;/n!. The denominator is D(A) = LCM(my,...,my).
The numeric restriction in Section 4.1.1 is that m; = m; for all 1 <¢,5 <n and in
Section 4.1.2 is that n = 2 and ged(my, ma) = 1.
4.1.1. General dimension, equilateral. For later use, we review some results
about the Hodge numbers of the diagonal polynomials

0 . .m m
Goum =21+ oy

LEMMA 4.2. The weight numbers for G, . are:

W(k)<n1+k>.

n—1
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The Hodge numbers for GY . are:
= (n\ (n—1+k—im
H = —1 v .
0= o™

ProOOF. The face of A not containing 0 is the hyperplane
1
—a1 4+ —z, =1
m m

Thus D(A) = m. The cone ¢(A) is {(a1,...,a,) € R" | a; > 0}. The weight of
a vector is given by the formula: w(#) = Lay + -+ + Lx,. The number W (k) of
points in ¢(A) with weight k/m is the number of solutions to

T+ T2+ T =k,

which yields the formula for W (k). The formula for H (k) follows from Definition
2.3. O

REMARK 4.3. The vertices of HP(A(G? ,.)) are at (0,0) and (z;,y;) where

n,m

. Uiu(l)z(?) <n+jn— im),

i=0
and
Li/m] L .
1 i(n n+4+j5—wm . n+j—1wm
w2 () (e () e ()

4.1.2. Dimension two, non-equilateral. Suppose m = (my,...,m,) € N* with

mi,...my € N pairwise relatively prime. Let Wy (k) := Wa(y, ) (k). Let M; :=
[T mi. Then

1=1,i#j

W (k) = #{(x1,...,2n) €N" | Y Mz = k}.
i=1

These restricted partition functions can be computed using Dedekind sums [2].
Restricting to the case n = 2, then

Wgﬁ(k) = #{(z1,22) € N? | moxy + myzy = k}.
Consider the generating function:

1 1 e 0
o T = D A Y A =Y W (k)

1220 931:0 kZO

In this case, Popoviciu used partial fractions to give the following formula for
W3 - (k). For z € Q, let {z} = |z| — x denote the fractional part of z.

THEOREM 4.4. [2, Section 1.4] Given my,me € N with ged(my,ms) = 1, let
myt,myt €N be such that:

(1) 1 <my* <mg and mym;* =1 mod my and

(2) 1§m2_1 < m (mdmgm;l =1 mod m;.
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k m; 'k mi 'k
wy k) = —e—2 =t L.
2 (m17m2)( ) myms { m } { My +
Using Theorem 4.4, one can explicitly compute all Hodge numbers H(k) for
x4+ x5 when ged(mq, ma) = 1. Note that the sum of the Hodge

Then

WO

2,(m1,ma)

numbers is
2mimeao

Z Ho(k) =mimy = 2V(A(f2,(m1,m2)))'

k 0,1,...,mmo —1 | mimsy m1m2 + 10 <t<mimeo | 2mime
Ho(k) W20(m1 m2)(k) 0 WO (my,ms) (t) 0
TABLE 1. Hodge Numbers for =" + a:m2 if ged(mq,me) =1

REMARK 4.5. The method for n = 2 can be generalized to higher dimensions;
complicated formulas for Wgﬁl(k) can be found in terms of Dedekind sums [2,
Theorem 1.7]. For instance, when n = 3 and my,ma,mg are pairwise relatively
prime then

k2 k 1 1 1
WO (m1,m2,m )(k) = 5
1,12, TS mimeoms 2 mimso mims moms
1 3 3 3
S (. S L ER L
12 ms M3  MoMm3  Mims  Mimq

+ Pmy (ma, m3) (k) + ©m, (M1, ms) (k) + om, (m1, m2)(k),
ahere a(0,0)(8) i= 2 S0 - ¢2)(1 - GG

2. Reflection variant Laurent polynomials. Suppose i = (mq,...,m,) €

N™ and let
Go o a=al" 4.+

The polytope AO 7 for G0 has vertices 0 and v; for 1 < i < n.
We consider reﬂectlons of AY _ across coordinate hyperplanes. After a permu-
tation of the variables, it is no loss of generality to reflect across the hyperplanes
xz;=0for 1 <i<j. Let
G oa=al b bar ™
Let Ai} - be the polytope of Gfl - For example, Giwﬁ =z 4. +a+ x;m
and A}mﬁ is the polygon in R™ with vertices v; for 1 <i < n and —v;. Then A?

has n + j vertices other than 0 and
Vol(Afwﬁ) =27 .Vol(A =2 H m;/nl.

Using the inclusion-exclusion principle, there is a recursive formula for the
weight numbers of A? _

(1) WA{Lyﬁ (k) = ZWA{;;L(]C) - WN'” (k),

n—1,(mq,..., ﬁLj ,,,,, mp)
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where the notation 7i; means that the jth variable is omitted. Using this recursive
formula, it is possible to obtain the weights for a general reflection case in terms of
the weights for the base case j = 0.

4.2.1. General dimension, equilateral. Suppose m = (m, ..., m) and write
Ghm=2""+.. +ar a7+ ;"

The polytope A, ,, = A(GY, ,,,) is obtained by reflecting AJ
planes z; = 0 for 1 <i < j, see Figure 1.

n,m across the hyper-

FIGURE 1. A?’;,m for0<j;<3

In this case, Vol(AJ, ) = 2/m™/n! and Equation (1) yields the recursive for-
mula

(2) WAﬁm(k) = 2WA¥IJL (k) — WAizll:m(k).
We obtain the following closed form for the weight numbers:

PROPOSITION 4.6. The weight numbers for G, .. are given by:

Ws (K ZQJ i ()WAg ().

PROOF. First, the formula holds when j = 0.
To show the formula satisfies the recursion in (2), we compute

2W g (K ZQ“ ( . )WAal,,L(k%
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and

1,m

W (k’)ZZQj_l_i(_l)H_l(j;l)WAo

Then QWA%—% (k‘)

;yi(l)z(j Z )

j—1

=0

-1
_ j— z+1) 1+1
ZQ ( 'L )WA?l(i+l),m (k)

— ;21—2'(—1)1@ -

W

n—1,m

Wao

n— LTVL

o

(k) equals

)+i2ji(1)i<g:

j—1

)

1

1) WA’?}_*i,’r!L (k)

1

)W 0

<Z _ i)) Wao (k) +(=1)1Wao__

EXAMPLE 4.7. Weight and Hodge numbers for G 2.m With 0 < j < 2.
1 m—1 m m+1 2m —1 2m
W(k)| 1|2 m m+1 m+2 2m | 2m+1
H(k)|[1]2 m -1 -2... 0 0
TABLE 2 Hodge Numbers for GY,, = +ai
0|1 m—1 m m+1 2m —1 2m
Wk)|I1]3 2m—1|2m+1|2m+3 dm —1 | 4m+1
H(k)[[1]3 2m—-1{2m—1|2m—3 1 0
TABLE 3. Hodge Numbers for Gj ,, = 27" + 2 + 7™
01 m—1 m m+1 2m —1 2m
W(k)||1]4 dm—1) | 4(m+1) | 4(m +3) 42m —1) | 8m
H(k) || 1]4 dm—1) | 4m—2 |4(m—1) 4 1

TABLE 4. Hodge Numbers for G% m

xl + :I:Q + xl —m + x—?n

oK)
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4.2.2. Dimension two, non-equilateral. Suppose n = 2 and ged(my, mg) = 1.
Let W (k) := Wy, (k) for 0 < j < 2. Then WO9(k) can be computed using

2,(my1,m2)
Theorem 4.4. Equation (1) gives recursive formulae Wi(k) = 2WO9(k) — 1 and
W2(k) = 2Wl(k) — 2 = 4WO(k) — 4.
The Hodge numbers are computed in Tables 5 and 6. Note that the sum of the
Hodge numbers in Table 5 is

2m1m2
> HY(k) =2mimy = 2V(AL (10 )
k=0
and in Table 6 is
2m1m2
> H(k) =4mimy =2V(A3 (1 n))-
k=0
k 0,1,....mimo —1 | mime | mime + 0 <t <mims | 2mims
HI(k) 2WO(k) — 1 1 3—2W0(1) 0
TABLE 5. Hodge Numbers for G5 (,,, .., = 1" + 25" + 2™
k 0,1,....mimo —1 | mims | mims + 0 <t <mims | 2mims
H2(k) AWO(k) —4 4 8 —4WO(t) 0

TABLE 6. Hodge Numbers for G2 (mayma) = S22 (= + xz; ™)

1 =1\"1

4.3. Kloosterman variant Laurent polynomials. Fixn € N, m = (my,...,m,) €
N and 1 < j < n. In this section, let A denote the polytope of the Laurent poly-
nomial

K =™ a4 () Tk

n,m

m

"

(715 71)

FIGURE 2. The polytope A(Ki(m,m))
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The vertices of A are —Tj =— 25:1 e;=(-1,...,—1,0,...,0) and vy, ..., v,.
The cone is ¢(A) = {(z1,...,2n) ER" |2; >0, j+1<i<n}.
The vectors with initial point ,fj along the edges of A are, for 1 </ <mn,

J
Wy = E ej + myey.
i=1

The volume of the polytope A = A(Ki =) is V(A) = L det(wy, ..., w,). Write s
for the kth symmetric product in mq,...,m;. Then

Jj—1 n
V(AK] ) =[s;+ Y _(=1)'isj] [ ma/nl.
i=1 i=j+1
The denominator of A is D = LCM(my, ..., my,).
LEMMA 4.8. (1) Suppose 1 < £ < j. Let &y be the face of A containing
the vertices —Tj and v; for 1 <i<n andi #{. Then §; is contained in

the hyperplane:
Z ffEl 1 + Z xz = 1.
i#L i#L
(2) The other faces of A are contained in the hyperplanes Y ;- mibxl =1 and
;=0 forj+1<i<n.
4.3.1. General dimension, equilateral case. Suppose m = (mq,...,my) and
write K, = K

PROPOSITION 4.9. For 0 < k < nm, the weight numbers for Kﬁ;’m are:
n—1+k J ) " (k—tm+(n—j—1 .
ORI G ED LT ol ") bt

where 3(j,8) = (i) unless j = s = n in which case B(n,n) =0 and «(j, k) =0
unless 7 =n and 0 < k = 0 mod m in which case a(j, k) = 1.

PrOOF. The lattice points {(z1,...,zn) € Z™ | x; > 0} have the same weight

—1+k
as in the diagonal case. This contributes (n —; to W(k).
n

Thus it suffices to consider the weight of Z = (x1,...,2,) when at least one
coordinate is negative. By symmetry, it suffices to first focus on the points & closest
to the face § of A containing the vertices —Ij and v; for 2 < ¢ < n. This face is
contained in the hyperplane

72 Lﬂ—l)xlzl.

These points satisfy the condltlons: 1 <0and x; >z for 2<i<j,and x; >0
forj+1<i¢<n.

The condition k£ < nm implies that 1 € {—1,...,—n}. Fix - € {-1,...,—n}
and let ;1 = —/. First suppose x; > x; for all 2 < i < j. The smallest weight k
possible for this set of points is

—=DU=D+(m+j-1E) + (n—j)0) =ml+j—1,
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occurring when z; = —({ — 1) for 2 < i < jand z; =0 for j+1<i <n. To
increase this value to k, one needs to add a combined total of kK — (mé + j — 1) to
{z; |i>2}. For 1 < ¢ <n, there are

(k—(m€+j—1)+(n—2)> _ (k—m€+n—j—1>

n—2 n—2
ways to do this, which is the number of points of weight k with z; = —¢, z; > 1
for2<i<jandz; >0for j+1<i<n.
Next, let 2 < s < j and suppose #{i < j | z; = —¢} = s. Recall that
—¢ e {-1,...,—n}. (This is the case where & is equidistant to more than one face
of A containing —Tj.) For ease of notation, suppose x; = —f for 1 < i < s. Recall
that —¢ € {-1,...,—n}, and z; > —({ —1) for s+ 1 < ¢ < j and x; > 0 for

j+ 1 <i<n. The smallest weight k possible for this set of points is
—(f=s)(t=1)=(s=1() + (m~+j—1)() +0(n—j)=ml+j—s,

occurring when z; = —({ — 1) for s+1<i<jand z; =0for j+1<i <n. To
increase this value to k, one needs to add a combined total of kK — (mf + j — s) to
{z;|i> s+ 1}. Thus, for 1 < ¢ < n, outside the case s = j = n, there are

(kz(m€+js)+(nsl)> _ <km€+nj1)

n—s—1 n—1—s

ways to do this, which is the number of points of weight & with x; = —ffor 1 <i < s,
and x; > —ffor s+ 1 <4 <j, and z; >0 for j+1 <i <n. Let Cs(k) denote the
set of lattice points & of weight k such that #{i | z; = min(xy,...,2,)} = s. The
conclusion is that, outside the case s = j = n,

N (k—ml+n—7j—1
sem = ()2 ()

If s = j = n, none of the sets C include the points & which are a multiple of
—Tj. There is one such point of weight m¢ for each 1 < £ < n. This contributes
one point of weight k only when 0 < & = 0 mod m. This is accounted for by the
definitions of 3(j, s) and «(j, k). O

EXAMPLE 4.10. Let n = 2. The difference between the number of lattice points
of weight k/m for K%}m and Gg’m is zero if 0 < k < m, is one if k = m, is two if

m < k < 2m, and is three if k = 2m.

Oj1]...]m-=1 m m+1l | m+2|...|2m—-1 2m
WeE)|(|112]... m |m+2|m+4|m+5|...]2m+2|2m+4
H(k) ||1]2 m m m |m-—1 . 2 1

TaBLE 7. Hodge Numbers for K3, = " + x5" + (z122) "

EXAMPLE 4.11. Let n = 3. Table 8 shows the difference 7(k, m) between the
number of lattice points of weight k/m for Kgym and Ggym.
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k O0<k<ml|k=m|k=m+e|k=2m|k=2m+¢€| k=3m

0<e<m 0<e<m

T(k, m) 0 1 3e 3m—+1| 3m+6e |9Im+1
TaBLE 8. The difference between Wyes (k) and WGgm(k;)

4.3.2. Dimension two, non-equilateral case. Let n = 2 and ged(my, mg) = 1.
Recall that one can explicitly compute the weight number for the diagonal polytope
" + 25" from Theorem 4.4 and Table 1. In this section, we denote that weight
number by d(k).

Let A? denote the polytope of K22,(m1,m2) = " + 25" + (z122) ! It has
vertices at (mq,0), (0,m3), and (—1,—1) and denominator D = mymsy. Similarly,
let A' denote the polytope of K, (,, . =a{" + 25" + (21)~" which has vertices
at (mq,0), (0, mg) and (—1,0) and denominator D = mjms.

We compute the weight numbers W (k) for KJ for j =1,2.

2,(m1,mz2)

PROPOSITION 4.12. Let d(k) denote the weight number for the diagonal polytope

" 4+ x5, For 0 <k <2mims and 1 < j < 2, the weight numbers for Ki(ml’mz)
are

1+J  ifk=2mims,
W;(k) =d(k)+ {1 if myma < k < 2myimse and ged(k, mimsg) > 1,
0 otherwise.

PrOOF. The contribution to W;(k) — d(k) comes from points (z1,z2) with at
least one negative coordinate. Then x1,x2 > —2 since k < 2mims.

When j = 2, there are 2 + my + ms new lattice points having at least one
negative coordinate: (—1,—1) with weight 1, (—2,—2) with weight 2, (—1,¢) for
0 <{¢<mgand (¢,—1) for 0 < ¢ < my. The equation of the face 6 through the
vertices (—1,—1) and (mq,0) is %xl - mnlq—ﬁ:lscg = 1. Using this, the weight of
(¢,—1) is k/mymg with k = myma + (£ + 1)mg. Similarly, the weight of (—1,¢) is
k/mimg with k = mims + (€ 4+ 1)my.

When j = 1, there are exactly mo + 2 new lattice points having at least one
negative coordinate: (—1,0) with weight 1, (—2,0) with weight 2, and the points
(—1,¢) for 1 < £ < mgy. Using the equation —z + 7%2332 =1 of the corresponding
face d, the weight of (—1,¢) is k/myms with k = mymg + m4£. O
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