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Abstract. We study the p-adic valuations of roots of L-functions associ-
ated with certain families of exponential sums of Laurent polynomials f ∈
Fq [x±1

1 , . . . , x±1
n ]. The families we consider are reflection and Kloosterman

variants of diagonal polynomials. Using decomposition theorems of Wan, we
determine the Newton and Hodge polygons of a non-degenerate Laurent poly-
nomial in one of these families.

1. Introduction

Let q be a power of a prime p and Fq be the finite field of q elements. Let ζp ∈ C
be a fixed primitive pth root of unity. For k ∈ N, consider the trace homomorphism
Trk : Fqk → Fp. Given a Laurent polynomial f(x1, . . . , xn) ∈ Fq[x±1

1 , . . . , x±1
n ], its

k-th exponential sum is

S∗k(f) =
∑

xi∈F∗
qk

ζTrkf(x1,...,xn)
p ∈ Q(ζp).

The L-function of the exponential sum of f is defined as

L∗(f, T ) = exp

( ∞∑
k=1

S∗k(f)
T k

k

)
.

A theorem of Dwork-Bombieri-Grothendieck states that

L∗(f, T ) =
∏d1

i=1(1− αiT )∏d2
j=1(1− βjT )

,

where αi, βj are non-zero algebraic integers for 1 ≤ i ≤ d1 and 1 ≤ j ≤ d2. Thus

S∗k(f) = βk
1 + · · ·+ βk

d2
− αk

1 − · · · − αk
d1

.
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The values d1 and d2 depend on geometric and cohomological properties of the
motive defined by f . A theorem of Deligne [5] implies that the complex absolute
values satisfy |αi| = qui/2 and |βj | = qvj/2 for some weights ui, vj ∈ Z ∩ [0, 2n].
Also, for each prime ` 6= p, the values αi, βj are `-adic units.

There are many open questions about the p-adic valuation of the roots and
poles of L∗(f, T ). Write |αi|p = q−ri , |βj |p = q−sj , where the p-adic valuation
is normalized such that |q|p = 1/q. Deligne’s integrality theorem implies that
ri, sj ∈ Q ∩ [0, n]. If f is diagonal, then αi, βj are roots of products of Gauss
sums and the slopes ri, sj can be determined using Stickelberger’s theorem. In this
paper, we use Wan’s decomposition theory [12] to study two families of Laurent
polynomials that are not diagonal. We briefly explain the results, referring to
Section 2 for definitions and background material.

Given a Laurent polynomial f , one can define its Newton polytope ∆ which
is an n-dimensional integral convex polyhedron in Rn determined by the dominant
terms of f . Using ∆, one can define a non-degeneracy condition on f . Also, one
can assign a weight function to lattice points of Rn. One can associate to ∆ its
Hodge numbers and Hodge polygon HP(∆), a lower convex polygon in R2 starting
at the origin, by counting the number of lattice points of a given weight.

If f is non-degenerate and ∆ is general enough, then L∗(f, T )(−1)n−1
is a poly-

nomial of degree n!V (∆) by results of Adolphson and Sperber [1]. In this case,
information about the p-adic valuations of the roots of L∗(f, T )(−1)n−1

is encapsu-
lated in the Newton polygon NP(f), another lower convex polygon in R2 starting at
the origin. Grothendieck’s specialization theorem implies that there exists a generic
Newton polygon GNP(∆, Fp) := inff NP(f) where f ranges over all non-degenerate
Laurent polynomials over Fp with Newton polytope ∆. If f is nondegenerate and
dim(∆) = n, then by [1], the endpoints of the three polygons meet and

NP(f) ≥ GNP(∆, Fp) ≥ HP(∆).

There are important theorems and open questions about when NP(f) = HP(∆)
or GNP(∆, Fp) = HP(∆), e.g., [1], [10]. In this paper, we consider two families of
Laurent polynomials f that are deformations of diagonal polynomials. In Section
3, we apply Wan’s decomposition theory [12] to determine congruence conditions
on p for which NP(f) = HP(∆). In Section 4, we compute the Hodge numbers of
HP(f) under certain numeric restrictions.

Here are the two families we consider. Fix ~m = (m1, . . . ,mn) ∈ Nn and let
fn,~m = xm1

1 + · · ·+ xmn
n . For 1 ≤ j ≤ n, define

Gj
n,~m = fn,~m + x−m1

1 + · · ·+ x
−mj

j ,

and
Kj

n,~m = fn,~m + (x1 · · ·xj)−1.

An effective lower bound for the Newton polygon for NP(Gj
n,m) is given by

Hodge-Stickelberger polygon as described in [4, Theorem 6.4], see also further re-
sults in [3]. We say that f ∈ Fq[x±1

1 , . . . , x±1
n ] is a reflection variant of fn,~m if

∆(f) = ∆(Gj
n,~m) for some 1 ≤ j ≤ n. We say that f ∈ Fq[x±1

1 , . . . , x±1
n ] is a

Kloosterman variant of fn,~m if ∆(f) = ∆(Kj
n,~m) for some 1 ≤ j ≤ n.

Our motivation to study this problem came from the information that it yields
about Newton polygons of varieties defined over Fq. Consider the affine toric Artin-
Schreier variety Vf in An+1 defined by the affine equation yp − y = f(x1, . . . xn)
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where f(x1, . . . , xn) ∈ Fq[x±1
1 , . . . , x±1

n ] as above. The p-adic Newton polygons of
L(f/Fq, T ) and L(Vf/Fq, T ) are the same after scaling by a factor of p−1, denoted
by NP(Vf ) = (p− 1)NP(f).

Further decomposition methods for Newton polygons are developed in [9].
Other related work can be found in [6], [7].

2. Background material

Consider a Laurent polynomial f ∈ Fq[x±1
1 , . . . , x±1

n ]. Then f is of the form
f =

∑J
j=1 aj~x

Vj where aj 6= 0, Vj = (v1,j , . . . , vn,j) ∈ Zn, and ~xVj := x
v1,j

1 . . . x
vn,j
n

for 1 ≤ j ≤ J .

2.1. The Hodge polygon. The Newton polytope ∆(f) of f is the convex
polygon generated by the origin ~0 and the lattice points Vj . Note that ∆ is an
integral polytope, namely its vertices have integral coordinates. Without loss of
generality, we assume that dim(∆) = n. Let V (∆) denote the volume of ∆. If δ is
a subset of ∆(f), let fδ =

∑
Vj∈δ

ajx
Vj .

Definition 2.1. A Laurent polynomial f is non-degenerate with respect to ∆
and p if for each closed face δ of ∆(f) not containing ~0, the partial derivatives
{∂fδ

∂x1
, · · · , ∂fδ

∂xn
} have no common zeros with x1 · · ·xn 6= 0 over Fq.

Let A(∆) denote the space of all Laurent polynomials with Newton polytope
∆, parametrized by their (non-vertex) coefficients (aj). It is a smooth irreducible
affine variety defined over Fp. The subspace Mp(∆) ⊂ A(∆) of all nondegenerate
Laurent polynomials is the complement of a discriminant locus in A(∆). It is known
that Mp(∆) is Zariski dense and open in A(∆) for each prime p; in other words, a
generic Laurent polynomial with Newton polytope ∆ is non-degenerate. We assume
throughout that f ∈Mp(∆).

Definition 2.2. (1) The cone C(∆) =
∑

v∈∆ vR≥0 of ∆ is the monoid
generated by vectors in ∆.

(2) If δ is a codimension one face of ∆, with equation
∑n

i=1 cixi = 1 for
ci ∈ Q, the denominator D(δ) is min{d | dci ∈ Z, 1 ≤ i ≤ n}.

(3) The denominator D(∆) is the least common multiple of D(δ) for all codi-
mension one faces δ of ∆ not containing ~0.

(4) If u = (u1, . . . , un) ∈ Qn, the weight w(u) is the smallest c ∈ Q≥0 such
that u ∈ c∆ := {c~x | ~x ∈ ∆}. (If there is no such rational number c, then
w(u) = ∞).

The weight w(u) is finite if and only if u ∈ C(∆). Here is an equivalent way to
define the weight. If u ∈ C(∆), then the ray uR≥0 intersects a codimension one face
of ∆ not containing ~0. If

∑n
i=1 cixi = 1 is the equation of δ, then w(u) =

∑n
i=1 ciui.

Thus w(u) ∈ 1
D(δ)Z

≥0.
We now define the Hodge numbers by counting the number of lattice points of

a given weight k/D.

Definition 2.3. If k ∈ Z≥0,
(1) let W∆(k) = #{u ∈ Zn | w(u) = k

D(∆)} be the number of lattice points in
Zn with weight k/D(∆).
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(2) let H∆(k) =
∑n

i=0(−1)i

(
n

i

)
W∆(k − iD(∆)) (the Hodge number).

For example, when n = 2, H∆(k) = W∆(k) − 2W∆(k − m) + W∆(k − 2m).
The Hodge number H∆(k) is the number of lattice points of weight k/D(∆) in a
fundamental domain of ∆ which corresponds to a basis of the p-adic cohomology
used to compute the L-polynomial. Therefore, H∆(k) ≥ 0 if k ≥ 0 and H∆(k) = 0
if k > nD(∆). Furthermore,

nD(∆)∑
k=0

H∆(k) = n!V (∆).

Definition 2.4. The Hodge polygon HP(∆) is the lower convex polygon in
R2 that starts at ~0 and has a side of slope k/D with horizontal length H∆(k) for
0 ≤ k ≤ nD. In other words, it is the polygon with vertices at the origin and, for
0 ≤ j ≤ nD, at the point(

j∑
k=0

H∆(k),
1

D(∆)

j∑
k=0

kH∆(k)

)
.

2.2. Newton polygon. When f is nondegenerate with respect to ∆(f), then
L∗(f, T )(−1)n−1

is a polynomial of degree N = n!V (∆) [1, Corollary 3.14]. Write
L∗(f, T )(−1)n−1

= 1 + C1T + · · · + CNTN with Ci ∈ Z[ζp]. For C ∈ Z[ζp], write
ordq(C) = ordp(C)/logp(q) where |C|p = p−ordp(C). The p-adic Newton polygon
NP(f) of f is the lower convex hull in R2 of the points (i, ordq(Ci)) for 0 ≤ i ≤ N .
The Newton polygon NP(f) has a segment with slope α and horizontal length `α if
and only if L∗(f, T )(−1)n−1

has a root of p-adic valuation ri = α with multiplicity
`α. Results about the slopes of the Newton polygon of f yield results about the
p-adic Riemann hypothesis on the distribution of the roots of L∗(f, T )(−1)n−1

in
Qp.

By Grothendieck’s specialization theorem, for each prime p, there exists a
generic Newton polygon GNP(∆, Fp) := inff NP(f) where f ranges over all f ∈
Mp(∆) defined over Fp.

Theorem 2.5. [1, Corollary 3.11] If p is prime and if f ∈ Mp(∆), then the
endpoints of the three polygons meet and

NP(f) ≥ GNP(∆; Fp) ≥ HP(∆).

It is natural to ask what the slopes of GNP(∆, p) are and how they vary with
p. In particular, it is natural to ask for which ∆ and p the generic Newton polygon
equals the Hodge polygon. Also, one would like to understand when the Newton
polygon of f equals the Hodge polygon. In this context, Wan proved:

Theorem 2.6. [10, Theorem 3] There is a computable integer D∗(∆) ≡ 0 mod
D(∆) such that if p ≡ 1 mod D∗(∆) then GNP(∆, Fp) = HP(∆).

A non-degenerate Laurent polynomial f is ordinary if NP(f) = HP(∆(f)).
In [12, Theorem 1.8], Wan gives conditions under which NP(f) = HP(f) for all
f ∈ Mp(∆), in other words, for which all non-degenerate f with ∆(f) = ∆ are
ordinary.
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The proofs of these results are quite deep. Wan constructs an overconvergent
σ-module E(∆) of rank n!V(∆) on Mp(∆) such that the L-function of any non-
degenerate f with Newton polytope ∆ can be computed on the fiber E(∆)f of E(∆)
at the corresponding point of Mp(∆), i.e.,

L∗(f, T )(−1)n−1
= det(I − TFrobf |E(∆)f ).

The Newton polygon of L∗(f, T )(−1)n−1
can be computed from the “linear algebra

data” E(∆)f . A general theorem shows that for a family of F -crystals [8] or σ-
modules [11], the Newton polygon goes up under specialization. This implies that
there is a Zariski dense and open subspace U ⊂Mp(∆) such that for every f ∈ U ,
the Newton polygon of L∗(f, T )(−1)n−1

equals GNP(∆, p).

3. Newton polygons of non-diagonal Laurent polynomials

In this section, we apply Wan’s decomposition theory to study two families
of non-diagonal Laurent polynomials. A Laurent polynomial f is diagonal if it is
the sum of n monomials and n = dim(∆(f)). We first survey some results about
the diagonal case from [12, Section 2]. Suppose f =

∑n
j=1 aj~x

Vj where aj 6= 0,
Vj = (v1,j , . . . , vn,j) ∈ Zn, and ~xVj := x

v1,j

1 . . . x
vn,j
n for 1 ≤ j ≤ n. Let ∆ = ∆(f)

and suppose dim(∆) = n. We will need the following definition.

Definition 3.1. The polytope ∆ is indecomposable if the (n− 1)-dimensional
face generated by V1, . . . , Vn contains no lattice points other than its vertices.

Linear algebra techniques are useful for studying the Hodge polygon in the
diagonal case. Let M be the non-singular n × n matrix M = (V1, . . . , Vn). The
Laurent polynomial f is non-degenerate with respect to ∆ and p if and only if
p - det(M). Integral lattice points ~u of the fundamental domain

Γ = RV1 + · · ·+ RVn mod ZV1 + · · ·+ ZVn

are in bijection with the set S(∆) of solutions ~r = (r1, . . . , rn) of M~rT ≡ 0 mod 1
with rj ∈ Q∩ [0, 1). This bijection preserves size in that the weight w(~u) equals the
norm |~r| =

∑n
j=1 ri. Now S(∆) is a finite abelian group under addition modulo 1.

Let D∗ be its largest invariant factor. Consider the multiplication-by-p automor-
phism [p] on S(∆), denoted ~r → {p~r}. The automorphism [p] is weight-preserving
if p ≡ 1 mod D∗.

Using Gauss sums and the Stickelberger theorem, one proves that the p-adic
valuation of a root α of L∗(f/Fq, T )(−1)n−1

can be expressed in terms of the av-
erage norm of an element ~r ∈ S(∆) under [p] [12, Corollary 2.3]. Specifically, the
horizontal length of the slope s portion of the Newton polygon equals the number
of elements r ∈ S(∆) whose average norm is s [12, Corollary 2.4]. This yields the
following.

Theorem 3.2. [12, Section 2.3] Let ∆ be a simplex containing ~0 with dim(∆) =
n. Then

(1) NP(f) = HP(∆) for all f ∈ Mp(∆) supported only on the interior and
vertices of ∆ if p ≡ 1 mod D∗.

(2) GNP(∆, Fp) = HP(∆) if p ≡ 1 mod D∗.

For the main result, we need to strengthen Theorem 3.2 in a certain case.
Suppose ~m = (m1, . . . ,mn) ∈ Nn and fn,~m = xm1

1 + · · · + xmn
n . Suppose f is a
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Laurent polynomial such that ∆(f) = ∆(fn,~m). Notice that f is non-degenerate
with respect to ∆ and p if and only if p - D∗ = LCM(m1, . . . mn).

Lemma 3.3. Let ∆ = ∆(fn,~m) with fn,~m = xm1
1 + · · ·+ xmn

n .
(1) Suppose f ∈ Mp(∆) is supported only on the interior and vertices of ∆.

Then NP(f) = HP(∆) if and only if p ≡ 1 mod D∗.
(2) If m1, . . . ,mn are pairwise relatively prime, then GNP(∆, Fp) = HP(∆)

if and only if p ≡ 1 mod D∗.

Proof. (1) The sufficiency statement follows from Theorem 3.2. For
the other direction, if f is ordinary then each boundary restriction xmi

i

is ordinary by Wan’s boundary decomposition theorem [10, Section 5].
Hence p ≡ 1 mod mi for 1 ≤ i ≤ n which implies p ≡ 1 mod D∗.

(2) The polytope ∆ is indecomposable if and only if m1, . . . ,mn are pairwise
relatively prime. Then the statement follows from part (1) and Theorem
3.2.

�

The facial decomposition theory of Wan allows one to study the Newton poly-
gon of a non-diagonal Laurent polynomial by dividing ∆ into smaller diagonal
polytopes.

Theorem 3.4. [10, Theorem 8] Suppose f is non-degenerate and dim(∆(f)) =
n. Let δ1, . . . , δh be the codimension 1 faces of ∆(f) which do not contain ~0. Then
f is ordinary if and only if fδi is ordinary for each i.

As illustrations of Wan’s facial decomposition theory, we study two deformation
families of basic diagonal polynomials.

Definition 3.5. Fix ~m = (m1, . . . ,mn) ∈ Nn and let fn,~m = xm1
1 + · · ·+ xmn

n .
A Laurent polynomial f ∈ Fq[x±1

1 , . . . , x±1
n ] is:

(1) a reflection variant of fn,~m if ∆(f) = ∆(Gj
n,~m) for some 1 ≤ j ≤ n where

Gj
n,~m = fn,~m + x−m1

1 + · · ·+ x
−mj

j .

(2) a Kloosterman variant of fn,~m if ∆(f) = ∆(Kj
n,~m) for some 1 ≤ j ≤ n

where
Kj

n,~m = fn,~m + (x1 · · ·xj)−1.

If n = 2 and m1 = m2 = 1, then K2
2,(1,1) is the classical Kloosterman polyno-

mial, and it is well-known in this case that the Newton polygon has slopes 0 and 1
each with multiplicity one. Pictures and basic facts about the polytopes for Gj

n,~m

and Kj
n,~m can be found in Section 4. Here is our main result.

Corollary 3.6. Suppose f is a reflection variant or a Kloosterman variant
of fn,~m for some 1 ≤ j ≤ n. Write ∆ = ∆(Gj

n,~m) or ∆ = ∆(Kj
n,~m) as appropriate.

(1) Then f is non-degenerate if and only if p - D∗ = LCM(m1, . . . ,mn).
(2) NP(f) = HP(∆) for all f ∈ Mp(∆) supported only on the interior and

vertices of ∆ if and only if p ≡ 1 mod D∗.
(3) If m1, . . . ,mn are pairwise relatively prime, then GNP(∆, Fp) = HP(∆)

if and only if p ≡ 1 mod D∗.
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Proof. This proof follows essentially from Lemma 3.3. The proof of each part
relies on the decomposition of ∆ into different faces. By [10], one can measure
whether f is non-degenerate, whether the generic Newton polygon and the Hodge
polygon coincide, and whether the Newton polygon and the Hodge polygon coincide
by seeing whether these properties are true for the restriction fδ of f to each face
δ of ∆.

For the reflection case, after a change of variables of the form xi 7→ x±1
i , one

can restrict to the face of fn,~m = G0
n,~m not containing ~0. The result then follows

from Lemma 3.3.
For the Kloosterman case, there is a unique face not containing−~1j = −

∑j
i=1 ei =

(−1, . . . ,−1, 0, . . . , 0). It is the same face as in Lemma 3.3; in particular, D∗ =
LCM(m1, . . . ,mn) for this face and its vertices are the only lattice points with
integral coordinates on this face if and only if m1, . . . ,mn are pairwise relatively
prime.

There are j other faces of ∆ not containing ~0. We consider the face δ through
−~1j and vi = miei for 2 ≤ i ≤ n. The argument for the other faces is similar. By
Lemma 4.8, δ is contained in the hyperplane

1
m2

x2 + · · · 1
mn

xn −
m + n− 1

m
x1 = 1.

The integral lattice points ~u of the fundamental domain

Γ = R(−~1j) + Rv2 + · · ·+ Rvn mod Z(−~1j) + Zv2 + · · ·+ Zvn

are the set

{(0, u2, . . . , un) ∈ Zn | 0 ≤ ui < mi}.

Thus Γ ' ×n
i=2Z/mi and D∗

1 = LCM(m2, . . . ,mn) is the largest invariant factor
of Γ. The multiplication-by-p map on Γ is thus weight-preserving if p ≡ 1 mod
D∗

1 . Since D∗
1 divides D∗, the face δ places no new constraints on the condition

GNP(∆, Fp) = HP(∆). Furthermore, if δ does not contain ~0, then there are no
lattice points on δ other than the vertices. Thus the face δ places no new constraints
on the condition NP(f) = HP(∆) for all f ∈Mp(∆).

Conversely, if f is ordinary then its restriction to each face fδ is ordinary. Then
p ≡ 1 mod D∗ by Lemma 3.3. �

Remark 3.7. By [1, Corollary 3.14], if f is non-degenerate, then L∗(f, T )(−1)n−1

is a polynomial of degree n!V (∆). In the reflection case,

V (∆(Gj
n,~m)) = 2jV (G0

n,~m) = 2j
n∏

j=1

mj/n!.

For the Kloosterman case, write sk for the kth symmetric product in m1, . . . ,mj.
For example, sj =

∏j
i=1 mi. Then, see Lemma 4.8,

V (∆(Kj
n,~m)) =

(
sj +

j−1∑
i=1

(−1)iisj−1−i

)
n∏

i=j+1

mi/n!.
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4. Computation of Hodge polygons

In this section, we describe the Hodge polygons for two types of Laurent poly-
nomials: the reflection variants Gj

n,~m in Section 4.2; and the Kloosterman variants
Kj

n,~m in Section 4.3. Each of these is a generalization of the diagonal case which
we review in Section 4.1. We give explicit formulae for the Hodge numbers under
certain numeric restrictions on ~m.

Fix n ∈ N and ~m = (m1, . . . ,mn) ∈ Nn. Let vi = mi~ei where ~ei is the standard
basis vector of Rn; in other words, v1 = (m1, 0 . . . , 0), v2 = (0,m2, 0, . . . , 0), etc.
Write ~x = (x1, . . . , xn).

4.1. Diagonal Case. Recall that a Laurent polynomial f ∈ Fq[x±1
1 , . . . , x±1

n ]
is diagonal if it is the sum of n monomials and dim(∆(f)) = n. If f is diagonal,
each reciprocal zero of its L-function can be computed using Gauss sums, yielding
a theoretical understanding of the Newton Polygon of the diagonal case. The diag-
onal case is still interesting, however, since nontrivial combinatorial and arithmetic
problems arise in computing the Newton Polygon.

Let f =
n∑

j=1

ajx
Vj , with aj ∈ Fq, be a diagonal, non-degenerate Laurent poly-

nomial. Let’s recall the definition of Gauss sums.

Definition 4.1. Let χ be the Teichmuller character of F∗q . For 0 ≤ k ≤ q− 2,
the Gauss sum Gk(q) over Fq is defined as:

Gk(q) = −
∑
a∈F∗q

χ(a)−kζTr(a)
p .

Gauss sums satisfy certain interpolation relations which yield formulas for the
exponential sums S∗k(f) [12, 16]. For example,

S∗1 (f) =
∑

xj∈F∗q

ζTr(f(x))
p = (−1)n

∑
k1V1+...+knVn≡0 mod q−1

n∏
i=1

χ(ai)kGki(q).

Combining this with the Hasse-Davenport relation, Wan obtains an explicit for-
mula for L∗(f, T )(−1)n−1

in [12, Theorem 2.1]. By applying Stickelberger’s Theo-
rem, it is possible to determine the p-adic absolute values of the reciprocal zeros
of L∗(f, T )(−1)n−1

. In particular, the Newton Polygon is independent of the coeffi-

cients aj and one can suppose f =
n∑

j=1

xVj without loss of generality.

We now restrict to the special case of Laurent polynomials of the form fn,~m =∑n
i=1 xmi

i . The vertices of the polytope ∆ := ∆(fn,~m) are {v1, . . . , vn,~0} and the
volume is V (∆) =

∏n
j=1 mj/n!. The denominator is D(∆) = LCM(m1, . . . ,mn).

The numeric restriction in Section 4.1.1 is that mi = mj for all 1 ≤ i, j ≤ n and in
Section 4.1.2 is that n = 2 and gcd(m1,m2) = 1.

4.1.1. General dimension, equilateral. For later use, we review some results
about the Hodge numbers of the diagonal polynomials

G0
n,m = xm

1 + · · ·+ xm
n .

Lemma 4.2. The weight numbers for G0
n,m are:

W (k) =
(

n− 1 + k

n− 1

)
.
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The Hodge numbers for G0
n,m are:

H(k) =
n∑

i=0

(−1)i

(
n

i

)(
n− 1 + k − im

n− 1

)
.

Proof. The face of ∆ not containing ~0 is the hyperplane
1
m

x1 + · · ·+ 1
m

xn = 1.

Thus D(∆) = m. The cone c(∆) is {(a1, . . . , an) ∈ Rn | ai ≥ 0}. The weight of
a vector is given by the formula: w(~x) = 1

mx1 + · · ·+ 1
mxn. The number W (k) of

points in c(∆) with weight k/m is the number of solutions to

x1 + x2 + · · ·+ xn = k,

which yields the formula for W (k). The formula for H(k) follows from Definition
2.3. �

Remark 4.3. The vertices of HP(∆(G0
n,m)) are at (0, 0) and (xj , yj) where

xj =
bj/mc∑
i=0

(−1)i

(
n

i

)(
n + j − im

n

)
,

and

yj =
1
m

bj/mc∑
i=0

(−1)i

(
n

i

)(
n ·
(

n + j − im

n + 1

)
+ im ·

(
n + j − im

n

))
.

4.1.2. Dimension two, non-equilateral. Suppose ~m = (m1, . . . ,mn) ∈ Nn with
m1, . . . mn ∈ N pairwise relatively prime. Let W 0

n,~m(k) := W∆(fn, ~m)(k). Let Mj :=
n∏

i=1,i 6=j

mi. Then

W 0
n,~m(k) = #{(x1, . . . , xn) ∈ Nn |

n∑
i=1

Mixi = k}.

These restricted partition functions can be computed using Dedekind sums [2].
Restricting to the case n = 2, then

W 0
2,~m(k) = #{(x1, x2) ∈ N2 | m2x1 + m1x2 = k}.

Consider the generating function:

1
1− zm1

1
1− zm2

=
∞∑

x2=0

zm1x2

∞∑
x1=0

zm2x1 =
∑
k≥0

W 0
2,~m(k)zk.

In this case, Popoviciu used partial fractions to give the following formula for
W 0

2,~m(k). For x ∈ Q, let {x} = bxc − x denote the fractional part of x.

Theorem 4.4. [2, Section 1.4] Given m1,m2 ∈ N with gcd(m1,m2) = 1, let
m−1

1 ,m−1
2 ∈ N be such that:

(1) 1 ≤ m−1
1 < m2 and m1m

−1
1 ≡ 1 mod m2 and

(2) 1 ≤ m−1
2 < m1 and m2m

−1
2 ≡ 1 mod m1.
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Then

W 0
2,(m1,m2)

(k) =
k

m1m2
−
{

m−1
2 k

m1

}
−
{

m−1
1 k

m2

}
+ 1.

Using Theorem 4.4, one can explicitly compute all Hodge numbers H0(k) for
W 0

2,(m1,m2)
= xm1

1 + xm2
2 when gcd(m1,m2) = 1. Note that the sum of the Hodge

numbers is
2m1m2∑

k=0

H0(k) = m1m1 = 2V (∆(f2,(m1,m2))).

k 0, 1, . . . ,m1m2 − 1 m1m2 m1m2 + t; 0 < t < m1m2 2m1m2

H0(k) W 0
2,(m1,m2)

(k) 0 1−W 0
2,(m1,m2)

(t) 0
Table 1. Hodge Numbers for xm1

1 + xm2
2 if gcd(m1,m2) = 1

Remark 4.5. The method for n = 2 can be generalized to higher dimensions;
complicated formulas for W 0

n,~m(k) can be found in terms of Dedekind sums [2,
Theorem 1.7]. For instance, when n = 3 and m1,m2,m3 are pairwise relatively
prime then

W 0
3,(m1,m2,m3)

(k) =
k2

m1m2m3
+

k

2

(
1

m1m2
+

1
m1m3

+
1

m2m3

)
+

1
12

(
3

m1
+

3
m2

+
3

m3
+

m1

m2m3
+

m2

m1m3
+

m3

m1m1

)
+ ϕm1(m2,m3)(k) + ϕm2(m1,m3)(k) + ϕm3(m1,m2)(k),

where ϕa(b, c)(k) := 1
c

c−1∑
i=1

[(1− ζib
c )(1− ζia

c )ζi
ck]−1.

4.2. Reflection variant Laurent polynomials. Suppose ~m = (m1, . . . ,mn) ∈
Nn and let

G0
n,~m = xm1

1 + . . . + xmn
n .

The polytope ∆0
n,~m for G0

n,~m has vertices ~0 and vi for 1 ≤ i ≤ n.
We consider reflections of ∆0

n,~m across coordinate hyperplanes. After a permu-
tation of the variables, it is no loss of generality to reflect across the hyperplanes
xi = 0 for 1 ≤ i ≤ j. Let

Gj
n,~m = xm1

1 + . . . + xmn
n + x−m1

1 + . . . + x
−mj

j .

Let ∆j
n,~m be the polytope of Gj

n,~m. For example, G1
n,~m = xm1

1 + . . . + xmn
n + x−m1

1

and ∆1
n,~m is the polygon in Rn with vertices vi for 1 ≤ i ≤ n and −v1. Then ∆j

n,~m

has n + j vertices other than ~0 and

Vol(∆j
n,~m) = 2j ·Vol(∆0

n,~m) = 2j
n∏

i=1

mi/n!.

Using the inclusion-exclusion principle, there is a recursive formula for the
weight numbers of ∆j

n,~m:

(1) W∆j
n, ~m

(k) = 2W∆j−1
n, ~m

(k)−W∆j−1
n−1,(m1,...,m̂j ,...,mn)

(k),
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where the notation m̂j means that the jth variable is omitted. Using this recursive
formula, it is possible to obtain the weights for a general reflection case in terms of
the weights for the base case j = 0.

4.2.1. General dimension, equilateral. Suppose ~m = (m, . . . ,m) and write

Gj
n,m = xm

1 + . . . + xm
n + x−m

1 + . . . + x−m
j .

The polytope ∆j
n,m = ∆(Gj

n,m) is obtained by reflecting ∆0
n,m across the hyper-

planes xi = 0 for 1 ≤ i ≤ j, see Figure 1.

m

m

m

m

m

m

m

m

m

m

m

m

−m

m

m

m

m

m

−m

−m

m

m

m

m

m

−m

−m

Figure 1. ∆j
3,m for 0 ≤ j ≤ 3

In this case, Vol(∆j
n,m) = 2jmn/n! and Equation (1) yields the recursive for-

mula

(2) W∆j
n,m

(k) = 2W∆j−1
n,m

(k)−W∆j−1
n−1,m

(k).

We obtain the following closed form for the weight numbers:

Proposition 4.6. The weight numbers for Gj
n,m are given by:

W∆j
n,m

(k) =
j∑

i=0

2j−i(−1)i

(
j

i

)
W∆0

n−i,m
(k).

Proof. First, the formula holds when j = 0.
To show the formula satisfies the recursion in (2), we compute

2W∆j−1
n,m

(k) =
j−1∑
i=0

2j−i(−1)i

(
j − 1

i

)
W∆0

n−i,m
(k),



12 BELLOVIN, GARTHWAITE, OZMAN, PRIES, WILLIAMS, AND ZHU

and

−W∆j−1
n−1,m

(k) =
j−1∑
i=0

2j−1−i(−1)i+1

(
j − 1

i

)
W∆0

n−1−i,m
(k)

=
j−1∑
i=0

2j−(i+1)(−1)i+1

(
j − 1

i

)
W∆0

n−(i+1),m
(k)

=
j∑

i=1

2j−i(−1)i

(
j − 1
i− 1

)
W∆0

n−i,m
(k).

Then 2W∆j−1
n,m

(k)−W∆j−1
n−1,m

(k) equals

=
j−1∑
i=0

2j−i(−1)i

(
j − 1

i

)
W∆0

n−i,m
(k) +

j∑
i=1

2j−i(−1)i

(
j − 1
i− 1

)
W∆0

n−i,m
(k)

= 2jW∆0
n,m

(k) +
j−1∑
i=1

2j−i(−1)i

((
j − 1

i

)
+
(

j − 1
i− 1

))
W∆0

n−i,m
(k) + (−1)jW∆0

n−j,m
(k)

=
j∑

i=0

2j−i(−1)i

(
j

i

)
W∆0

n−i,m
(k) = W∆j

n,m
(k).

�

Example 4.7. Weight and Hodge numbers for Gj
2,m with 0 ≤ j ≤ 2.

k 0 1 . . . m− 1 m m + 1 . . . 2m− 1 2m
W (k) 1 2 . . . m m + 1 m + 2 . . . 2m 2m + 1
H(k) 1 2 . . . m m− 1 m− 2 . . . 0 0

Table 2. Hodge Numbers for G0
2,m = xm

1 + xm
2

k 0 1 . . . m− 1 m m + 1 . . . 2m− 1 2m
W (k) 1 3 . . . 2m− 1 2m + 1 2m + 3 . . . 4m− 1 4m + 1
H(k) 1 3 . . . 2m− 1 2m− 1 2m− 3 . . . 1 0

Table 3. Hodge Numbers for G1
2,m = xm

1 + xm
2 + x−m

1

k 0 1 . . . m− 1 m m + 1 . . . 2m− 1 2m
W (k) 1 4 . . . 4(m− 1) 4(m + 1) 4(m + 3) . . . 4(2m− 1) 8m
H(k) 1 4 . . . 4(m− 1) 4m− 2 4(m− 1) . . . 4 1

Table 4. Hodge Numbers for G2
2,m = xm

1 + xm
2 + x−m

1 + x−m
2 .
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4.2.2. Dimension two, non-equilateral. Suppose n = 2 and gcd(m1,m2) = 1.
Let W j(k) := W∆j

2,(m1,m2)
(k) for 0 ≤ j ≤ 2. Then W 0(k) can be computed using

Theorem 4.4. Equation (1) gives recursive formulae W 1(k) = 2W 0(k) − 1 and
W 2(k) = 2W 1(k)− 2 = 4W 0(k)− 4.

The Hodge numbers are computed in Tables 5 and 6. Note that the sum of the
Hodge numbers in Table 5 is

2m1m2∑
k=0

H1(k) = 2m1m2 = 2V (∆1
2,(m1,m2)

),

and in Table 6 is
2m1m2∑

k=0

H2(k) = 4m1m2 = 2V (∆2
2,(m1,m2)

).

k 0, 1, . . . ,m1m2 − 1 m1m2 m1m2 + t; 0 < t < m1m2 2m1m2

H1(k) 2W 0(k)− 1 1 3− 2W 0(t) 0
Table 5. Hodge Numbers for G1

2,(m1,m2)
= xm1

1 + xm2
2 + x−m1

1

k 0, 1, . . . ,m1m2 − 1 m1m2 m1m2 + t; 0 < t < m1m2 2m1m2

H2(k) 4W 0(k)− 4 4 8− 4W 0(t) 0
Table 6. Hodge Numbers for G2

2,(m1,m2)
=
∑2

i=1(x
mi
i + x−mi

i )

4.3. Kloosterman variant Laurent polynomials. Fix n ∈ N, ~m = (m1, . . . ,mn) ∈
Nn and 1 ≤ j ≤ n. In this section, let ∆ denote the polytope of the Laurent poly-
nomial

Kj
n,~m = xm1

1 + · · ·+ xmn
n + (x1 · · ·xj)−1.

m

m

(−1,−1)

Figure 2. The polytope ∆(K2
2,(m,m))
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The vertices of ∆ are −~1j := −
∑j

i=1 ei = (−1, . . . ,−1, 0, . . . , 0) and v1, . . . , vn.
The cone is c(∆) = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, j + 1 ≤ i ≤ n}.

The vectors with initial point −~1j along the edges of ∆ are, for 1 ≤ ` ≤ n,

w` =
j∑

i=1

ej + m`e`.

The volume of the polytope ∆ = ∆(Kj
n,~m) is V (∆) = 1

n! det(w1, . . . , wn). Write sk

for the kth symmetric product in m1, . . . ,mj . Then

V (∆(Kj
n,~m)) = [sj +

j−1∑
i=1

(−1)iisj−1−i]
n∏

i=j+1

mi/n!.

The denominator of ∆ is D = LCM(m1, . . . ,mn).

Lemma 4.8. (1) Suppose 1 ≤ ` ≤ j. Let δ` be the face of ∆ containing
the vertices −~1j and vi for 1 ≤ i ≤ n and i 6= `. Then δ` is contained in
the hyperplane: ∑

i 6=`

1
mi

xi − (1 +
∑
i 6=`

1
mi

)x` = 1.

(2) The other faces of ∆ are contained in the hyperplanes
∑n

i=1
1

mi
xi = 1 and

xi = 0 for j + 1 ≤ i ≤ n.

4.3.1. General dimension, equilateral case. Suppose ~m = (m1, . . . ,mn) and
write Kj

n,m := Kj
n,~m.

Proposition 4.9. For 0 ≤ k ≤ nm, the weight numbers for Kj
n,m are:

W (k) =
(

n− 1 + k

n− 1

)
+

j∑
s=1

β(j, s)
n∑

`=1

(
k − `m + (n− j − 1)

n− s− 1

)
+ α(j, k),

where β(j, s) =
(

j

s

)
unless j = s = n in which case β(n, n) = 0 and α(j, k) = 0

unless j = n and 0 < k ≡ 0 mod m in which case α(j, k) = 1.

Proof. The lattice points {(x1, . . . , xn) ∈ Zn | xi ≥ 0} have the same weight

as in the diagonal case. This contributes
(

n− 1 + k

n− 1

)
to W (k).

Thus it suffices to consider the weight of ~x = (x1, . . . , xn) when at least one
coordinate is negative. By symmetry, it suffices to first focus on the points ~x closest
to the face δ of ∆ containing the vertices −~1j and vi for 2 ≤ i ≤ n. This face is
contained in the hyperplane

1
m

n∑
i=2

xi −
m + (j − 1)

m
x1 = 1.

These points satisfy the conditions: x1 < 0 and xi ≥ x1 for 2 ≤ i ≤ j, and xi ≥ 0
for j + 1 ≤ i ≤ n.

The condition k ≤ nm implies that x1 ∈ {−1, . . . ,−n}. Fix −` ∈ {−1, . . . ,−n}
and let x1 = −`. First suppose xi > x1 for all 2 ≤ i ≤ j. The smallest weight k
possible for this set of points is

−(j − 1)(`− 1) + (m + j − 1)(`) + (n− j)(0) = m` + j − 1,
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occurring when xi = −(` − 1) for 2 ≤ i ≤ j and xi = 0 for j + 1 ≤ i ≤ n. To
increase this value to k, one needs to add a combined total of k − (m` + j − 1) to
{xi | i ≥ 2}. For 1 ≤ ` ≤ n, there are(

k − (m` + j − 1) + (n− 2)
n− 2

)
=
(

k −m` + n− j − 1
n− 2

)
ways to do this, which is the number of points of weight k with x1 = −`, xi > x1

for 2 ≤ i ≤ j and xi ≥ 0 for j + 1 ≤ i ≤ n.
Next, let 2 ≤ s ≤ j and suppose #{i ≤ j | xi = −`} = s. Recall that

−` ∈ {−1, . . . ,−n}. (This is the case where ~x is equidistant to more than one face
of ∆ containing −~1j .) For ease of notation, suppose xi = −` for 1 ≤ i ≤ s. Recall
that −` ∈ {−1, . . . ,−n}, and xi ≥ −(` − 1) for s + 1 ≤ i ≤ j and xi > 0 for
j + 1 ≤ i ≤ n. The smallest weight k possible for this set of points is

−(j − s)(`− 1)− (s− 1)(`) + (m + j − 1)(`) + 0(n− j) = m` + j − s,

occurring when xi = −(` − 1) for s + 1 ≤ i ≤ j and xi = 0 for j + 1 ≤ i ≤ n. To
increase this value to k, one needs to add a combined total of k − (m` + j − s) to
{xi | i ≥ s + 1}. Thus, for 1 ≤ ` ≤ n, outside the case s = j = n, there are(

k − (m` + j − s) + (n− s− 1)
n− s− 1

)
=
(

k −m` + n− j − 1
n− 1− s

)
ways to do this, which is the number of points of weight k with xi = −` for 1 ≤ i ≤ s,
and xi > −` for s + 1 ≤ i ≤ j, and xi ≥ 0 for j + 1 ≤ i ≤ n. Let Cs(k) denote the
set of lattice points ~x of weight k such that #{i | xi = min(x1, . . . , xn)} = s. The
conclusion is that, outside the case s = j = n,

#Cs(k) =
(

j

s

) n∑
`=1

(
k −m` + n− j − 1

n− s− 1

)
.

If s = j = n, none of the sets Cs include the points ~x which are a multiple of
−~1j . There is one such point of weight m` for each 1 ≤ ` ≤ n. This contributes
one point of weight k only when 0 < k ≡ 0 mod m. This is accounted for by the
definitions of β(j, s) and α(j, k). �

Example 4.10. Let n = 2. The difference between the number of lattice points
of weight k/m for K2

2,m and G0
2,m is zero if 0 ≤ k < m, is one if k = m, is two if

m < k < 2m, and is three if k = 2m.

k 0 1 . . . m− 1 m m + 1 m + 2 . . . 2m− 1 2m
W (k) 1 2 . . . m m + 2 m + 4 m + 5 . . . 2m + 2 2m + 4
H(k) 1 2 . . . m m m m− 1 . . . 2 1

Table 7. Hodge Numbers for K2
2,m = xm

1 + xm
2 + (x1x2)−1

Example 4.11. Let n = 3. Table 8 shows the difference τ(k, m) between the
number of lattice points of weight k/m for K3

3,m and G0
3,m.
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k 0 ≤ k < m k = m k = m + ε k = 2m k = 2m + ε k = 3m
0 < ε < m 0 < ε < m

τ(k, m) 0 1 3ε 3m + 1 3m + 6ε 9m + 1
Table 8. The difference between WK3

3,m
(k) and WG0

3,m
(k)

4.3.2. Dimension two, non-equilateral case. Let n = 2 and gcd(m1,m2) = 1.
Recall that one can explicitly compute the weight number for the diagonal polytope
xm1

1 + xm2
2 from Theorem 4.4 and Table 1. In this section, we denote that weight

number by d(k).
Let ∆2 denote the polytope of K2

2,(m1,m2)
= xm1

1 + xm2
2 + (x1x2)−1. It has

vertices at (m1, 0), (0,m2), and (−1,−1) and denominator D = m1m2. Similarly,
let ∆1 denote the polytope of K1

2,(m1,m2)
= xm1

1 + xm2
2 + (x1)−1 which has vertices

at (m1, 0), (0,m2) and (−1, 0) and denominator D = m1m2.
We compute the weight numbers W (k) for Kj

2,(m1,m2)
for j = 1, 2.

Proposition 4.12. Let d(k) denote the weight number for the diagonal polytope
xm1

1 + xm2
2 . For 0 ≤ k ≤ 2m1m2 and 1 ≤ j ≤ 2, the weight numbers for Kj

2,(m1,m2)
are

Wj(k) = d(k) +


1 + j if k = 2m1m2,

1 if m1m2 ≤ k < 2m1m2 and gcd(k, m1m2) > 1,

0 otherwise.

Proof. The contribution to Wj(k)− d(k) comes from points (x1, x2) with at
least one negative coordinate. Then x1, x2 ≥ −2 since k ≤ 2m1m2.

When j = 2, there are 2 + m1 + m2 new lattice points having at least one
negative coordinate: (−1,−1) with weight 1, (−2,−2) with weight 2, (−1, `) for
0 ≤ ` < m2 and (`,−1) for 0 ≤ ` < m1. The equation of the face δ through the
vertices (−1,−1) and (m1, 0) is 1

m1
x1 − m1+1

m1
x2 = 1. Using this, the weight of

(`,−1) is k/m1m2 with k = m1m2 + (` + 1)m2. Similarly, the weight of (−1, `) is
k/m1m2 with k = m1m2 + (` + 1)m1.

When j = 1, there are exactly m2 + 2 new lattice points having at least one
negative coordinate: (−1, 0) with weight 1, (−2, 0) with weight 2, and the points
(−1, `) for 1 ≤ ` ≤ m2. Using the equation −x1 + 1

m2
x2 = 1 of the corresponding

face δ, the weight of (−1, `) is k/m1m2 with k = m1m2 + m1`. �
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