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Abstract

Let k be an algebraically closed field of characteristic p > 0. Every Artin-Schreier k-curve
X has an equation of the form yp − y = f(x) for some f(x) ∈ k(x) such that p does not
divide the least common multiple L of the orders of the poles of f(x). Under the condition
that p ≡ 1 mod L, Zhu proved that the Newton polygon of the L-function of X is determined
by the Hodge polygon of f(x). In particular, the Newton polygon depends only on the orders
of the poles of f(x) and not on the location of the poles or otherwise on the coefficients of
f(x). In this paper, we prove an analogous result about the a-number of the p-torsion group
scheme of the Jacobian of X, providing the first non-trivial examples of families of Jacobians
with constant a-number. Equivalently, we consider the semi-linear Cartier operator on the sheaf
of regular 1-forms of X and provide the first non-trivial examples of families of curves whose
Cartier-Manin matrix has constant rank.
Keywords: Cartier operator, Cartier-Manin matrix, Artin-Schreier curve, Jacobian, a-number.
MSC: 15A04, 15B33, 11G20, 14H40.

1 Introduction

Suppose k is an algebraically closed field of characteristic p > 0 and X is an Artin-Schreier k-curve,
namely a smooth projective connected k-curve which is a Z/p-Galois cover of the projective line.
Studying the p-power torsion of the Jacobian of X is simultaneously feasible and challenging. For
example, zeta functions of Artin-Schreier curves over finite fields are analyzed in [12, 13, 15, 19].
Newton polygons of Artin-Schreier curves are the focus of the papers [1, 2, 3, 20, 24].

Every Artin-Schreier k-curve X has an equation of the form yp−y = f(x) for some non-constant
rational function f(x) ∈ k(x) such that p does not divide the order of any of the poles of f(x).
The genus of X depends only on the orders of the poles of f(x). Let m + 1 denote the number of
poles of f(x) and let d0, . . . , dm denote the orders of the poles. By the Riemann-Hurwitz formula,
the genus of X is gX = D(p − 1)/2 where D =

∑m
j=0(dj + 1) − 2. By definition, the p-rank of

the Jacobian Jac(X) of X is the dimension sX of Hom(µp, Jac(X)[p]) as a vector space over Fp

where µp denotes the kernel of Frobenius morphism F on the multiplicative group scheme Gm. The
p-rank also equals the length of the slope 0 portion of the Newton polygon of the L-polynomial
of X; (see Remark 3.1 for the definition of the Newton polygon). For an Artin-Schreier curve X,
the p-rank sX equals m(p− 1) by the Deuring-Shafarevich formula, and thus depends only on the
number of poles of f(x).

In most cases, the Newton polygon of X is not determined by the orders of the poles of f(x).
One exception was found by Zhu: let L denote the least common multiple of the orders of the
poles of f(x); under the condition that p ≡ 1 mod L, the Newton polygon of X, shrunk by the
factor p−1 in the horizontal and vertical direction, equals the Hodge polygon of f(x) [26, Corollary
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1.3]; (see Remark 3.1 for the definition of the Hodge polygon). In particular, this means that the
Newton polygon depends only on the orders of the poles of f(x) and not on the location of the
poles or otherwise on the coefficients of f(x). In this paper, we prove an analogous result about
the a-number of the Jacobian Jac(X) or, equivalently, about the rank of the Cartier-Manin matrix
of X.

The a-number is an invariant of the p-torsion group scheme Jac(X)[p]. Specifically, if αp denotes
the kernel of Frobenius on the additive group Ga, then the a-number of (the Jacobian of) X is
aX = dimkHom(αp, Jac(X)[p]). It equals the dimension of the intersection of Ker(F ) and Ker(V )
on the Dieudonné module of Jac(X)[p], where V is the Verschiebung morphism. The a-number
and the Newton polygon place constraints upon each other, but do not determine each other, see
e.g., [10, 11].

The a-number is the co-rank of the Cartier-Manin matrix, which is the matrix for the modified
Cartier operator on the sheaf of regular 1-forms of X. The modified Cartier operator is the 1/p-
linear map C : H0(X, Ω1

X) → H0(X, Ω1
X) taking exact 1-forms to zero and satisfying C(fp−1df) =

df . In other words, the a-number equals the dimension of the kernel of C on H0(X, Ω1
X).

In this paper, under the condition p ≡ 1 mod L, we prove that the a-number of X depends only
on the orders of poles of f(x) and not on the location of the poles or otherwise on the coefficients
of f(x) (see section 3.6).

Theorem 1.1. Let X be an Artin-Schreier curve with equation yp − y = f(x), with f(x) ∈ k(x).
Suppose f(x) has m+1 poles, with orders d0, . . . , dm, and let L = LCM(d0, . . . , dm). If p ≡ 1 mod L,
then the a-number of X is

aX =
m∑

j=0

aj , where aj =

{
(p− 1)dj/4 if dj even,
(p− 1)(dj − 1)(dj + 1)/(4dj) if dj odd.

To our knowledge, Theorem 1.1 provides the first non-trivial examples of families of Jacobians
with constant a-number when p ≥ 3. When p = 2, the main result of [8] is that the Ekedahl-Oort
type (and a-number) of an Artin-Schreier curve depend only on the orders of the poles of f(x). For
arbitrary p, it is easy to construct families of Jacobians with aX = 0 (ordinary) or aX = 1 (almost
ordinary) and a family of Jacobians with aX = 2 is constructed in [9, Corollary 4].

For fixed p, the families in Theorem 1.1 occur for every genus g which is a multiple of (p−1)/2.
The a-number of each curve in the family is roughly half of the genus. Using [17, Theorem 1.1 (2)],
the dimension of the family can be computed to be

∑m
i=0(dj + 1)− 3 = 2g/(p− 1)− 1.

Other results about a-numbers of curves can be found in [6, 7]. We end the paper with some
open questions motivated from this work.

The second author was partially supported by NSF grant DMS-1101712.

2 Background

2.1 Artin-Schreier curves

Let k be an algebraically closed field of characteristic p > 0. A curve in this paper is a smooth
projective connected k-curve. An Artin-Schreier curve is a curve X which admits a Z/p-Galois
cover of the projective line. Letting x be a coordinate on the projective line, every Artin-Schreier
curve has an equation of the form yp−y = f(x) for some non-constant rational function f(x) ∈ k(x).
By Artin-Schreier theory, after a change of variables, f(x) can be chosen such that p does not divide
the order of any pole of f(x). We assume that this is the case throughout the paper.
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Let B ⊂ P1(k) be the set of poles of f(x) and suppose #B = m+1. We can assume that ∞ ∈ B
after a fractional linear transformation. We choose an ordering of the poles B = {b0, . . . , bm} such
that b0 = ∞. For bj ∈ B, let dj be the order of the pole of f(x) at bj . Let x− ej be a uniformizer
at bj for 1 ≤ j ≤ m. Let x0 = x and let xj = (x − ej)−1 if 1 ≤ j ≤ m. The partial fraction
decomposition of f(x) has the form:

f(x) = f0(x) +
m∑

j=1

fj

(
1

x− ej

)
=

m∑
j=0

fj (xj) ,

where fj(xj) ∈ k[xj ] is a polynomial of degree dj for 0 ≤ j ≤ m and fj(x) has no constant term for
1 ≤ j ≤ m. Let uj ∈ k× be the leading coefficient of fj(xj).

2.2 The genus and p-rank of an Artin-Schreier curve

The genus of a curve X is the dimension of the vector space H0(X, Ω1
X) of regular 1-forms. By

the Riemann-Hurwitz formula [21, Proposition VI.4.1], the genus of an Artin-Schreier curve X :
yp − y = f(x) where f(x) has m + 1 poles with prime-to-p orders d0, . . . , dj as described in Section
2.1 is

gX = D(p− 1)/2 where D = −2 +
m∑

j=0

(dj + 1).

Given a smooth projective k-curve X of genus g, let Jac(X)[p] denote the p-torsion group scheme
of the Jacobian of X. Let µp be the kernel of Frobenius on the multiplicative group Gm. The p-
rank of X is sX = dimFpHom(µp, Jac(X)[p]). The number of p-torsion points of Jac(X)(k) satisfies
#Jac(X) [p] (k) = psX . The p-rank of a curve satisfies the inequality 0 ≤ sX ≤ g. By a special case
of the Deuring-Shafarevich formula, see [22, Theorem 4.2] or [5], if X is an Artin-Schreier curve
with equation yp − y = f(x) as described above, then the p-rank of X is sX = m(p− 1).

2.3 The a-number

Let αp be the kernel of Frobenius on the additive group Ga. The a-number of X is aX =
dimkHom(αp, Jac(X)[p]). Equivalently, the a-number is the dimension of Ker(F ) ∩Ker(V ) on the
Dieudonné module of Jac(X)[p]. The a-number also equals the dimension of Ker(V ) on H0(X, Ω1

X)
[14, Equation 5.2.8]. One sees that 0 ≤ aX + sX ≤ g.

The a-number is an invariant of the p-torsion group scheme Jac(X)[p]. In some cases, it gives
information about the decomposition of the abelian variety Jac(X). If aX = g, then Jac(X) is
isomorphic to a product of supersingular elliptic curves [16]. If sX < g, then aX > 0, because there
is a non-trivial local-local summand of Jac(X)[p] on which V is nilpotent. This can be used to
show that the number of factors appearing in the decomposition of Jac(X) into simple principally
polarized abelian varieties is at most sX + aX .

Remark 2.1. In [18], formulas are given for the a-number of an Artin-Schreier curve when f(x) is
a monomial xd with p - d. If p ≡ 1 mod d, then the main result of this paper extends [18, Corollary
3.3] to all Artin-Schreier curves X : yp−y = f(x) having the property that the orders of the poles of
f(x) divide p−1. If p 6≡ 1 mod d, let hb ∈ [0, p−1] be the integer such that hb ≡ (−1−b)d−1 mod p.
By [18, Remark 3.4], the a-number of X : yp − y = xd is given by

aX =
d−2∑
b=0

min (hb, p− d(p + 1 + bp)/de) .
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2.4 The Cartier operator and the a-number

The “modified” Cartier operator C is the semi-linear map C : H0(X, Ω1
X) → H0(X, Ω1

X) with the
following properties: C(ω1 + ω2) = C(ω1) + C(ω2); C(fpω) = fC(ω); and

C(fn−1df) =

{
df if n = p,

0 if 1 ≤ n < p.

Suppose β = {ω1, . . . , ωg} is a basis for H0(X, Ω1
X). For each ωj , let mi,j ∈ k be such that

C (ωj) =
g∑

i=1

mi,j ωi.

The g × g-matrix M = (mi,j) is the (modified) Cartier-Manin matrix and it gives the action
of the (modified) Cartier operator. The Cartier-Manin matrix is M̃ = (mp

i,j); it is the matrix
for the (unmodified) Cartier operator, see [25]. The action of V is the same as the action of
the (unmodified) Cartier operator on H0(X, Ω1), see [4], and so the a-number satisfies aX =
gX − rank(M̃) = gX − rank(M). At the risk of confusion, we drop the word modified in the rest of
the paper.

3 The a-number of a family of Artin-Schreier curves

3.1 Regular 1-forms on an Artin-Schreier curve

Let X be an Artin-Schreier curve as described in Section 2.1. By [23, Lemma 1], a basis for
H0(X, Ω1

X) is given by W = ∪r
j=0Wj where

W0 =
{

xbyrdx | r, b ≥ 0 and rd0 + bp ≤ (p− 1)(d0 − 1)− 2
}

, and

Wj =
{

xb
jy

rdx | r ≥ 0, b ≥ 1, and rdj + bp ≤ (p− 1)(dj + 1)
}

if 1 ≤ j ≤ m.

There is a slight difference between the cases j = 0 and 1 ≤ j ≤ m. This is in some way
unavoidable as can be seen from the formula for the p-rank. To shorten the exposition, we let
εj = −1 if j = 0 and εj = 1 if 1 ≤ j ≤ m. Note that #Wj = (dj + εj)(p− 1)/2.

We define an ordering ≺ on the basis W . Define xb1
i yr1dx ≺ xb2

j yr2dx if r1 < r2, or if r1 = r2

and i < j, or if r1 = r2, i = j and b1 < b2.

3.2 Action of the Cartier operator

Consider the action of the Cartier operator on H0(X, Ω1
X). In general,

C
(
xb

jy
rdx

)
= C

(
xb

j (yp − f(x))r dx
)

.

To simplify notation, let τ = (τ−1, . . . , τm) denote a tuple of length m + 2 whose entries are
non-negative integers and let |τ | =

∑m
j=−1 τj . Using the extended binomial theorem, we see that

(yp − f(x))r =
∑

τ,|τ |=r

cτy
pτ−1f τ0

0 (x)f τ1
1 (x1) · · · f τm

m (xm) ,
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where

cτ = (−1)r−τ−1

(
r

τ−1, . . . , τm

)
.

So,
C

(
xb

jy
rdx

)
=

∑
τ,|τ |=r

cτy
τ−1C

(
xb

jf
τ0
0 (x)f τ1

1 (x1) · · · f τm
m (xm) dx

)
. (1)

One can check that
C

(
x

ap+εj

j dx
)

= x
a+εj

j dx. (2)

3.3 An assumption on the orders of the poles

Let L = LCM(d0, . . . , dm). From now on, we assume that p ≡ 1 mod L; in other words, the order
dj of the jth pole of f(x) divides p − 1 and we define γj = (p − 1)/dj for 0 ≤ j ≤ m. Under this
condition, we prove a result about the a-number of the Jacobian of X which is analogous to the
following result of Zhu:

Remark 3.1. Suppose f(x) ∈ Fq(x) with q = pa and let Ns = #X(Fqs) for s ∈ N. Since X is a
smooth projective curve, the zeta function of X is a rational function of the form:

ZX(u) := exp(
∞∑

s=1

Nsu
s

s
) =

LX(u)
(1− u)(1− qu)

,

where the L-function LX(u) ∈ Z[u] is a polynomial of degree 2g. Let vi be the p-adic valuation of
the coefficient of T i in LX(u) for 0 ≤ i ≤ 2g. The Newton polygon of X is the lower convex hull of
(i, vi/a).

Recall that the function f(x) has m + 1 poles of orders d0, . . . , dm. Consider the multi-set of
rational numbers Λ = ∪m

i=0 {1/dj , . . . , (dj − 1)/dj}. The Hodge polygon of f(x) is the lower convex
polygon in R2, with initial point (0, 0), constructed with a line segment with slope 0 with horizontal
length m, then line segments with the slopes λ ∈ Λ in increasing order with horizontal length 1
and then a line segment of slope 1 with horizontal length m.

Under the condition p ≡ 1 mod L, Zhu proved that the Newton polygon of LX(u) (shrunk by
a factor of p − 1 in the horizontal and vertical direction) equals the Hodge polygon of f(x) [26,
Corollary 1.3]. In particular, this means that the Newton polygon depends only on the orders of
the poles of f(x) and not on the location of the poles or otherwise on the coefficients of f(x).

Under the condition p ≡ 1 mod L, for 0 ≤ j ≤ m, the 1-forms xb
jy

rdx ∈ Wj are in bijection
with ordered pairs (b, r) of integers in the closed triangle bounded by r = 0, b = (1 + εj)/2, and
r = (p− 2 + εjγj)− γjb.

3.4 Linearly independent columns of the Cartier-Manin matrix

In this section, we define a subset H ⊂ W and show that the columns of the Cartier-Manin matrix
associated with elements of H are linearly independent. This gives a lower bound on the rank of
the Cartier-Manin matrix, and thus an upper bound on the a-number.

Recall that εj = −1 if j = 0 and εj = 1 if 1 ≤ j ≤ m. We partition the 1-forms in Wj into two
subsets:

Hj =
{

xb
jy

rdx ∈ Wj | r ≥ (b− εj)γj

}
,

5



r =
p−

2 +
γ
j (ε

j −
b)

r
=

(b
−

ε j
)γ j

Hj

Aj

Wj

b

r

Figure 1: The subsets Hj and Aj of Wj .

and the set-theoretic complement
Aj = Wj −Hj .

Let H = ∪m
j=0Hj and A = ∪m

j=0Aj .

Definition 3.2. If ω = xb
jy

rdx ∈ Hj , the key term κ(C(ω)) of C(ω) is the 1-form xb
jy

r−(b−εj)γjdx.

Lemma 3.3. If ω ∈ H, the coefficient of κ(C(ω)) is non-zero in C(ω).

Proof. Suppose ω ∈ Hj for some 0 ≤ j ≤ m. The claim is that, if r ≥ (b − εj)γj , then the
coefficient of the 1-form xb

jy
r−(b−εj)γjdx in C(xb

jy
rdx) is non-zero. Consider the tuple τ given by

τ−1 = r − (b− εj)γj , τj = (b− εj)γj , and τi = 0 for all i 6∈ {−1, j}. If r ≥ (b− εj)γj , by Equation
(1), the following term appears in C(xb

jy
rdx):

cτy
r−(b−εj)γjC

(
xb

jf
(b−εj)γj

j (xj) dx
)

. (3)

Because degxj
(xb

jf
(b−εj)γj

j (xj)) = (b−εj)p+εj , we see from Equation (2) that cτu
(b−εj)γj/p
j xb

jy
r−(b−εj)γjdx

appears in Expression (3).
The coefficient cτ in Expression (3) is nonzero because r ≤ p − 2 for all ω ∈ H. Also, uj 6= 0

as it is the leading coefficient of fj(xj). This term is canceled by no others. To see this, notice
that the coefficient of xb

jy
r−(b−εj)γjdx in Equation (1) is zero unless τ−1 = r − (b − εj)γj and

τj ≥ (b− εj)γj .

The next lemma shows that the coefficient of κ(C(ω)) is zero in C(ω′) for any 1-form ω′ ∈ W
which is smaller than ω.

Lemma 3.4. If ω ∈ H and ω′ ∈ W with ω′ ≺ ω, then the coefficient of κ(C(ω)) is zero in C(ω′).
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Proof. Write ω′ = xB
k yRdx and recall the calculation:

C
(
xB

k yRdx
)

=
∑

τ,|τ |=R

cτy
τ−1C

(
xB

k f τ0
0 (x)f τ1

1 (x1) · · · f τm
m (xm)

)
. (4)

Case 1: Suppose ω = xbyrdx ∈ H0. The claim is that the coefficient cω of κ(C(ω)) =
xbyr−(b+1)γ0dx in Equation (4) is zero for any ω′ ≺ xbyrdx. The coefficient cω will be zero un-
less τ−1 = r − (b + 1)γ0. This gives the restriction that τ0 ≤ R− (r − (b + 1)γ0).

If k = 0, cω will be zero unless τ0d0 +B ≥ (b+1)p−1. Combining these inequalities yields that

R− r ≥ (b−B)/d0.

Because both b and B are less than d0 − 2, cω is non-zero only if R > r or if R = r and B ≥ b.
If k 6= 0, the coefficient cω of xbyr−(b+1)γ0dx in Equation (4) will be zero unless τ0d0 − B ≥

(b + 1)p− 1. Combining the given inequalities shows that

R− r ≥ (b + B)/d0.

As B > 0, this shows that cω is non-zero only if R > r. In both cases, ω′ = xB
k yRdx 6≺ ω = xbyrdx.

Case 2: Suppose ω ∈ Hj for some 1 ≤ j ≤ m. The claim is that the coefficient cω of the
1-form xb

jy
r−(b−1)γjdx in C(ω′) is zero for any ω′ ≺ xb

jy
rdx. The coefficient cω is non-zero only if

τ−1 = r − (b− 1)γj . This gives the restriction that τj ≤ R− (r − (b− 1)γj).
If k 6= j, then cω is non-zero only if τjdj ≥ (b− 1)p + 1 and so

R− r ≥ b/dj .

As b > 0, cω is non-zero only if R > r.
If k = j, the coefficient cω is non-zero only if τjdj + B ≥ (b− 1)p + 1 which yields that

R− r ≥ (b−B)/dj .

Since b and B are both bounded by dj , this is only satisfied if R > r or if R = r and B ≥ b, in
other words, only if ω′ = xB

k yRdx 6≺ ω = xbyrdx.

Proposition 3.5. The columns of the Cartier-Manin matrix M corresponding to the 1-forms in
H are linearly independent.

Proof. This follows from Lemmas 3.3 and 3.4 since the key terms κ(C(ω)) yield pivots of M for
ω ∈ H.

3.5 Linearly dependent columns of the Cartier-Manin matrix

In this section, we prove that the columns of the Cartier-Manin matrix associated with the 1-forms
in A do not contribute to the rank of the Cartier-Manin matrix, because they are linearly dependent
on the columns associated with the 1-forms in H.

For fixed j and r, let B vary and consider the ordered pair (B,R) of exponents in κ(C(xB
j yrdx).

The points (B,R) lie on a line of slope −γj , specifically the line R = r + εjγj −γjB, where εj = −1
if j = 0 and εj = 1 if 1 ≤ j ≤ m. For 0 ≤ j ≤ m and r ≤ (p− 2)/2, let

Zj,r =
{
xB

j yRdx ∈ Wj | R = r + εjγj − γjB
}

.

Note that Z0,r is empty if 0 ≤ r < γ0. Let

Yj,r =

{
∪r

`=γ0
Z0,` if j = 0,

∪r
`=0Zj,` if 1 ≤ j ≤ m.
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Lemma 3.6. Suppose η = xb
jy

rdx ∈ Wj for some 0 ≤ j ≤ m with r ≤ (p − 2)/2. Then C(η) ∈
span(Yi,r | 0 ≤ i ≤ m).

Proof. Fix σ ∈ Wi with 0 ≤ i ≤ m and let cσ denote the coefficient of σ in C(η). It suffices to show
that σ ∈ Yi,r whenever cσ 6= 0. Write σ = xB

i yRdx. By Equation (1), cσ = 0 unless τ−1 = R. This
gives that τi ≤ r − R. If R ≥ r + εiγi − γiB + 1 then τi ≤ γiB − εiγi − 1. The degree of xi in
xb

jf
τi
i (xi) satisfies

degxi

(
xb

jf
τi
i (xi)

)
≤ b + τidi

≤ b + (γiB − εiγi − 1) di

= (B − εi)p−B + b + εi − di.

By the definition of Wi, if i = 0 then b ≤ d0 − 2 and B ≥ 0, and if 1 ≤ i ≤ m then b ≤ di and
B ≥ 1. So, degxi

(xb
jf

τi
i (xi)) < (B − εi)p + εi. Thus, cσ = 0 when R > r + εiγi − γiB.

Lemma 3.7. Suppose r ≤ (p − 2)/2 and 0 ≤ i ≤ m. Every element of Yi,r is a key term of C(ω)
for some ω ∈ Hi.

Proof. Let xB
i yRdx ∈ Yi,r. Define ω = xB

i yρdx where ρ = R − εiγi + γiB. It suffices to show that
ω ∈ Hi, since κ(C(ω)) = xB

i yRdx. If xB
i yRdx ∈ Yi,r then R ≤ r + εiγi − γiB, so ρ ≤ r. The 1-form

xB
i yρdx is in Hi because B ≥ 0, and −εiγi + γiB ≤ ρ ≤ (p− 2)/2.

Lemma 3.8. If η ∈ A, then C(η) is contained in span {C(ω) | ω ∈ H}.

Proof. Write η = xb
jy

rdx for some 0 ≤ j ≤ m. Since η ∈ A, r ≤ (p − 2)/2. By Lemma 3.6,
C(η) ∈ span(Yi,r | 0 ≤ i ≤ m). By Lemma 3.7, C(η) ∈ span{κ(C(ω)) | ω ∈ H}. Let ω∗ = xB

j yRdx be
the largest 1-form in H for which the coefficient of κ(C(ω∗)) in C(η) is non-zero. From the proof of
Lemma 3.7, we see that R < (p− 2)/2. Let ν ∈ k× be such that the coefficient of κ(C(ω∗)) is zero
in C(η) − νC(ω∗). If τ is a monomial in C(ω∗), then τ = κ(C(ω∗∗)) for some ω∗∗ ∈ H. Lemma 3.4
implies that ω∗∗ ≺ ω∗. Therefore, the terms in C(η)− νC(ω∗) are key terms of C(ω∗∗) for ω∗∗ ≺ ω∗.
Repeating this process shows that C(η) can be written as a linear combination

∑
ω∈H νωC(ω).

3.6 Main result

Theorem 3.9. Let X be an Artin-Schreier curve with equation yp − y = f(x), with f(x) ∈ k(x).
Suppose f(x) has m+1 poles, with orders d0, . . . , dm and let L = LCM(d0, . . . , dm). If p ≡ 1 mod L,
then the a-number of X is

aX =
m∑

j=0

aj , where aj =

{
(p− 1)dj/4 if dj even,
(p− 1)(dj − 1)(dj + 1)/(4dj) if dj odd.

Proof. By Proposition 3.5 and Lemma 3.8, the rank of the Cartier-Manin matrix is equal to∑m
j=0 #Hj . Since a = g − rank(M) and g = #W , this implies a =

∑m
j=0(#Wj − #Hj). It

thus suffices to show that #Wj −#Hj = aj for the value of aj as stated for 0 ≤ j ≤ m.
Recall that #Wj = (p− 1)(dj + εj)/2. We will count the ordered pairs (b, r) corresponding to

xbyrdx ∈ Hj . The lines r = p− 2 + εjγj − γjb and r = γjb− εjγj intersect at b = dj/2 + εj − 1/2γj .
The largest value of b appearing in Hj is

b′ =

{
dj/2 + εj − 1 if dj is even,
dj/2 + εj − 1/2 if dj is odd.
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Let bj = 0 if j = 0 and bj = 1 if j 6= 0. Then

aj = #Wj −#Hj

= (p− 1)(dj + εj)/2−
b′∑
bj

(p− 1 + 2εjγj − 2γjb)

= (p− 1)(dj + εj)/2− (p− 1 + 2εjγj) (b′ − bj + 1) + 2γjb
′ (b′ + 1

)
/2

=

{
(p− 1)dj/4 if dj even,
(p− 1)(dj − 1)(dj + 1)/(4dj) if dj odd.

3.7 Open questions

Here are two questions that emerge from this work:
Question 1: Under the condition p ≡ 1 mod L, are the Ekedahl-Oort type and the Dieudonné

module of the Jacobian of the Artin-Schreier curve X : yp − y = f(x) determined by the orders of
the poles of f(x)?

Question 2: What are other families of curves for which the p-rank, Newton polygon, a-
number, and Ekedahl-Oort type of the fibres of the family are constant?

For example, when p = 2, the Ekedahl-Oort type (and 2-rank and a-number) of an Artin-
Schreier (hyperelliptic) curve depend only on the orders of the poles of f(x) [8].
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