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ABSTRACT. For m € N, let Sy, be the Suzuki curve defined over Fy2m+1. It
is well-known that Sy, is supersingular, but the p-torsion group scheme of its
Jacobian is not known. The a-number is an invariant of the isomorphism class
of the p-torsion group scheme. In this paper, we compute a closed formula for
the a-number of S, using the action of the Cartier operator on HO(Sm, Ql).
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1. INTRODUCTION

Let m € N, ¢ = 22™*+1 and gy = 2™. The Suzuki curve S,, C P? is defined over
F, by the homogeneous equation:

W (Z9 4+ ZWI ) = Yo (Y1 + YW1,

This curve is smooth and irreducible with genus g = go(¢ — 1) and it has exactly
one point at infinity [8, Proposition 1.1]. The number of points on the Suzuki curve
over Fy is #S,, (F,) = ¢ + 1; this number is optimal in that it reaches Serre’s
improvement to the Hasse-Weil bound [8, Proposition 2.1].

In fact, Sy, is the unique F,-optimal curve of genus g [2]. This shows that S,
is the Deligne-Lusztig variety of dimension 1 associated with the group Sz(q) =
2B2(q) [7, Proposition 4.3]. The curve S, has the Suzuki group Sz(gq) as its auto-
morphism group; the order of Sz(q) is ¢*(¢—1)(¢g*>+1) which is very large compared
with g. Because of the large number of rational points relative to their genus, the
Suzuki curves provide good examples of Goppa codes [4, Section 4.3], [5], [8].

The L-polynomial of S, is (1 + +/2qt + qt%)9 [7, Proposition 4.3]. It follows that
Sm is supersingular for each m € N. This fact implies that the Jacobian Jac(Sy,)
is isogenous to a product of supersingular elliptic curves and that Jac(S,,) has no
2-torsion points over Fo. However, there are still open questions about Jac(S,,). In
this paper, we address one of these by computing a closed formula for the a-number
of Jac(Sp,).

The a-number is an invariant of the 2-torsion group scheme Jac(S,,)[2]. Specif-
ically, if o denotes the kernel of Frobenius on the additive group G,, then the
a-number of Sy, is a(m) = dimg, Hom(az, Jac(Sp,)[2]). It equals the dimension of
the intersection of Ker(F') and Ker(V) on the Dieudonné module of Jac(Sp,)[2].
Having a supersingular Newton polygon places constraints upon the a-number but
does not determine it. The a-number also gives partial information about the de-
composition of Jac(S,,) into indecomposable principally polarized abelian varieties,
see Lemma 5.2, and about the Ekedahl-Oort type of Jac(Sy,)[2], see Section 5.
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In Section 4, we prove that the a-number of Sy, is a(m) = qo(go + 1)(2g0 + 1) /6,
see Theorem 4.1. The proof uses the action of the Cartier operator on H(S,,, Q)
as computed in Section 3.

Author Pries was partially supported by NSF grant DMS-11-01712. We would
like to thank the NSF for sponsoring the research workshop for graduate students
at Colorado State University in June 2011 where the work on this project was
initiated. We would like to thank Amy Ksir and the other workshop participants
for their insights and the referee for the quick report and helpful comments.

2. THE a-NUMBER

Suppose A is a principally polarized abelian variety of dimension g defined over
an algebraically closed field k& of characteristic p > 0. For example, A could be
the Jacobian of a k-curve of genus g. Consider the multiplication-by-p morphism
[p] : A — A which is a finite flat morphism of degree p?9. It factors as [p] = V o F.
Here, F': A — A® is the relative Frobenius morphism coming from the p-power
map on the structure sheaf; it is purely inseparable of degree p?. The Verschiebung
morphism V : A®) — A is the dual of F.

The kernel of [p] is A[p], the p-torsion of A, which is a quasi-polarized BT} group
scheme. In other words, it is a quasi-polarized finite commutative group scheme
annihilated by p, again having morphisms F and V. The rank of A[p] is p?9. These
group schemes were classified independently by Kraft (unpublished) [10] and by
Oort [13]. A complete description of this topic can be found in [12] or [13].

Two invariants of (the p-torsion of) an abelian variety are the p-rank and a-
number. The p-rank of A is r(A) = dimp, (Hom (p,, Alp])), where p,, is the kernel
of Frobenius on the multiplicative group G,,. Then p"(4) is the cardinality of
Alp] (F,). The a-number of A is a(A) = dimy (Hom (ay, A[p])), where o, is the
kernel of Frobenius on the additive group G,. It is well-known that 1 < a(A) +
r(A) < g. Another definition for the a-number is

a(A) = dimg, (Ker(F) N Ker(V)).

If X is a (smooth, projective, connected) k-curve, then the a-number of A =
Jac(X) equals the dimension of the kernel of the Cartier operator C on H%(X, Q')
[11, 5.2.8]. The reason for this is that the action of C on H?(X,Q!) is the same as
the action of V' on VJac(X)[p]. This is the property that we use to calculate the
a-number a(m) of the Jacobian of the Suzuki curve S,,.

3. REGULAR 1-FORMS FOR THE SUZUKI CURVES

In this section, we compute the action of the Cartier operator on the vector space
of regular 1-forms for the Suzuki curves.

3.1. Geometry of the Suzuki curves. Let m € N, ¢ = 2?"*! and ¢ = 2™.
Consider the Suzuki curve S,, C P? defined over F, by the homogeneous equation:
W (Z9+ ZWI ) =Y P (YT + YW,

The curve S, is smooth and irreducible and has one point P, at infinity (when
W =Y =0and Z = 1). Consider the irreducible affine model of S, defined by
the equation

(3.1) 21+ z=y" Yy +y)
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where y :=Y/W and z := Z/W.

The following result is well-known, see e.g., [8, Proposition 1.1]. We include an
alternative proof that illustrates the geometry of some of the quotient curves of S,
and an important point about the a-number.

Lemma 3.1. The curve Sy, has genus g = qo(q — 1).

Proof. The set F = {u1,...,p14-1} can be viewed as a set of representatives for
the ¢ — 1 cosets of F3 in Fy. The Suzuki curve has affine equation 27 — 2 = f(y)
where f(y) = y%+9 ¢+ € Fy(y). For 1 <i < q—1, let Z; be the Artin-Schreier
curve with equation 2? — z; = u;f(y). As seen in [3, Proposition 1.2], the set
{Zi = P, | 1<i<q—1}is exactly the set of degree 2 covers Z — P, which
are quotients of S, — ]P’}J. By [6, Proposition 3], an application of [9, Theorem C],
there is an isogeny
Jac (S,,) ~ ®I- ! Jac (Z;).

By Artin-Schreier theory, p;f(y) can be modified by any polynomial of the
form T2 — T for T € F,ly] without changing the Fs-isomorphism class of the
Artin-Schreier cover Z; — ]P’.}J. Thus Z; is isomorphic to an Artin-Schreier curve
with equation 22 — z; = h;(y) for some h;(y) € Faly] with degree 2qp + 1 =
max{(qo + ¢)/qo,q0 + 1}. For 1 < i < g — 1, the curve Z; is a Z/2-cover of
the projective line branched only at oo, where it is totally ramified. Moreover,
the break in the filtration of higher ramification groups in the lower numbering
is at index deg(hi(y)) = 2¢o + 1. By [14, VIL.4.1], the genus of Z; is go. Thus
g = dim(Jac(S,,)) = (¢ — 1)dim(Jac(Z;)) = qo(q — 1). O

Remark 3.2. Consider the Artin-Schreier curve Z; : 22 — z; = h;(y) from the proof
of Lemma 3.1. By [1, Proposition 3.4], since deg(h;) = 2go + 1 = 1 mod 4, the
a-number of Z; is qo/2. Thus the a-number of @7~ Jac(Z;) is qo(q — 1)/2, exactly
half of the genus of S,,. The fact that Jac(S,,) is isogenous to &~ Jac(Z;) gives
little information about the a-number of S;,, since the a-number is not an isogeny
invariant.

The Hasse-Weil bound states that a (smooth, projective, connected) curve X of
genus g defined over F, must satisfy

q+1-29yq <#X(Fy) <q+1+29/3.
A curve that meets the upper bound is called an F,-maximal curve.

The number of F,-points on the Suzuki curve is #5,, (F,) = ¢* + 1; this means
that S, is not maximal over F,, but it does have the maximal number of IFy-
points possible for a curve of its genus [8, Proposition 2.1]. Analyzing powers of
the eigenvalues of Frobenius shows the following.

Lemma 3.3. The Suzuki curve Sy, is Fga-mazimal.

Proof. The L-polynomial of S,, is L(Sm,t) = (1++/2qt +qt?)9 [7, Proposition 4.3].
This factors as L(Sp,t) = (1 — at)9(1 — at)? where o = qo(1 4 4). That implies
that #S5,(Fgpa) = ¢* +1— (a* + at)g = ¢* + 1 + 2¢%g which shows that S,, is

]Fq4—maximal. O

A curve which is maximal over a finite field is supersingular, in that the slopes
of the Newton polygon of its L-polynomial all equal 1/2. Thus S,, is supersingu-
lar. The supersingularity condition is equivalent to the condition that Jac(S,,) is
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isogenous to a product of supersingular elliptic curves. A supersingular curve in
characteristic 2 has 2-rank 0. This implies, a priori, that the a-number of S, is at
least one.

3.2. Regular 1-forms. To compute a basis for the vector space H°(S,,, Q') of
regular 1-forms on S,,, consider the functions hy, hy € F (S,,,) given by:

hy:= 2200 | y2qo+17
hy 1 = 220y + h?qo.
For any f € F(S,,), let voo(f) denote the valuation of f at Pu.

Lemma 3.4. The functions y, z, h1, he € F(S,,) have no poles except at P, where

by = —v(y) = 0. 0= —vn() = 0+ @
Vp, 1= —Veo(h1) = ¢ + 2qo, Uha 1 = ~Voo(h2) = g +2¢0 + 1.

The function m = hy/hg is a uniformizer at Pa.
Proof. See [8, Lemma 1.8]. O

The function y is a separating variable so dy is a basis of the 1-dimensional vector
space of 1-forms. The next lemma shows that dy is regular.

Lemma 3.5. The 1-form dy satisfies
Voo(dy) =29 —2 and wvp(dy) =0
for all points P € S, (F,).

Proof. Recall that 7 is a uniformizer at P,,. To take the valuation of dy at P, we
first rewrite dy = f(x,y)dn for some f(y,z) € Fq(y, ). Note that

(hl) h2 dh1 — hl dh2 hQ y2q° — hl 22q0
dr=d(-— )=

ho
Since voo (h3) = —2(q + 2qo + 1) and

— = dy.
12 02 Y

Voo (ho 4?90 — hy 2°T) = min{—2qovy — Vh,, —2qovs — Vp, }
= —2qov; — Vn,

= —4q — 4¢3 — 2qo,

vﬁ@—w«mgdo

h2 yQQO — hl zQQU
= —2q —4qo — 2 — (—4q3 — 445 — 2q0)
= 4q; — 2qp — 2
=29 —2.
We next show that dy has no zero or pole at any affine point of S,,,. Note that, for

any a € F,, the polynomial 27 + 2 + a splits into distinct factors in F,(2), so there
are exactly g points of S, (F,) lying over any yo € Aé(Fq). Since

[Fq(ya Z) :Fq(y)} =4q,

we see that
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the F,-Galois cover S,,, — IP’ZlJ is unramified at all affine points of .S,,. Consequently,
for any point P € Sp,(F,) lying over a € A}(F,), we see that vp(y —a) = 1. Thus,
y — a is a uniformizer at P and vp(dy) = 0, proving the proposition. O

By Lemma 3.5, finding a basis for H°(S,,,, Q!) is equivalent to finding a basis for
L((dy)), since (dy) = (29 — 2) P is the canonical divisor. To do this, we make use
of the relations:

(3.2) 22 =yhy 4+ hy, hi* =z+y®°t KL =hy 4+ 2y®,
which can be verified by direct substitution, and the following proposition.
Proposition 3.6. [8, Proposition 1.5] Let SG be the semigroup

(¢,9+q0,q +290,9 + 2q0 + 1)
Then #{ne€ SG|0<n<29—-2}=g.
We now have all the required information to find a basis of H°(S,,, Q).
Proposition 3.7. The following set is a basis of H°(S,,, Q'):
B = {y*2’h{hg dy | (a,b,c,d) € E}
where € is the set of (a,b,c,d) C Z* satisfying
0<b6<1, 0<c<g-1, 0<d<qo—1,
avy + bv, + cvp, +dvp, < 29 — 2.
Proof. To prove linear independence, it suffices to prove that all elements in our ba-
sis have distinct valuations at Ps,. Suppose y?z°h$hd dy € B and y“/zb/ hi/hg/ dy €

B have the same valuation at P,,; we will show they are equal. Comparing their
valuations at P,,, we must have that

(3.3) (a—a")vy, + (b=b)v, + (c—)vp, + (d—d)vp, =0
Now consider Equation (3.3) modulo ¢o. As g divides vy, v, and vy,
(d—d') = 0mod gp.

As 0 < d,d < qp, it must be the case that d = d’. Substituting d — d’ = 0 into
Equation (3.3) and reducing modulo 2¢q yields that

(b —1")go = 0 mod 2qq.
However, as 0 < b,b’ < 1, it must also be the case that b = V. Simplifying (3.3)
and reducing modulo ¢ = 2¢?2 yields that

(c— ) (g —2q0) = (¢ — )2g0 = 0 mod 2¢3.

Since 0 < ¢, < gg — 1, we find that ¢ = ¢/; so a = d’ as well.
We claim that the above set also spans L ((dy)). Clearly the valuations at Pu
of

{yazbhﬁjhg | avy + bu. + cvp, + dop, <29 — 2}

are equal to {n € SG | 0 < n < 2g — 2}, which is a set of size g by Proposition 3.6.
Rewriting elements of the above set in terms of our basis will not change their
valuation at P,,. Thus we can use the relations in Equation (3.2) to see that B also
contains an element for each of the g possible valuations at P,,. By the previous
paragraphs, each valuation occurs exactly once. By Riemann-Roch, ¢ ((dy)) = g,
so B is a basis.
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3.3. Action of the Cartier operator. The (modified) Cartier operator C is the
semi-linear map C : H°(S,,, Q') — HY(S,,, Q') which annihilates exact 1-forms,
preserves logarithmic ones, and is p~!-linear. In characteristic 2, the Cartier oper-
ator C acts on 1-forms according to the following properties: (see e.g., [15, Section
2.2.5)).

(1) Cis 1/2-linear; i.e., C is additive and C (f?w) = fC (w).

. 0, if 5 =0 mod 2
(2) C(¥dy) =9 ., L
Yy rdy if j=2e—1.
(3) C(w) = 0 if and only if w is exact; i.e., if and only if w = df for some
feFq,(Sm)-
(4) C(w) =w if and only if w = df/f for some f € F, (Sp,).

Any 1-form w € H°(S,,, Q') can be written in the form w = (f? + ¢%y)dy, as
char(FF,) = 2. Then

(3.4) C((f* + g*y)dy) = g dy.
By these properties, it is clear that
(3.5) C(y2el +r12e2+T2 h%Eerrs h§e4+7’4 dy) = y© 2°2hS RS C(y™ 2 2 R hit dy).

Hence to compute the action of C on H®(S,,, "), we need only compute C on
the 16 monomials in y, z, h1, ho of degree less than or equal to one in each variable.
Table 1 shows this action, where each C(f dy) is written in terms of the original
basis using the curve Equation (3.1).

TABLE 1
[/ | C(fdy)
1 0
y dy
z yo 2 dy
hy y® dy
ho ((yh1)®/? + h3°) dy
yz K" dy

yh ((yh1)®? + ) dy

zhy (yha)®/? dy

Zh2 (hlhg)qo 2 dy

hiho (hl + quo) dy

yzhy | (y™/2z + (hahg)®/?) dy
tho/2_|_yqo/2+1h%/2) dy

yzha (

shahe | (

yhihs ((yh1 q0/22+hq°/22) dy
(yq°/2h N hqo/2hqo/2) dy

ZyQO/thO/2+hq0/2+1> dy

yzh1 h2
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Example 3.8. We illustrate the computation for zhiho dy. Direct computation
yields
C (zhihady) = C (zh1 (yz2q0 + h%‘IO) dy)
= 2% C (zyhy dy) + h{° C (zhy dy)
— <yqo/2zqo+1 —|—h‘f°/2hg°/2zq" +h‘f0yqo/2hg‘3/2) dy.

To write this expression in terms of the original basis, we identify the monomials
with the highest pole order at infinity. Since

Voo (R /22 290) = vog (Y™ 2hE/%) = —4q3 — 3g3 — qo/2 < — (29— 2),
these two terms may be simplified. Using Equation 3.2,
h‘{o/QhZO/?Zqo +h§°yq°/2hg°/2
= g2 (g PR ) PR = hng

The final expression follows by rewriting 2971 and hZ° in terms of lower order basis
elements using Equation (3.2).

Remark 3.9. To compute C (w) for a general element w € B, simply apply Equa-
tion (3.5) and use the table above; in nearly all cases the direct result will again be
in terms of the basis B. The only exception is when w = zh% 'hy dy. In this case
we have:

c (h‘{"’z  zhihs dy) = h9/271C (zhyhy)
_ (qu0/2hlio/2*1hgo/2 + h(llo) dy.
Using Equation (3.2), one can obtain an expression in terms of the original basis.

4. THE a-NUMBER FOR SUZUKI CURVES

We now have the tools to compute a closed form formula for the a-number a(m).
The calculation amounts to counting lattice points in polytopes in R?, which is a
hard problem in general. In our case, however, the values vy, vp,, and vy, are so
similar that the polytopes in question are nearly regular; this makes our counting
problem much easier.

Theorem 4.1. Let a(m) and g(m) be the a-number and genus of Sy, Tespectively.
Then
) qo(q0 +1)(2g0 + 1)

a(m) = 5

In particular,

1 alm) 1 1

= <+
6 g(m) 6 2mtl

Proof. Recall from Section 2 that a(m) is the dimension of the kernel of C on
HY(S,,,Q'). By Equation (3.4), a(m) is the dimension of the vector space of
regular 1-forms of the form f2dy. Since f? can have a pole only at P, and since
the order of the pole can be at most 2g — 2, we see that a(m) = ¢((g — 1)Pw).
Moreover, squaring is a homomorphism, so

t((9 = D Ps) = #{w € B | voo(w) < g —1}.
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By Section 3, this number is exactly
#{(a,b,c,d) € £ |vya+v.b+vp,c+vp,d < g—1};

here we use the notation £ as we did in Proposition 3.7. Recall that b € {0,1}.
When b = 0, we must count {(a,c,d) € N> | a+c+d < gy — 1}. This follows from
the fact that that
-1 -1 -1
qo — 1= g < g < g < qo-
Uhy Uhy Uy

For b =1, we must count {(a,c,d) € N*> |a+c+d < go — 2} since

—1—-w —1—-w —1—-w
qo—2<g : 4 z 4 £ <qo—1.
Uhy Uhy Uy

Using these two facts, we obtain
a(m) :#{(a,c,d) eNg\cH—c—i—dSqo—l}
+#{(a,c,d) 6N3|a+c+d§qo—2}

S0 0)

=2

()4 ()

which equals the formula in the first statement.
To prove the second statement, simply note that
(@ +1)2q0+1) 1 G +30+3 <1< 3)
= 5 )

1
- <
6 6qo(q — 1) 6 -1

14+ —
q0

5. OPEN QUESTIONS

Here are two open questions about Jac(S,,).

Question 5.1. What is the decomposition of Jac(S,,) into indecomposable princi-
pally polarized abelian varieties?

Theorem 4.1 gives partial information about Question 5.1, namely an upper
bound on the number of factors appearing in the decomposition, because of the
following fact.

Lemma 5.2. Suppose A is a principally polarized abelian variety with p-rank 0 and
a-number a. If A decomposes as the direct sum of t principally polarized abelian
varieties, then t < a.

Proof. Write A ~ @&!_, A; where each A; is a principally polarized abelian variety.
For 1 < <t, consider the p-torsion group scheme A;[p]. The a-number of A;[p] is
at least 1 since its p-rank is 0. Thus the a-number of A is at least ¢. (]
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To state the second question, we need some more notation.

The Ekedahl-Oort type of a principally polarized abelian variety A over k is
defined by the interaction between the Frobenius F' and Verschiebung V' operators
on the p-torsion group scheme A[p]. It determines the isomorphism class of A[p] and
its invariants such as the a-number. To define the Ekedahl-Oort type, recall that the
isomorphism class of a symmetric BT} group scheme G over k can be encapsulated
into combinatorial data. This topic can be found in [13]. If G has rank p?9, then
there is a final filtration N1 C Ny C --- C Nag of G as a k-vector space which is
stable under the action of V and F~! such that i = dim (N;). The Ekedahl-Oort
type of G, also called the final type, is v = [v1,...,v,] where v; = dim (V(N;)). The
Ekedahl-Oort type of G is canonical, even if the final filtration is not.

There is a restriction v; < v;11 < 1;+1 on the final type. Moreover, all sequences
satisfying this restriction occur. This implies that there are 29 isomorphism classes
of symmetric BTy group schemes of rank p29. The p-rank is max {i | v; = i} and
the a-number equals g — v,.

Question 5.3. What is the Ekedahl-Oort type of Jac(S,,)[2]? Equivalently, what is
the covariant Dieudonné module of Jac(S,)[2]?

Theorem 4.1 gives partial information about Question 5.3, by limiting the pos-
sible final types. For the group scheme Jac (Sy,)[2], the Ekedahl-Oort type satisfies
that 11 = 0 and v, = go(10go+7)(go —1)/6. In particular, Jac(S,,) is not superspe-
cial since a(m) # g(m). This implies that Jac(Sy,) is not isomorphic to the product
of supersingular elliptic curves; it is only isogenous to the product of supersingular
elliptic curves.

In the next example, we give some more information about the Ekedahl-Oort
type of Jac(S51)[2] (the case m = 1).

Example 5.4. If m = 1 then ¢y = 2, ¢ = 8, and g = 14. By Section 3.3, the image
of C on HY(S,,, ) is spanned by the nine 1-forms

{dy, ydy, hady, y*dy, yhady, yha, (z + y*)dy, hyhady, y*zdy}.
The image of C? on H(S,,, Q") is spanned by the four 1-forms

{dy, y*dy, (z + y°)dy, (h1 + y*z)dy}.

Also C? trivializes H(S,,,QY). Thus vy = v = v3 = vy = 0, and vg = 4, and
vi4 = 9. The combinatorial restrictions on the final type imply that v = 5,
v11 = 6, v12 = 7, and v13 = 8. This leaves only five possibilities for the final type,
and thus for the isomorphism class of Jac(51)[2].
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