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Abstract

For an odd prime p = 2 mod 3, we prove Abhyankar’s Inertia Con-
jecture for the alternating group A, 2, by showing that every possible
inertia group occurs for a (wildly ramified) Ap;2-Galois cover of the
projective k-line branched only at infinity where k is an algebraically
closed field of characteristic p > 0. More generally, when 2 < s < p
and ged(p — 1,5+ 1) = 1, we prove that all but finitely many rational
numbers which satisfy the obvious necessary conditions occur as the
upper jump in the filtration of higher ramification groups of an A, -
Galois cover of the projective line branched only at infinity.

2010 MSC: 11G20 and 12F12.

1 Introduction

Suppose ¢ : Y — Py is a G-Galois cover of the projective k-line branched
only at oo where G is a finite group and k is an algebraically closed field
of characteristic p > 0. Let p(G) C G be the normal subgroup generated
by the conjugates of a Sylow p-subgroup. Then the G/p(G)-Galois quotient
cover is a prime-to-p Galois cover of P} branched only at co. Since the
prime-to-p fundamental group of the affine line A} is trivial, this implies
that p(G) = G; a group G satisfying this condition is called quasi-p. In 1957,
Abhyankar conjectured that a finite group G occurs as the Galois group of a
cover ¢ : Y — P} branched only at oo if and only if G is a quasi-p group [1].
Abhyankar’s conjecture was proved by Raynaud [10] and Harbater [7].

Now suppose G is the inertia group at a ramified point of ¢. Then Gy is a
semi-direct product of the form Gy x Z/(m) where G is a p-group and p{m
(12, IV]. Let J C G be the normal subgroup generated by the conjugates
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of Gy. Then the G/J-Galois quotient cover is a tame Galois cover of Pp
branched only at co. Since the tame fundamental group of Al is trivial, this
implies that J = G. Based on this, Abhyankar stated the currently unproven
Inertia Conjecture.

Conjecture 1.1 (Inertia Conjecture). [3, Section 16] Let G be a finite quasi-
p group. Let Gy be a subgroup of G which is an extension of a cyclic group
of order prime-to-p by a p-group G1. Then Gg occurs as the inertia group of
a ramified point of a G-Galois cover ¢ : Y — Pi branched only at oo if and
only if the conjugates of G1 generate G.

There is not much evidence to support the converse direction of Conjec-
ture 1.1. For every finite quasi-p group G, the Sylow p-subgroups of G do
occur as the inertia groups of a G-Galois cover of P branched only at oo [6].
For p > 5, Abhyankar’s Inertia Conjecture is true for the quasi-p groups 4,
and PSLy(F,) [5, Thm. 2]. In Theorem 5.2, we prove:

Theorem 1.2. If p = 2mod 3 is an odd prime, then Abhyankar’s Inertia
Congecture is true for the quasi-p group A,yo. In other words, every subgroup
Go C Apio of the form Z/(p) X Z/(m) occurs as the inertia group of an Apio-
Galois cover of Pi branched only at oo.

Note that the values of m such that A,.» contains a subgroup Gy ~
Z/(p) x Z](m) are exactly the divisors of p — 1. We also give a second proof
of Abhyankar’s Inertia Conjecture for the group A, when p > 5; this proof
uses the original equations of Abhyankar [2] rather than relying on the theory
of semi-stable reduction.

More generally, we study the ramification filtrations of A,-Galois covers
¢ : Y — P, branched only at oo when p is odd and p < n < 2p. This
condition ensures that the order of A, is strictly divisible by p, and so the
ramification filtration is determined by the order of G and the upper jump o.
The upper jump is a rational number that satisfies some necessary conditions,
Notation 5.5. One motivation to study the ramification filtration is that it
determines the genus of Y.

In Theorem 4.9, we compute the order of the inertia group and the upper
jump of the ramification filtration of Abhyankar’s A, -Galois cover ¢, :
Y, — P} branched only at oo when 2 < s < p. This determines the genus of
Y, which turns out to be quite small. When ged(p—1,s+1) = 1, the inertia
group is a maximal subgroup of the form Z/(p) x Z/(m) in A,,s. This is



the basis of the proof of Theorem 1.2 when s = 2. It also leads to another
application, Corollary 5.6, where we use the theory of formal patching to
prove:

Corollary 1.3. Suppose 2 < s < p and ged(p — 1,s+ 1) = 1. Then all but
finitely many rational numbers o satisfying the obvious necessary conditions
occur as the upper jump of an A, s-Galois cover of Py branched only at cc.

In fact, Corollary 1.3 is a strengthening of Theorem 1.2 when s = 2.
When s > 2, the normalizer of a p-cycle in A, contains more than one
maximal subgroup of the form Z/(p) x Z/(m). This is because there are
many elements of prime-to-p order that centralize a p-cycle in A,,. Thus,
when s > 2, more equations will be needed to verify Abhyankar’s Inertia
Conjecture for the group A, using the strategy of this paper.

We would like to thank Irene Bouw for suggesting this approach for this
project. The second author was partially supported by NSF grant 07-01303.

2 Background

Let k£ be an algebraically closed field of characteristic p > 3. A curve in this
paper is a smooth connected projective k-curve. A cover ¢ of the projective
line branched only at oo will be called a cover of the affine line and the
inertia group at a ramification point of ¢ above oo will be called the inertia
group of ¢. A G-Galois cover is a Galois cover ¢ : Y — X together with
an isomorphism G =~ Aut(Y/X); (the choice of isomorphism will not be
important in this paper).

2.1 Ramification

Let K be the function field of a k-curve X. A place P of K /k is the maximal
ideal of a valuation ring Op C K. Let Pg denote the set of all such places.
Let vp denote the normed discrete valuation on the valuation ring Op. A
local parameter at P is an element o € Op such that vp(a) = 1.

Consider a finite separable extension F/K. Let I be the Galois closure
of F/K and let G be the Galois group of F'/K. A place Q € P is said to lie
over P € Pk if Op = Og N K and we denote this by Q|P. For any @ € Pr
with @Q|P, there is a unique integer e(Q|P) such that vg(z) = e(Q|P)vp(z)
for any x € K. The integer e(Q|P) is the ramification index of Q|P in F/K.



The extension F/K is wildly ramified at Q|P if p divides e(Q|P). When
there exists a ramification point @ such that p divides e(Q|P), we say that
the extension is wildly ramified.

2.2 Higher Ramification Groups
We will need the following material from [13, Chapter 3.

Definition 2.1. For any integer ¢ > —1 the i-th lower ramification group of
Q|P is

Gi(QIP)={0 € G:vg(o(z) —z) >i+1forall z€ Op}.
We let G; denote G;(Q|P) when the places are clear from context.
Proposition 2.2. With the notation above, then:
1. Gy is the inertia group of Q|P, and thus |Go| = e(Q|P), and G is a
p-group.
2. G_1 2Gy 2D and G, = {Id} for sufficiently large h.

Theorem 2.3 (Hilbert’s Different Formula). The different exponent of F'/K
at Q|P is

o

d(QIP) =Y (IGi(Q[P)| - 1).

i=0
Here is the Riemann-Hurwitz formula for wildly ramified extensions.

Theorem 2.4 (Riemann-Hurwitz Formula). Let g (resp. ¢') be the genus of
the function field K/k (resp. F/k). Then

29 —2=[F:K](29—-2)+ > > d(Q|P).

PePk Q|P

2.3 Properties of Ramification Groups

Suppose that the order of G is strictly divisible by p. Suppose that F/K
is wildly ramified at (). The following material about the structure of the
inertia group and the higher ramification groups can be found in [12, TV].



Lemma 2.5. [12, IV, Cor. 4] If F/K is wildly ramified at ) € Pr with
inertia group Gy such that p* { |G|, then Gy is a semidirect product of the
form Z/(p) x Z/(m) for some prime-to-p integer m.

The lower numbering on the filtration from Definition 2.1 is invariant
under sub-extensions. There is a different indexing system on the filtration,
whose virtue is that it is invariant under quotient extensions.

Definition 2.6. [12, IV, Section 3] The lower jump of F//K of Q|P is the
larggst integer  such that Gy, # {1}. Let ¢(i) = |Go| ™' 3__, |G;|. Define
G = G;. Then ¢(h) = h/m. The rational number ¢ = h/m is the upper
Jump; it is the jump in the filtration of the higher ramification groups in the

upper numbering.

Let 7 € Gy have order p and 5 € Gy have order m, so that Gy = (1) x ().
Lemma 2.7. [12, IV, Prop. 9] With notation as above:

1. If B € Gy has order m and h is the lower jump, then f73~! = g'r.

2. Gy 1is contained in the normalizer N¢((T)).

2.4 Alternating groups

Suppose that G is an alternating group A,. Let p < n < 2p so that p? 1 |G].
The following lemmas give an upper bound for the size of the inertia group.

Lemma 2.8. Let 7 = (12...p). Then Na,((1)) = (1) x (Bs) for some
Bo € Ay with | 3] = (p—1)/2.

Proof. Let n, be the number of Sylow p-subgroups of A,; then n, = [4, :
Ny, ({7))]. There are (p—1)! different p-cycles in A, each generating a group
with p — 1 non-trivial elements. It follows that n, = (p — 2)!. Therefore,
[Na,((T)| = p(p —1)/2.

Clearly, (1) C Na,({7)); we show the existence of 3,. Let a € F, with
la] = p — 1. There exists § € S, such that 76~ = 7. The permutation 6
exists since all p-cycles in S, are in the same conjugacy class. Let (3, = 6°.
Then 3, € A, and 3, € Ny, ((7)). Also, for any r,

2r

BorfyT = 6% r6 = 707



Choosing r = (p — 1)/2 shows that @5” “V/2 i contained in the centralizer
Cya,((T)) = (7), and it follows that BEIR —1 1< r< (p—1)/2, then
G5 & Ca,((T)) and thus 3] # 1. It follows that (3, normalizes () in A, and
B, has order (p —1)/2. O

Recall that C, ({(1)) = (7)x H where H = {w € S, : w is disjoint from 7}.

Lemma 2.9. Let 2 < s < p and let 7 = (12...p). Let Hy C S,4s be the
subgroup of permutations of the set {p+1,p+2,...,p+s}. Then there exists
0 € S, such that |0| = p — 1 and Na,, ((T)) is the intersection of A,ys with
((1) x (0)) x Hs.

Proof. The permutation € in the proof of Lemma 2.8 has order p — 1 and
normalizes 7. The elements of Hy commute with 7 and 6. Thus ((1) x (0)) x
H, C Ng,. ((1)). Performing a similar count as for Lemma 2.8, we find that
the number of Sylow p-subgroups in S, is (p + s)!/(slp(p — 1)). Therefore
|Ng,..((T))] = slp(p — 1). Thus ((7) x (f)) x Hy = Ng , ((7)). The result
follows by taking the intersection with A, . O

Note that the order of N4, ((7)) forces 6 to be an odd permutation. Sup-
pose Go = (1) x (8) is a subgroup of A,,,. Then 3 = #'w where w € H, and
w is an even permutation if and only if ¢ is even.

Recall that for an inertia group Gy with p? { |Gy, there is a unique lower
jump h which encodes information about the filtration of higher ramification
groups. The following two lemmas relate the congruence class of A modulo
m to the order of the centralizer Cg, ((7)).

Lemma 2.10. Let 7 : X — P} be an A,-Galois cover which is wildly ramified
at a point Q) above oo with inertia group Go. If |Gyl = pm and 7 has lower
gump h at @, then ged(h,m) = 1.

Proof. Let € A, be such that Gy = (1) x (). Notice that Cg,((1)) = ()
since there are no elements of A, disjoint from 7. Then " & Cg,((7)) for
all 1 <i < m. By Lemma 2.7(1), if 1 < i < m, then 7 # Bir3~% = gihr.
Notice that 8 # 1 which implies that m t ih for each 1 < i < m. Hence
ged(h,m) = 1. O

Lemma 2.11. Let 2 < s < p, and let ¢ : Y — P}, be an A, s-Galois cover
which s wildly ramified at a point ) above oo with inertia group Go. If
|Go| = pm and ¢ has lower jump h at Q, then Cq,((T)) = Z/(p) X Z/(m/)
where m' = ged(h, m).



Proof. Let B € A, be such that Gy = (1) x (). Let m' = ged(h, m). Then
Lemma 2.7(1) implies g™/™ rg=m/m" = gmh/m's — 7 The last equality is
true because |3| = m and h/m’ € Z. It follows that ™™ € Cgq,({7)), that
is (1) x (B™/™) C Ceo({7))-

Suppose that a € (8) N Cg,((7)). Lemma 2.7(1) implies 7 = ara™!
alr. Tt follows that |a| divides h and m, so || divides m’ and a € (™™

;
Hence Cg,((1)) = (1) X (ﬁm/m/>. O

3 Newton Polygons

Suppose f defines a degree n extension F' of k(x) that is ramified above the
place (z). Let F be the splitting field of f over k(z). Let Q be a ramified
place in F above (z). Let Gy be the inertia group of F/k(z) at Q. Let € be
a local parameter of the valuation ring Og. Let vg denote the valuation at
Q.

The Galois extension F/k(z) yields a totally ramified Galois extension of
complete local rings k[[e]]/k[[z]]. Let fo € k[[z]][y] be the minimal polynomial
for e. Let e = e(Q|0) be the degree of f,. Define a polynomial N(z) € Og|z]
such that

eN(z) = fole(z+1) = [] (z - (%)) . (3.1)

w€eGy

Define coefficients b; € Qg such that N(z) = > biz". The Newton
polygon A of N(z) is obtained by taking the lower convex hull of the set of
points {(¢,vg(bi))}5_,. Since f5 is monic, the polygon is a sequence of line
segments with increasing negative slopes.

The next proposition shows that the higher ramification groups of F'/k(x)
at () are determined by the slopes of A. This is not surprising because, as
in [8, Chapter 2|, the Newton polygon of N(z) relates the valuations of
the coefficients and roots of N(z) and the higher ramification groups are
determined by studying the valuation of the roots of N(z).

Proposition 3.1. [11, Thm. 1] Let {Vy, V4, ..., V,} be the vertices of A and
—hy; the slope of the edge joining V;_1 and V;. The slopes are integral and the
lower jumps in the sequence of higher ramification groups are h, < h,_; <
e < hl-



Lemma 3.2. For 1 <t < p—2, let fi,(y) = y* —2y? '+ € k(2)[y].
Let F,/k(x) be the corresponding extension of function fields and ﬁt/k(x) its
Galois closure. Let Q be a place of E, lying over 0. Then e(Q|0) = pm for
some integer m such that p 4 m. Then the Newton polygon A, of E,/k(z) has
two line segments, one having integral slope —m(p —t)/(p — 1) and the other

having slope 0.

Proof. Let G be the Galois group of the extension F,/k(z). Notice that G
is contained in S,; therefore the order of G is strictly divisible by p. The
extension is branched over x = 0. Let P and () be places lying above 0 in F;
and F} respectively. The format of the equation f1+ implies that e(P|0) = p;
let m be the integer such that e(Q]0) = pm. Then p{ m since p* { |G|. Let
G be the inertia group at ). Let x,7, and € be local parameters of O,, Op,
and O respectively. The extension Og/k[[z]] is totally ramified with Galois
group G of order pm.

Field Complete Local Ring Local Parameter
Ft OQ €
| m| |
F; Op n
| 7| |
k(x) k] x

Notice that any root of fi, is a local parameter at P since

yp

) =

p=vp(r) = UP(

Thus we can assume that 7 is a root of f;;. Now consider 7 as an element of
@Q. Then 7 can be expressed as a power series in the local parameter ¢ with
coefficients in k, that is n = u- €™ where u is a unit of @Q. Also u is an m-th
power in the complete local ring @Q so by changing the local parameter € we
can suppose n = €™. It follows that € satisfies the equation

fou(e) = ™ — xemP™) 4 g = 0. (3.2)
The polynomial fy(¢) is Eisenstein at the prime (x). Now we consider

N(2) = foule(z + 1)) = ™z + 1)P™ — zemPD(z 4 1)) £ 2 (3.3)



Dividing both sides of Equation 3.3 by €™ produces a vertical shift by —pm
to the Newton polygon A;. Vertical and horizontal shifts do not affect the
slopes of the line segments of A;. Substituting z = ™ /(¢™P™ — 1) and
letting d = 1/(¢™®=) — 1), then

N(z)

epm

= (z+ 1)P™ — dem=D(z + 1)1 4 g,

Notice that N(0) = 0 so we can factor a power of z from N(z). The effect
on A, is a shift in the horizontal direction by —1. This results in

m— m(p—t)—1
N(Z) § \ m p(m—i)—1 m(p—t) E m(p - t) m(p—t)—i—1
Zem = ( i > z + —de i z .

=0 i=0

Let 27t P™N(z) = Z?Zo_l bjz7. The valuation of each b; is greater than or
equal to zero. The ramification polygon A; is determined by calculating the

valuations of the specific coefficients that determine the lower convex hull of
At:

1. vg(bo) = vo(dmte™P=D) = m(p — t).

2. For1<j<p—1,leti;=m(p—t)—j—1, then

vq(b;) = v (—dem(p_t) ( mip = 1) )) > m(p —t).

L

3. vo(by_1) = vg <m — dem—1) ( m(;(f;)t_)p) )) = 0.

4. UQ(bpm—l) == UQ(l) =0.
The vertices of A; are thus (0,m(p —t)), (p — 1,0), and (pm — 1,0). ]

Lemma 3.3. For 2 < s < p, let g,(y) = v —ay* + 1 € k(z)[y]. Let
Ls/k(x) be the corresponding extension of function fields and f}s/k(x) its
Galois closure. Let Q be a place of L, lying over oco. Then e(Q|oo) = pm
for some integer m such that p t m and the Newton polygon A of Ly/k(x)
has two line segments, one having integral slope —m(p + s)/(p — 1) and the

other having slope 0.



Proof. Let G be the Galois group of the extension L,/k(z). Notice that G
is contained in S,y,; therefore the order of G is strictly divisible by p. The
extension is branched over oo. Let P o) and P« ) be the two places of L,
lying above oo. The format of the equation g, implies that P, o) and P o)
have ramification indices p and s respectively, see e.g., Lemma 4.8. Let () be
a place of Ly lying above Pioo0)- Let m be the integer e(Q]oo)/p. Let Gy be
the inertia group at (). Let 21,7, and € be local parameters of 0,1, OPo
and Og respectively.

)7

Field Complete Local Ring Local Parameter
Ls Q OQ €
| m| | |
L, Pl 0) Ploo,00) OP(OO,O) n
| p\ /s P| |
k(x) 00 k[[z~]] z!

Then Op/k[[z"]] is a totally ramified Galois extension with Galois group

G of order pm. By the same reasoning as for Lemma 3.2, there exists a local

parameter € of O that satisfies €™ = 7. Therefore e satisfies the irreducible
equation

Go.s(€) = €m0 _gems 4 1 = . (3.4)

We calculate the ramification polygon A’ by considering
N(2) = gas(e(z 4+ 1)) = €mPFI (z 4 1)mPFT) _ g™ (2 £ 1)™ + 1. (3.5)
Since N(0) = 0, it follows that
N(z) = [ m e i o [ ms 1
Zemots :(Z+1)ms2< ; )Z”(m D=L (1 4 o)) > ( ; )st 1=

Let z7lemPHIN(2) = Z;”:(f+s)_1bjzj. The valuation of each b; is non-

negative. The ramification polygon A’ is determined when we calculate the
valuations of the specific coefficients that determine the lower convex hull of

A
L. vg(by) = m(p+s).

2. vg(bj) >m(p+s)for1 <j<p-—1.
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3. UQ(bp_l) = 0.

1. 0q(buprs)-1) = .
The vertices of A’ are thus (0, m(p—s)), (p—1,0), and (m(p+s)—1,0). O

4 A,-Galois covers of the affine line

Suppose 7 : X — P} is an A,-Galois cover branched only at oo. The cover
is wildly ramified at each point () € X above co. The complexity of the wild
ramification is directly related to the power of p that divides the ramification
index e(Q]oo). For this reason, we concentrate on Galois groups A, such
that the order of A, is strictly divisible by p. We use some equations of
Abhyankar to study A,-Galois covers when p is odd and p < n < 2p. The
goal is to determine the inertia groups and upper jumps that occur for A,-
Galois covers 7 : X — P branched only at co. This ramification data also
determines the genus of the curve X.

4.1 Two useful lemmas

The following is a version of Abhyankar’s Lemma which will be needed to
construct a G-Galois cover of P;. branched only at co from a G-Galois cover
of P} branched at 0 and oo.

Lemma 4.1 (Refined Abhyankar’s Lemma). Let m, ry, and ry be prime-
to-p integers. Suppose m : X — Pi is a G-Galois cover with branch locus
{0, 00}. Suppose m has ramification index 1 above 0 and inertia group Gy =
Z/(p) x Z/(m) above oo with lower jump h. Let ¢ : P} — P} be an ro-cyclic
cover with branch locus {0,00}. Assume that m and ¢ are linearly disjoint.

Then the pullback ™' = *7 is a G-Galois cover 7' : X' — Py with branch
locus contained in {0, 00}, with ramification index r1/ged(r1, m9) above 0, with
inertia group G, C Gq of order pm/ged(m, ) above oo and with lower jump
hry/ged(m,ry). If o and o’ are the upper jumps of ™ and ' respectively, then
o' = ry0.

Proof. Consider the fibre product:

X « X
T | R
IF’,lg — ]P>,1C
(G



All the claims follow from the classical version of Abhyankar’s Lemma [7,
Lemma X.3.6] except for the information about the lower and upper jumps of
7. Consider the composition ¥7’ which has ramification index pmrs/ged(m, rs)
above co. Since upper jumps are invariant under quotients, the upper jump
of Y7’ equals 0. Thus the lower jump of ¥’ equals omry/ged(m,ry) =
hry/ged(m, ry) by Definition 2.6. This equals the lower jump of 7' since
lower jumps are invariant for subcovers and the claim about the upper jump
of 7’ follows from Definition 2.6. n

The following lemma is useful to compare ramification information about
a cover and its Galois closure. Let S} := Stabg, (1).

Lemma 4.2. If p: Z — W is a cover with Galois closure m: X — W, then
the branch locus of p and of ™ are the same.

Proof. The branch locus of p is contained in the branch locus of 7 since
ramification indices are multiplicative. Assume that b is in the branch locus
of m but not in the branch locus of p. We will show that this is impossible.
The Galois group H of 7 is a transitive subgroup of 5,,, where n is the degree
of p. The Galois group H' of X — Z is a subgroup of H with index n. After
identifying H with a subgroup of .5,,, we can assume without loss of generality
that H C S}. Let Q € X be a ramification point lying above b with inertia
group Gy. Conjugating Gy by an element w € H results in an inertia group
at some point of X above b. Since b is not a branch point of p, we have that
wGow™ C S! for all w € H. This is impossible since H is transitive on the
set {1,2,...,n}. Therefore the branch loci must be the same. ]

4.2 Ap)-Galois covers of the affine line

Let p > 5. In this section, we find A,-Galois covers m : X — P} branched
only at oo with a small upper jump.

Notation 4.3. Let t be an integer with 1 < ¢ < p—2 and let f; = v —y' +x.
Consider the curve Z; with function field F; := k(z)[y]/(f;). Let m : X; — P}
be the Galois closure of p; : Z; — P}; the function field of X; is the Galois
closure Fy of Fy/k(z). Let ¢ be a (p — t)th root of unity.

Abhyankar proved that the Galois group of m; is A, when t is odd and
S, when ¢ is even [2, Section 20]. For the proof, he showed that the Galois
group is doubly transitive on the set {1,2,...,p} and contains a certain cycle
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type. We now study the ramification of the cover m;. The following result
can be found in [2, Section 20].

Lemma 4.4. The cover m; : X; — P} has one ramified point above x = (
with ramification index t and is unramified above all other points of Aj.

Proof. When x = 0 in the equation f;, then y = 0 or y = (* for some
1 <7 < p—t. There are p —t + 1 points in the fibre of p above the point
x = 0 which we denote by Py and Poy),..., o). Since p —t+1 < p,
then x = 0 is a branch point of p.

The value y = 0 is the only solution to df/0y = 0. Therefore P is
the only ramification point above A}. The Galois group H of m; is either S,
or A,. Thus Lemma 4.2 implies that 7, is unramified above all points of A}
except z = 0.

Because p =} p | o e(P | 0), it follows that P ) has ramification index ¢.
Let @ € X, be a point lying above P ). It remains to show that e(Q|Po,0)) =
1.

Let H' be the Galois group of X; — Z;. Without loss of generality we
can suppose that H' C S}. Since p { |H'|, Lemma 2.5 implies that Go(Q|0)
is a cyclic group of order t - ¢ for some prime-to-p integer c.

Assume ¢ # 1. If w is a generator for Go(Q|0); then w & S} since Py ) is
ramified over 0. Then Go(Q|P,)) = (w') C S}. By the assumption on ¢, the
automorphism w' is not the identity. Since H is transitive on {1,2,...,p},
there exists v € H such that y¢'y~" ¢ S

There exists a point Q in the fiber of X, above 0 such that Go(Q|0) =
(v 1¢y). Since vy ¢ S;, the point Q is in the fibre of 7, over 0 but not in

the fibre above Pg). Furthermore, v¢'y~! = (y¢y~')t € Go(Q|0). Hence
Go(Q|0) ¢ S;. Therefore, for some i, the extension Py |0 is ramified. This
gives a contradiction so the assumption that ¢ # 1 is false. m

Lemma 2.5 implies that the inertia group Gq at a point of X; over oo is
of the form Z/(p) x Z/(m) where p t m. To determine the upper jump o of
m; over 0o, we use the equation f; to understand the ramification that occurs
in the quotient map p; : Z; — Pi.

Lemma 4.5. The cover m, : X, — P} has ramification index p(p—1)/ged(p—
1,t — 1) and upper jump o = (p—t)/(p — 1) above cc.
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Proof. Let P, be a point of Z; that lies above co. Then

—e(Py|o0) = vp (x) = vp, (Y — yt) = pup. (y).

Therefore ple(Py|oo) and it follows that p is totally ramified at P..

Consider the change of variables x — 1/x and y +— 1/y. Understanding
the ramification over oo is equivalent to understanding the ramification over
x = 0 of the cover with equation fi;, = y* — zy?~* + z. By Lemma 3.2, the
absolute value of the non-zero slope of the ramification polygon A, of £} /k(z)
is m(p —t)/(p — 1); this is the lower jump by Lemma 3.1. By Definition 2.6,
the upper jump is o = (p —t)/(p — 1).

By Lemma 2.10, h and m are co-prime, therefore h = (p — t)/ged(p —
I,t—1)and m = (p—1)/ged(p — 1,t — 1) and |Gy| = pm. O

Theorem 4.6. For 1 <t < (p—2), let my = (p—1)/ged(p — 1,t(t — 1)).
Then there exists an A,-Galois cover m} : X] — P}, branched only at oo with
ramification index pmy; and upper jump o, = t(p —t)/(p — 1). The genus of
Xiis 14+ [Ap|(t(p — 1) —p — 1/mu) /2p.

Proof. Let di = ged(p — 1,t — 1) and let m = (p — 1)/d;. Consider the
Galois cover m; : X; — P} from Notation 4.3. Lemma 4.4 states that m
has ramification index ¢ above 0 and is unramified above A} — {0}. Lemma
4.5 states that the inertia group Gy above oo has order pm and upper jump
o= (p—1)/(p - 1).

If ¢ is odd, then m; has Galois group A,. Let m* = ged(m,t). Since A,
is simple, the cover 7 is linearly disjoint from the t-cyclic cover ¢ : P} — Py
with equation 2! = x. Applying Lemma 4.1, the pullback 7} = ¢*m; is a cover
7, : X; — P} with Galois group A,. The map 7; is branched only at oo with
inertia group Gy, of order pm/m* and upper jump o; = t(p—t)/(p—1). Notice
that dym* = ged(p — 1,¢(t — 1)), so the inertia group has order pm/m* =
p(p —1)/ged(p — 1, t(t — 1)).

If ¢ is even, then 7, has Galois group S,. Let Y; be the smooth projective
curve corresponding to the fixed field FtAP. Let py : Xy — Y; be the subcover
with Galois group A,.

The branch locus of the degree 2 quotient cover Y; — P} is contained
in {0,00}. The ramification index must be 2 over both 0 and co. By the
Riemann-Hurwitz formula, Y; has genus 0. Therefore p; : X; — IP)}c is an
A,-Galois cover of the projective line.
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Let Py (resp. Py ) be the point of Y; above 0 (resp. 0o). Since ramification
indices are multiplicative, p; has ramification index ¢/2 over Py and |Gy|/2
over P,. It can be seen that |Gy|/2 = pm/2 is an integer from Lemma 4.6
since t is even. The lower jump of p; is the same as the lower jump of m
since lower jumps are invariant under subextensions. Therefore the upper
jump of y; is 20.

The cover i is linearly disjoint from the ¢/2-cyclic cover ¢ : P}, — P}
with equation z/2 = x. Let m = ged(m/2,t/2). Applying Lemma 4.1,
the pullback 7, = 9*u,; is an A,-Galois cover 7, : X; — Pi. The map
m; is branched only at co where it has inertia group Gy of order pm/(2m)
and upper jump o; = t(p —t)/(p — 1). Notice that pm/2m = pm/m*, so
Gl = p(p —1)/ged(p — 1L, t(t — 1)).

The genus calculation is immediate from the Riemann-Hurwitz formula,
Theorem 2.4. O

The smallest genus for an A,-Galois cover obtained using the method of
Theorem 4.6 is

g=1+|A4,|(p* —5p+2)/2p(p — 1).

This occurs when t = 2 or t = p—2 and the upper jumpis o = 2(p—2)/(p—1).
To see this, consider the derivative do/dt = (p — 2t)(p — 1). Since this value
of o is less than 2, it is possible that this is the smallest genus that occurs
among all A,-Galois covers of the affine line. We find A,-Galois covers with
slightly larger upper jumps in Section 5.4.

4.3 A, s-Galois covers of the affine line

In this section, we find A,-Galois covers of the projective line branched only
at co with small upper jump when p is odd and p < n < 2p.

Notation 4.7. Let s be an integer with 2 < s < p. Consider the group
A, 1 of even permutations on p + s elements and the subgroup H, C S, of
permutations on {p+ 1,p+2,...,p+ s}. Let gs = y*** — zy* + 1. Consider
the curve Z, with function field Ly := k(z)[y]/(gs). Let ¢ : Yy — P} be the
Galois closure of p, : Z! — Pj}; the function field of Y is the Galois closure
L, of Ly/k(x).

Abhyankar proved that the Galois group of ¢, is A, except when p =7
and s = 2 [2, Section 11]. The following result can be found in [2, Section
21].
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Lemma 4.8. The cover pl, is branched only at co. The fibre over oo con-
sists of two points Pl o) and P o) which have ramification indices p and s
respectively.

Proof. There are no simultaneous solutions to the equations g; = 0 and
dgs/0y = 0. Therefore the cover p’, is not branched over any points of A}.
Since the tame fundamental group of A} is trivial, p, must be wildly ramified
above oco. The fibre of Z over oo consists of two points P 0y and P oo).-
The first point can be seen by applying the change of variables z +— 1/x to
gs. This produces the equation xy?** — y* + x. Taking the partial derivative
with respect to y yields the point P ). The second point can be seen by
applying the change of variables y — 1/y to xy?*® — y® + = resulting in the
equation x —yP +zyP**. Taking the partial derivative with respect to y yields
the point P ). To show that e(P«0)|00) = p and (P 00)|00) = s, let P
be either P ) or Pis,) and consider the valuation vp. The result follows
since

—¢(Ploo) = vp(x) = v(y’ +y~°) = min{pvp(y), —svp(y)}-
O

Theorem 4.9. Let 2 < s < p. If p =7, assume s # 2. Let mg = (p —
1)s/ged(p—1,s(s+1)). Then there exists an A,y s-Galois cover ¢ : Yy — Py
branched only at oo with inertia group Go of order pmg and upper jump
os=(p+s)/(p—1). The genus of Ys is 1 + |Apis|(s — 1/my)/2p.

In [4, Cor. 2.2], the author proves that the genus of Y, in Theorem 4.9
is the smallest genus that occurs among all A, -Galois covers of the affine
line.

Proof. Consider the cover ¢ : Yy — P} defined in Notation 4.7. Abhyankar
proved that ¢, has Galois group A,;s [2, Section 11]. By Lemmas 4.2 and
4.8, 0o is the only branch point of ¢s. Let @) be a point of Y; lying above
0o. The cover ¢, is wildly ramified at Q with p* { e(Q|oc). By Lemma 2.5,
the inertia group Gy at @ is of the form Z/(p) x Z/(m) for some prime-to-p
integer m.

Let h be the lower jump of ¢, at (). The Newton polygon of ¢, is the
same as the Newton polygon A’ calculated in Lemma 3.3. Therefore, h =
m(p+s)/(p—1), because this is the negative of the slope of the line segment
of A’. By Definition 2.6, the upper jump is o, = (p +s)/(p — 1).
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Write m = m/m” where m’ is the order of the prime-to-p center of Gy.
Lemma 2.7(1) implies that m’ = ged(h, m). Since h/m = o, = (p+s)/(p—1),
it follows that m” = (p — 1)/ged(p — 1, s + 1).

Without loss of generality, we can suppose that 7 = (12...p) € Go. By
Lemma 2.9, Gy = (1) x (3) for some (3 of the form 3 = 6'w. Recall that
0 € S, acts faithfully by conjugation on 7 and w € H, commutes with 7.
The inertia group Gy acts transitively on {p+1,p+2,...,p+ s} by Lemma
4.8. Thus w is a cycle of length s.

The order of 3 is m, the order of 8% is m”, and the order of 3 is s. Thus
m = lem(m”, s). It follows that m’ = s/ged(p—1, s) and m = (p—1)s/ged(p—
1,5(s+1)). The genus calculation is immediate from the Riemann-Hurwitz
formula, Theorem 2.4. Il

5 Applications

5.1 Support for the Inertia Conjecture

In this section, we first give a new proof of Abhyankar’s Inertia Conjecture
for the group A,; this proof does not use the theory of semi-stable reduction.
Then we prove Abhyankar’s Inertia Conjecture for the group A, for an odd
prime p = 2 mod 3.

Corollary 5.1. [5, Cor. 3.1.5] Let p > 5. Abhyankar’s Inertia Conjecture is
true for the alternating group A,. In other words, every subgroup Gy C A, of
the form Z/(p) x Z/(m) can be realized as the inertia group of an A,-Galois
cover of P}, branched only at .

Proof. Suppose Gy C A, satisfies the conditions of Conjecture 1.1. Since
p*1|A,|, then Gy ~ Z/(p) x Z/(m) for some prime-to-p integer m. Thus the
second claim implies the first.

Consider a subgroup Gy C A, of the form Z/(p) x Z/(m). The goal
is to show that Gy is the inertia group of an A,-Galois cover of the affine
line. Without loss of generality, we can suppose that 7 = (12...p) € Go.
By Lemma 2.7(2), Gy C N4, ((7)). Lemma 2.8 implies that N, ~ Z/(p)
Z)((p—1)/2)

It thus suffices to prove, for every m | (p — 1)/2, that there exists an
A,-Galois cover of the affine line, with an inertia group of order pm. Letting
t = 2, Theorem 4.6 shows the existence of such a cover my, with an inertia
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group of order p(p —1)/2. Since A, is simple, 7y is linearly disjoint from the
degree 15 cyclic cover of P} which is branched at 0 and co. The proof then
follows by Lemma 4.1, taking ro = (p — 1)/2m. O

Corollary 5.2. If p = 2 mod 3 is an odd prime, then Abhyankar’s Inertia
Congecture is true for G = A,yo. In other words, every subgroup Gy C Apyo
of the form Z/(p) x Z/(m) can be realized as the inertia group of an Apio-
Galois cover of P;. branched only at oo.

Proof. Suppose Gy C A,;2 satisfies the conditions of Conjecture 1.1. Since
p? 1 |Apial, then Gy ~ Z/(p) x Z/(m) for some prime-to-p integer m. Thus
the second claim implies the first.

Consider a subgroup Gy C A,45 of the form Z/(p) x Z/(m). The goal
is to show that Gy is the inertia group of an A,,,-Galois cover of the affine
line. Without loss of generality, we can suppose that 7 = (12...p) € Go.
By Lemma 2.7(2), Gy C Na,.,((7)). By Lemma 2.9, Ny ,((1)) = (1) x (3)
where 3 = 0(p+1 p+2). Recall that 6 is an odd permutation of order p — 1
defined in the proof of Lemma 2.8.

It thus suffices to prove, for every m | (p — 1), that there exists an A, o-
Galois cover of the affine line, with an inertia group of order pm. Letting
s = 2, Theorem 4.9 shows the existence of such a cover ¢, with an upper
jump o9 = (p+2)/(p—1). Since p = 2 mod 3, the upper jump oy is written
in lowest terms and thus m = p — 1. Since A,., is simple, ¢, is linearly
disjoint from a degree ry cyclic cover of P, which is branched at 0 and oo.
The proof then follows by Lemma 4.1, taking ro = (p — 1)/m. [

When s > 2, more equations are needed to prove Abhyankar’s Conjecture
for A, because the normalizer Ny, ((7)) contains more that one maximal
subgroup of the form Z/(p) x Z/(m).

5.2 Formal Patching Results

Suppose 7 : X — P} is a G-Galois cover which is wildly ramified above oo
with last upper jump o. Using the theory of formal patching, it is possible
to produce a different G-Galois cover with the same branch locus, but with a
larger upper jump above co. The formal patching proof is non-constructive
and we do not describe it in this paper. Here are the results that we will use:
the first allows us to change the congruence value of the lower jump modulo
m and the second allows us to increase the lower jump by a multiple of m.

18



Lemma 5.3. [5, Prop. 3.1.1] Suppose m : X — P} is a G-Galois cover
branched only at oo with inertia group Gy = Z/(p) x Z/(m) with p t+ m
and with lower jump h. For each d € N such that 1 < d < m, let mgq =
m/ged(m, d) and hq = dh/ged(m,d). Let G C Gy be the subgroup of order
pmg. Then there exists a G-Galois cover ©' : X' — Py branched only at 0o
with inertia group G and lower jump hq. If o and o’ are the upper jumps of
m and 7 respectively, then o’ = do.

Theorem 5.4. [9, Special case of Theorem 2.5.1] Let m : X — P} be a
G-Galois cover branched only at oo with inertia group Z/(p) x Z/(m) and
upper jump o = h/m. Then for i € N with gcd(h + im,p) = 1, there exists
a G-Galois cover branched only at oo with the same inertia group and upper
jump o' = o +1.

5.3 Realizing almost all upper jumps for A,.,-Galois
covers

Here are the necessary conditions on the upper jump of an A, ,-Galois cover
of the affine line.

Notation 5.5. Let 2 < s < p. Suppose ¢ : ¥ — Pi is an A, -Galois
cover branched only at oo where it has upper jump o = h'/m” written in
lowest terms. Then o satisfies these necessary conditions: ¢ > 1; p{ h'; and

m”|(p—1).
Corollary 5.6. Suppose 2 < s < p and ged(p — 1,s + 1) = 1. Then all
but finitely many rational numbers o satisfying the necessary conditions of
Notation 5.5 occur as the upper jump of an A,s-Galois cover of P} branched
only at oco.

Proof. Theorem 4.9 implies that there exists an A,,Galois cover of P}
branched only at oo with upper jump o5 = (p + s)/(p — 1). The condi-
tion on s implies that o is written in lowest terms and thus m” = p — 1. The
corollary then follows from Lemma 5.3 and Theorem 5.4. O

5.4 Realizing lower jumps for A,-Galois covers with
inertia Z/(p)

Question 5.7. Suppose G is a quasi-p group whose order is strictly divisible
by p. For which prime-to-p integers h does there exist a G-Galois cover
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7 : X — P} branched only at oo with inertia group Z/(p) and lower jump h?

By Theorem 5.4, all sufficiently large prime-to-p integers h occur as the
lower jump of a G-Galois cover of the affine line with inertia Z/(p). The
question is thus how large h needs to be to guarantee that it occurs as the
lower jump of such a cover. In [5, Thm. 3.1.4], the authors prove that every
prime-to-p integer h > p — 2 occurs as the lower jump of an A,-Galois cover
of the affine line with inertia group Z/(p). The next corollary improves on
that result.

Corollary 5.8. Let p > 5. Let hg = (p+ 1)/ged(p + 1,4). There exists an
A,-Galois cover of Py branched only at oo with inertia group Z./(p) and lower
gump h for every prime-to-p integer h > hy.

Proof. It suffices to prove that there exists an A,-Galois cover of the affine line
with inertia group Z/(p) and lower jump hg; once this small value is realized
for the lower jump of such a cover, then all larger prime-to-p integers occur
as the lower jump of such a cover by Theorem 5.4. Note that the upper and
lower jumps are equal when the inertia group has order p.

Let t = (p—1)/2. Then ged(p—1,t(t—1)) equals (p—1)/2if p =1 mod 4
and equals p — 1 if p = 3 mod 4. Consider the A,-Galois cover 7, : X; — P}
in Theorem 4.6 which is branched only at co. If p = 3 mod 4, then 7, has
inertia group of order p and upper jump (p+ 1)/4. When p = 1 mod 4, then
m has inertia group of order 2p and upper jump (p+1)/4. In the latter case,
taking d = 2 in Lemma 5.3 yields an A,-Galois cover of the affine line with
inertia group of order p and upper jump (p+ 1)/2. ]

We now provide a partial answer to Question 5.7 for all other alternating
groups whose order is strictly divisible by p.

Corollary 5.9. Let 2 < s < p. Ifp =7, assume s # 2. Let hy = s(p +
s)/eged(p — 1,s(s + 1)). There exists an A, s-Galois cover of P; branched
only at oo with inertia group Z/(p) and lower jump h for every prime-to-p
integer h > hg.

Proof. By Theorem 4.9, there exists an A, -Galois cover ¢g : Yy — P}
branched only at co with inertia group Gg of order pm, and upper jump
o, = (p+3)/(p—1) where my = (p — 1)s/ged(p — 1,s(s + 1)). Applying
Lemma 4.1 with ro = m, produces an A, ,-Galois cover of the affine line
with inertia group Z/(p) and lower jump hg. This completes the proof by
Theorem 5.4. ]
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Corollary 5.10. Let p # 7 be an odd prime. Let hy = 2(p+2)/ged(p—1,3).
There exists an A,y 1-Galois cover of P} branched only at oo with inertia
group Z/(p) and lower jump h for every prime-to-p integer h > hy.

Proof. By Theorem 4.9, letting s = 2, there exists an A, o-Galois cover
¢2 : Yo — P} branched only at oo with inertia group Gy of order pmsy and
upper jump os = (p+2)/(p—1) where my = (p—1)/ged(p—1, 3). The lower
jump h of ¢y equals (p +2)/ged(p —1,3).

Consider the A, ;-Galois subcover ¢ : Yo — Z) of ¢,. It is branched
above P ) where it has ramification index my and above P ) where it has
ramification index pmsy /2. The lower jump of gz; above P o) equals the lower
jump h of ¢5. The upper jump of ¢ is thus & = 2(p + 2)/(p — 1). Applying
the Riemann-Hurwitz formula to ¢ and ¢, we note that Z4 has genus 0.
Another way to see this is that the equation g, yields that z = (y?™* 4+ 1) /ys
and so the function field of Z} is Lo =~ k(y).

Thus ¢ is an Ap11-Galois cover of the projective line branched at two
points. Note that ¢ is disjoint from an moy-cyclic cover of the projective line
branched at {0,00}. Applying Lemma 4.1 with 7o = my removes the tamely
ramified branch point. In particular, it yields a Galois cover ¢’ : Y] — Pi
branched only at oo, with ramification index p. The upper (and lower) jump
of ¢ is 0’ = my& which equals 2(p + 2)/ged(p — 1,3). This completes the
proof by Theorem 5.4. [

5.5 Realizing small upper jumps for A,-Galois covers

The upper jump ¢ = h/m of an A,-Galois cover of the affine line satisfies
the necessary conditions o > 1, ged(h,m) =1, m | (p—1)/2,and p{ h. As a
generalization of Question 5.7, we can ask which o satisfying the necessary
conditions occur as the upper jump of an A,-Galois cover of the affine line.

In [5, Thm. 2], the authors prove that all but finitely many o which satisfy
the necessary conditions occur as the upper jump of an A,-Galois cover of
the affine line. That result generalizes both Corollary 5.8 (where m = 1)
and Corollary 5.1 (which can be rephrased as stating that all divisors of
(p—1)/2 occur as the denominator of o for such a cover). Specifically, given
a divisor m of (p — 1)/2 and a congruence value of h modulo m, [5, Thm.
3.1.4] provides a lower bound on h above which all 0 = h/m (satisfying the
necessary conditions) are guaranteed to occur. The bound is a(p — 2) where
a is such that 1 < a <m and ¢ = —h mod m.
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p | o obtained from [5, Thm. 3.1.4] o unknown from [5] Theorem 4.6

5! 3,4,6, ... 2 None
3/2,7/2,9/2,... None

7 5,6, 8,... 2,3, 4 2,3, 4
5/3, 8/3, 10/3,. .. 4/3

11 9, 10, 12,. .. 2,3,4,5,6,7,8 3,4,5,6,7,8
9/5, 14/5, 19/5,. .. 6/5, 7/5, 8/5, 12/5 12/5

13 11, 12, 14, 15.. .. 2.3...10 345 6,78 9 10
11/2, 15/2, 17/2. .. 3/2, 5/2, 7/2, 9/2 5/2,7/2,9/2
11/3, 14/3, 17/3,. .. 4/3,5/3,7/3,8/3,10/3 10/3
11/6, 17/6, 23/6,. .. 7/6

Theorem 4.6 improves on [5, Thm. 3.1.4] by providing some new val-
ues of ¢ which were not previously known to occur as the upper jump of
an A,-Galois cover of the affine line. Corollary 5.8 is an example of that
improvement; here are two more examples.

Example 5.11. Small primes: The first column of the table shows the values
of o that are achieved in [5, Thm. 3.1.4]. The second column contains rational
numbers satisfying the necessary conditions whose status was not known from
[5]. The final column contains new values of o which are guaranteed to occur
in Theorem 4.6.

Example 5.12. Suppose p = 1 mod 3 and m = (p — 1)/6 and h = —1 mod
m. Then the lower bound on h to guarantee that h/m occurs as the upper
jump of an A,-Galois cover of the affine line from [5, Thm. 3.1.4] is p —2 and
from Theorem 4.6 is (p — 3)/2. Suppose p =2 mod 3 and m = (p—1)/2 and

= —3 mod m. Then the lower bound on h to guarantee that h/m occurs as
the upper jump of an A,-Galois cover of the affine line from [5, Thm. 3.1.4]

is 3(p — 2) and from Theorem 4.6 is 3(p — 3)/2.

Proof. The previous lower bounds are a direct application of [5, Thm. 3.1.4].
For the new lower bounds, when ¢ = 3, then Theorem 4.6 states that o3 =
3(p—3)/(p—1) occurs as an upper jump of an A,-Galois cover of the affine
line. If p = 1 mod 3, then m = (p —1)/6 and h = (p — 3)/2; (note that
h = —1modm). If p=2mod 3, then m = (p—1)/2 and h = 3(p — 3)/2;
(note that h = —3 mod m). O
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