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Abstract

The Hasse Weil bound restricts the number of points of a curve which are defined over a finite field; if the
number of points meets this bound, the curve is called maximal. Giulietti and Korchmaros introduced a curve
Cs which is maximal over Fse and determined its automorphism group. Garcia, Guneri, and Stichtenoth
generalized this construction to a family of curves C,, indexed by an odd integer n > 3, such that C, is
maximal over F 2n. In this paper, we determine the automorphism group Aut(C,) when n > 3; in contrast
with the case n = 3, it fixes the point at infinity on C,. The proof requires a new structural result about
automorphism groups of curves in characteristic p such that each Sylow p-subgroup has exactly one fixed
point.

keywords: Weil bound, maximal curve, automorphism, ramification.

MSC:11G20, 14H37.

1. Introduction

In this paper, we prove a group-theoretic result which produces a new structural result about automor-
phism groups of curves X in positive characteristic p. These theorems are closely related to the main results
of [2,8,14]. The main idea is to analyze the automorphism group A of a curve X having genus at least 2
under the following conditions: there is a Sylow p-subgroup @ of A, which contains an elementary abelian
subgroup of order p?, such that the action of Q fixes exactly 1 point of X and whose other orbits on X all
have size |@Q|]. The result is that the center M of N4(Q) is a (possibly trivial) prime-to-p subgroup which is
normal in A, and either A fixes a point of X or A/M is almost simple and there is a short list of possibilities
for its socle. The proof uses TI subgroups and the classification of finite simple groups.

Our motivation for this result was to determine the automorphism groups of the infinitely many new
maximal curves discovered by [7] and [5]. Chinburg has already found another application of this result in
classifying automorphism groups of Katz-Gabber covers.

To describe our main application, let ¢ = p* be a power of a prime and let X be a smooth connected
projective curve of genus g defined over F,2. The Hasse-Weil bound states that the number of points of A
defined over F 2 is bounded above by ¢?+142gq. A curve which attains this bound is called an F2-maximal
curve. The curve H, with affine equation 2% + z — y9™! = 0 is known as the Hermitian curve and has been
well studied. It is maximal over Fg 2, and thus maximal over Fg2n for n > 3 odd [20, VI, 4.4]. It has genus
q(q — 1)/2, the highest genus which is attainable for an F,2-maximal curve. It is the unique F,2-maximal
curve of this genus.

Let n > 3 be odd and let m = (¢™ +1)/(¢+1). The curve &,, with affine equation y? —y— 2™ =0 has
genus (¢ — 1)(¢™ — ¢)/2. In [1, Thm. 1], the authors proved that X, is F,2n-maximal.

For n > 3 odd, define C,, to be the normalization of the fiber product of the covers of curves H, — ]13’11/
and X,, — IF’;. The curve Cs is isomorphic to the curve introduced in [7]. Giulietti and Korchmaros proved
that Cs is maximal over F,e using the natural embedding theorem [15] which states that every F,2-maximal
curve is isomorphic to a smooth absolutely irreducible curve of degree ¢ + 1 embedded in a non-degenerate
Hermitian variety. They also proved that Cs3 is not covered by any Hermitian curve. Garcia, Guneri, and
Stichtenoth proved that the genus of C,, is (¢ — 1)(¢"*! + ¢ — ¢*)/2 and that C,, is F 2«.-maximal for n > 3
[5]. Recently, Duursma and Mak proved that C,, is not Galois covered by the Hermitian curve Hen if ¢ is
odd [4].

In this paper, we study the geometric automorphism groups of the curves C,, which we denote by Aut(Cp,).
In [7, Thm. 6], the authors determined the automorphism group Aut(C3) when ¢ = 1 mod 3 and found a
normal subgroup of index 3 in Aut(Cs) if ¢ = 2 mod 3. This automorphism group is very large compared to
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the genus ge, of Cs, i.e., Aut(Cs) > 24gc,(gc, — 1). There is no point of Cz fixed by the full automorphism
group.

In this paper, we determine the automorphism group of C,, for n > 3 odd. A consequence of our results
is that all automorphisms of C,, are defined over F2~». The structure of the automorphism group when n > 3
turns out to be quite different from the case when n = 3.

Theorem 1.1. Suppose n > 3 is odd. The automorphism group Aut(C,) fizes the point at infinity on C,
and is a semi-direct product T' of the form @Q x X where ¥ is a cyclic group of order (¢" + 1)(¢ — 1) and Q
is a non-abelian group of order ¢>.

We describe the structure of T' precisely in Section 2.2. Since |Aut(C,,)| = ¢®>(¢™ +1)(g¢ — 1) and the genus
of C, is (¢ — 1)(¢"* + ¢™ — ¢*)/2, Theorem 1.1 implies that |[Aut(C,)| grows more than linearly in g(C,),
surpassing the Hurwitz bound for large ¢. Since |Q] is relatively small, Theorem 1.1 also shows that the
order of the automorphism group is mostly prime-to-p. This contrasts with the situation in many recent
papers about curves whose automorphism group is large [16-18].

Here is the outline of the proof. Using [12, Thm. 12.11], we first show that Aut(X,,) fixes the point
at infinity on X, and is a semi-direct product of the form (Z/p)?" x ¥ where ¥ is a cyclic group of order
(g™ +1)(q¢ — 1), see Proposition 2.10. The next step is to study the inertia group Ic, at the point at infinity
P, for the cover C,, — C,/Aut(C,). Using ramification theory, we prove in Proposition 3.10 that I, has
the structure of the semi-direct product I' = @) x ¥ described in Theorem 1.1. By studying the orbits of I"
on C,, we prove that the Sylow p-subgroups of Aut(C,,) are isomorphic to @ in Proposition 3.12. The first
difference from the case n = 3 occurs in Proposition 3.14, where we prove that not all automorphisms of the
Hermitian curve H, lift to automorphisms of C,, when n > 3.

To finish the proof of Theorem 1.1, we apply the new structural result, Theorem 3.19, about automorphism
groups of curves in positive characteristic as described above. This structural result relies on the group-
theoretic result found in Theorem 3.16. The case ¢ = 2 is handled separately in Proposition 3.20. See
Sections 3.6 and 3.7 for precise details. All these results are combined in Section 3.8 to prove Theorem 1.1.

This paper can be found on the archive at arXiv:1105.3952; in November 2011, Giineri, (")zdemir, and
Stichtenoth sent us an alternative proof of Theorem 1.1 which uses Riemann-Roch spaces [11].

We would like to thank Tim Penttila for helpful conversations. The first author was partially supported
by NSF grant DMS-1001962. The third author was partially supported by NSF grant DMS-1101712.

2. Automorphisms of C,, and X,

2.1. Geometry of C,, and X,
Recall that ¢ = p", that n > 3 is odd, and that m = (¢" + 1)/(¢ + 1). Recall that H, and X,, are the

smooth projective curves with affine equations
H, : 2l4+z—ytt =0, (2.1)
X, yq2 —y—z"=0. (2.2)

Define C,, to be the normalization of the fiber product of the covers of curves H, — ]P’Zl/ and X, — ]le/ as
illustrated in the following diagram:

Chn= XoxpH, — X,
! !
Hq — ]P’;.

Remark 2.1. The curve C3 was initially presented as the intersection in P3 of two hypersurfaces [7]. The
projective curve in P? given by the homogenization of the equations 29 +z —y*! and qu —y— 2" is smooth
only when n = 3. For n > 5, the curve has a cusp type singularity.

Let oo, be the point at infinity on Py

Lemma 2.2. The curve X, has a unique point ooy, in the fiber above co,. The curve C,, has a unique point
P in the fiber above co,.



Proof. The Z/m-Galois cover X,, — ]P’}J is totally ramified above oo,. The cover H, — IE”; is totally ramified
above 0o, with ramification index ¢. Since ¢ and m are relatively prime, gm divides the ramification index
of any point over oo, in the cover C,, — ]P)ll/. Since the degree of C,, — IP; is gm, this implies that there can
only be a single point P in C,, above co,. O

Applying the Riemann-Hurwitz formula to the cover C,, — H, shows that the genus of C,, is (¢—1)(¢" ' +
q" — ¢*)/2. In [5], Garcia, Guneri, and Stichtenoth used the fiber product construction to study the fibers
above F 2n-points of Hy and X, and thereby proved that C,, is F2n-maximal.

To summarize, the genera and numbers of IF2n-points for the curves &, and C,, are:

9x, = (¢ = (¢" —9)/2, #Xn(Fgan) = "+ —q" 2 + g1 4 1,
ge, = (a =@ +q" = ¢*)/2, #Cp(Fgen) = "2 = ¢" "> + "2 + 1.

2.2. Subgroups of Aut(C,)
Let a,b € Fy2 be such that a? +a = b2*!, Define

1 b a
Qup=1| 0 1 b
0 0 1

Let @ = {Qap | a,b € Fp2, a?+a = b9} Note that @ is a subgroup of the special unitary group
SU(3,¢?) and that
1 (b+d)? a+c+bld

QapQea=1 0 1 b+d = Qatctbidbrd-
0 0 1

This implies that @ is not abelian, since Qg 5Qc,a = Q¢,dQa,b if and only if b9d = d?b, which is not true for
arbitrary b,d € Fge.

The order of @ is ¢ since there is a bijection between @ and the F-rational affine points of H,. It
is known that @ has exponent p if p # 2 and exponent 4 if p = 2. The center of Q is Z = {Qqu0 | @ €
Fg2, a?+a =0},

Lemma 2.3. The subgroup Z is isomorphic to (Z/p)".

Proof. First, |Z| = ¢ = p" since a?+a = Tr(a) = 0 has ¢ solutions a € F2. To check that Z is abelian, note
that

Qa,0Qb,0 = Qa+b,0 = Qb,0Qa,0-
Finally, Z has exponent p because () has exponent p when p # 2 and because Qgﬁo = Qo0 when p=2. [O

Lemma 2.4. The quotient group Q/Z is isomorphic to (Z/p)*".
Proof. First, Q/Z is abelian since for Qq 5, Qc,q € @, the commutator Q;iQ;imeQc,d isin Z:
Q;};Q;i@a,b@a,d = Qaitcitbid,—b—dQatctbidp+d
= Qaq+a+cq+c+2qu—(b+d)q+1,O € Z.

The order of Q/Z is p*" by Lemma 2.3. Finally, Q/Z has exponent p because @ has exponent p when p # 2
and because Qib = Qpat+1,9 € Z when p = 2. O

The group @ acts on the curve C,. Let (z,y, z) denote an affine point of C,,. Define
Qap: x+— x4+ by + a, yr—y+b, Z .

Lemma 2.5. The group @ is contained in Aut(C,) and the quotient curve C,/Q is a projective line. Fur-
thermore, Cp,/Z = X,,.



Proof. Note that @) stabilizes H,. Let (x,y) be an affine point of H,. Then

Qan(@)? + Qup(®) — Qup()™™ = 2742+ y? + by +a’ +a— (y+b)*H!
= YT by by + 07— (y + b)T
0.

In addition, @ stabilizes X,,. Let (y, z) be an affine point of X,,. Then

2 2 2
Qap(y)" = Qap(y) = Qap(z)™ = y" —y+" —b—2"
2
=yt —y—2"
0.

So @ stabilizes the fiber product C,.
The quotient curve C,/Z is X, because K(&,,) is fixed by Z and |K(C,,) : K(X,)| = ¢ = |Z]. A similar
argument shows that K(C,,/Q) = K(z), and so C,/Q is a projective line, denoted PL. O

Let ¢ € p(gn41)(g—1) be a (¢" + 1)(¢ — 1)-st root of unity. Define g¢ by
9g¢ - L= an-Hxv y ="y, z = (z.

Note that (9" is a (g — 1)-st root of unity, so an element of F,. Therefore (¢¢"+1)4 = ¢4"+!. The group
Y ={g¢ | € € pgn+1)(q—1)} is a cyclic group of order (¢" +1)(¢ —1). Define M C X to be the subgroup of
order m = (¢" +1)/(¢g+ 1) and N C ¥ to be the subgroup of order ¢" + 1.

Lemma 2.6. The group X is contained in Aut(Cy). The quotient curves C, /% and C, /N are projective lines
and Cp /M =H,.

Proof. Note that ¥ stabilizes H,. Let (x,y) be an affine point of H,. Then

gc(x)q + 9((33) _ gg(y)‘”l — Cq(q”“)xq + Cq”+1x _ Cq"+1yq+1
— Cq”+1($q 4L yq+1)
0.

Also ¥ stabilizes X,. Let (y, z) be an affine point of X,,. Then

2 2 2
9cW)" = 9c(y) = gc(2)™ = Myt =My =T
2 2
= (MY —y =2
2
= "y —y—2")
= 0.

So ¥ stabilizes the fiber product C,,. Therefore ¥ C Aut(C,).

As before, K(C,,/M) = K(H,) and K(C,/N) = K(z). So C,/N is a projective line denoted PL. Also
K(C, /%) = K(u), where u = 297!, and so C, /¥ is a projective line denoted P. O
Lemma 2.7. There is a homomorphism ¢ : ¥ — Aut(Q) given by gc — ¢, where ¢ : Qqp — gCQ%bgC_l.
Proof. Let g € ¥ and Qq € @ as above. Then

Ve(Qap): @ > @by aCe
y = y+ "o
z z.

Since ¢4"*+1=™ = (¢™)4, this means that Ye(Qap) = Qcant1q,cmp- This is a well-defined element of @ because

(Cmp)T = (U = ¢ (a4 a?) = (U a+ (¢ ).



By Lemma 2.7, the group generated by () and X is a semi-direct product I' := @) x4 3.
Proposition 2.8. The group Aut(C,) contains a subgroup isomorphic to the semi-direct productT' = Q X4 X.

Proof. By Lemmas 2.5 and 2.6, Q and X are contained in Aut(C,). By Lemma 2.7, 3 normalizes @ in
Aut(C,). Since |@Q| and |X| are relatively prime, the group generated by ¥ and @ in Aut(C,,) is a semi-direct
product I' = @ x4 3. O

2.3. Quotients of Cy,

The semi-direct product I' = Q) x4 X is not a direct product, but it does contain several subgroups which
are direct products.

Lemma 2.9. An element g € ¥ commutes with every element of Q (resp. Z) if and only if g € M (resp.
N). The group T contains subgroups isomorphic to Q x M and Z x N. The center of T is M.

Proof. Notice that
gCQa,bggl = QCQ"-HU,,CMb'

For b # 0, we have g¢Qa9; ' = Qa, if and only if gc € M. If b = 0, then g¢Qa09; ' = Qa, if and only if
gc € N. All the claims follow from these conjugation computations. O

The following diagram summarizes the coverings described above:

q ¢
— — IP’;
m !
— IP%

!
E'?‘_te@‘_ :><

!

The numbers next to the arrows are the degrees of the coverings. The projective line P} denotes the curve
Cn/(Z x N), where K(C,/(Z x N)) = K(w) with w = y9T!. The projective line P} denotes the curve
Cn/(Q x M), where K(C,,/(Q x M)) 2 K(t) with ¢t = 2™.

2.4. The automorphism group of X,
Proposition 2.10. The automorphism group of X, fizes the point at infinity and Aut(X,) = (Q/Z) x4 X.

Proof. Let Ix, be the inertia group at the point at infinity coy, of the cover X,, — X, /Aut(X,). The curve
X, is defined by the equation A(y) = B(z), where A(y) = y? — y and B(z) = 2™. Notice that A(y) has
the property that A(y +a) = A(y) + A(a) for a € Fp2. Automorphisms of this kind of curve are studied in
[12, Chapter 12] (under the unnecessary hypothesis that they are defined over F,2.) By [12, Thm. 12.11], all
(geometric) automorphisms of X, fix ooy, , so Aut(&X,) = Ix,.

We follow the proof of [12, Thm. 12.7] to describe automorphisms « € Iy, . First, Iy, is a semi-direct
product of a cyclic subgroup H of order prime-to-p with a normal subgroup G; which is a p-group by
[19, Chapter IV, Cor. 4]. The automorphism « preserves each of the linear series |¢?ccy, | and |mooy, |. If
m > ¢* (the other case is similar), this implies that a(z) = cz + d and a(y) = ay + Q(z) with a,c,d € F,
and Q(z) € Fp[z] with deg(Q(z)) < m/q*>. Then A(ay + Q(z)) — B(cz + d) must be a constant multiple of
A(y) — B(z). Studying the leading terms shows that a?’ =a=cm and soa € F,2 and ¢ € Fy2n. The next
term shows that d = 0 and Q(z) is a constant in F,2. Thus |H| divides (¢ — 1)(¢" + 1) and |G4| divides ¢*.
Now Z is normal in I" and X, =C,,/Z, so (Q X4 X)/Z C Aut(X,). Thus Iy, = (Q/Z) x4 X. O



3. The automorphism group of C,,

Giulietti and Korchmaros determined the automorphism group for the curve Cs.

Theorem 3.1. [7, Thm. 6] If ¢ =1 mod 3, then
Aul(Ca) = SUG, ) x Z/((® + 1)/(a + 1)),
If g = 2 mod 3, then there exists G < Aut(Cs) such that |Aut(Cs) : G| = 3 and
G = 5U(3,¢%) x Z/((¢* + 1)/3(q + 1))

In this section, we determine the automorphism group of C,, for n > 5 odd. The strategy is first to use
ramification theory to show that I' is the inertia group at P,,, see Proposition 3.10. Second, by studying
the orbits of I" on C,,, we prove that the Sylow p-subgroups of Aut(C,,) are isomorphic to @ in Proposition
3.12. We produce new structural results about automorphism groups of curves in positive characteristic in
Section 3.6, which show, in particular, that M is normal in Aut(C,,). Determining the automorphism group
thus reduces to determining which automorphisms of the Hermitian curve H, lift to automorphisms of C,,
which we answer in Proposition 3.14.

3.1. Background on higher ramification groups
A good reference about ramification theory is [19, Chapter IV].

Definition 3.2. Let f: )’ — ) be a G-Galois cover of curves. Let P’ be a point on )’ and let P = f(P’).
For ¢ > —1, define the i-th ramification group at P’ by

Gi(P'|P)={0ceG|vp(o(z)—2)>i+1 V z€Op:}.

An integer ¢ for which G; # G;y1 is a lower jump of the filtration of higher ramification groups at P’.
Here are some facts about these ramification groups.

Lemma 3.3. (i)G>G_1>Gy>..>G; >G> ... and Gy = {id} for N >> 0.
(i) |Go| = e(P'|P) is the ramification index of P’ over P.

(i) Let H < G and let H; denote the i-th ramification group for the H-Galois cover ' — Y'/H. Then
H,=G;NH.

(iv) The order of Gy is a power of p, the quotient Go/G1 is cyclic with prime-to-p order, and G;/G;y1 is
elementary abelian of exponent p fori > 1.

(v) If s € Gi,t € Gy, and i,j > 1, then sts™'t™! € Gy j41.
Proof. These results can be found in [19, Chapter IV, Sections 1 & 2]. O

The ramification groups can also be indexed by another system, known as the upper numbering. To
define the upper numbering, for v € RZ~! let G, = G, where i = [u]. Define piecewise linear functions ¢

and ¢ by
“ dt
o = | e

and (u) = ¢~ (u). Define the ramification groups in the upper numbering by GV = Gy,). An index j
for which G7 # G* for all k > j is an upper jump of the filtration of higher ramification groups. When the
ramification index is a power of p, an immediate consequence of the definition is that the smallest jump is
the same in the upper and lower numbering. Upper numbering behaves well with respect to quotient groups
of G.

Lemma 3.4. If H is a normal subgroup of G and (G/H)" denotes the v-th ramification group for the
G/H-Galois cover Y'/H — Y then (G/H)" = (GH)/H.

Proof. This can be found in [19, Chapter IV, Prop. 14]. O



3.2. Filtrations at infinity
Lemma 3.5. There is one break in the ramification filtration of C,, — X, at Py and it occurs at index
q" + 1 in the lower numbering.

Proof. The degree ¢ cover C,, — X, has affine equation 27 + z = y971. Let vy, denote the valuation at the
point of infinity cox, on &,. Then vy, (y) = —m, since m is the ramification index of &,, — P, above oc,,.
Thus v, (y471) = —(¢™ +1). Since ¢" + 1 is prime-to-p, and since 29 + x is a separable additive polynomial
with all its roots in Fg2, the result follows from [20, Prop. 3.7.10]. O

Lemma 3.6. There is one break in the ramification filtration of X, — PL at cox, and it occurs at index m
in the lower numbering.

Proof. The degree ¢ cover X,, — P! has affine equation yq2 —y = 2z™. The valuation of z™ at the point of
infinity on P! is —m. Since m is prime-to-p and yq2 — y is a separable additive polynomial with all its roots
in F 2, the result again follows from [20, Prop. 3.7.10]. O

Remark 3.7. Here is an alternative way to prove Lemmas 3.5 and 3.6. One can show that there is one
break in the ramification filtration of H, — P, (resp. P, — P}) and it occurs at index ¢ + 1 (resp. 1) in
the lower numbering. Pulling these covers back by a cover which has tame ramification at oo, multiples the
lower jump by the ramification index, which is m.

Proposition 3.8. There are two jumps in the ramification filtration of C, — P. at P and they occur at
indices m = (¢" +1)/(¢ + 1) and ¢ + 1 in the lower numbering.

Proof. The upper jump of the cover X,, — P is ¢(m) = >."", 1 = m. Thus m is an upper jump for C,, — P’
by Lemma 3.4. By Lemma 3.3(iii), the lower jump ¢™ + 1 for C,, — &, is also a lower jump for C,, — P..
Since m # ¢" + 1, there are exactly two jumps in the ramification filtration of C, — P! by Lemmas
3.3(iii) and 3.4. Because the ramification index is a power of p, the smaller jump is the same in the upper
and lower numbering, and thus equals m, completing the proof. O

3.83. The inertia group of Cy,
Let I, be the inertia group at Py, for the cover C,, — C,/Aut(C,). Let S be the Sylow-p subgroup of
Ic, .

n

Proposition 3.9. The group Z is in the center of S.

Proof. Let W = C,,/S. Consider the cover C,, — W which is totally ramified at P.,. Let s be an element
of S — @ with maximal lower jump J in this cover. By Lemma 3.3(iv), s and s have different lower jumps.
The jump for sP must be greater than that for s, so s? € . That means that |s| = p, or |s| = p?, or p = 2
and |s| = 8. In all three cases, it suffices to show that J < ¢ + 1, because this shows that Z is contained in
the last non-trivial ramification group and thus Z is in the center of S by Lemma 3.3(v).

Case 1: |s| = p. Assume that J > ¢" + 1. Then, by hypothesis, s is contained in the last non-trivial
ramification group, and thus commutes with Z by Lemma 3.3(v). Therefore s descends to an automorphism
S in the inertia group Iy, at ooy, . This gives a contradiction since the Sylow p-subgroup of Iy, is Q/Z by
Proposition 2.10 and s ¢ Q. Thus J < ¢™ + 1.

Case 2: |s| = p?. Then (s) NQ = (sP), where (sP) = Z/p. That means that in the ramification filtration
of C,, — PL, the lower jump of s? is ¢" + 1 or m. Since @ C S, Lemma 3.3(iii) implies that the lower jumps
of elements of @) will the same in the cover C,, — W. Since the lower jump of s is less than that of sP, this
implies J < ¢™ + 1.

Case 3: p =2 and |s| = 8. Then (s) N Q = (s?), where (s?) = Z/4. Then s> ¢ Z so the lower jump of

52 is m. This implies that J < m. O

Proposition 3.10. The inertia group Ic, of C, at P is ' = Q x4 2.

Proof. Suppose s € S. By Proposition 3.9, s commutes with Z and so s descends to an automorphism s
of X,. By Proposition 2.10, s € Q/Z and so S/Z = Q/Z. The Third Isomorphism Theorem implies that
S=0Q.

Let T be a subgroup of Ic, isomorphic to the prime-to-p group I¢,/Q and containing M. Since T is
cyclic, the automorphisms in 7" descend to H,. The prime-to-p part of I3, is isomorphic to /M by [6, Eqn.
2.3], so T/M = ¥ /M and the Third Isomorphism Theorem implies that T'= X. Thus I¢, = Q X4 X. O



3.4. The Sylow p-subgroup of Aut(Cy)

More information can be gained by considering the orbits of C, (F2n) under I'.

Proposition 3.11. (i) Suppose n1 = (x1,y1,21) and n2 = (x2,y2, 22) are two affine Fy2n-points of C,.
Then m and 1y are in the same orbit under I' if and only if zo = (21 for some (¢™ + 1)(q¢ — 1)-th root
of unity C.

(ii) The orbits of C,,(Fgan) under I' consist of: one orbit Os = {Px} of cardinality 1; one orbit of cardinality
3 . .
q° which is
Oo = Cn(F2) —{P} ={(2,9,0) [ 2,y € Fp2, 27 + 2 = y?y;
and (¢"~* —1)/(q — 1) orbits of cardinality |T|.

(iii) The cover C,, — Cp/T is a cover of the projective line P where s = 2"t 1t is ramified only
above s =0 and s = co. Above s = 0, the ramification is tame of order (¢™ + 1)(¢ —1). Above s = oo,
it is totally ramified and the lower jumps in the ramification filtration are m and ¢ + 1.

Proof. Consider the action of I' on the set €2 of affine F 2»-points of C,. To begin, consider the action of
Q C I'" on Q. Suppose 1 = (z1,¥1,21) € Q. The orbit O; of 7 under @ is the intersection of 2 with
the fiber of the @-Galois cover C, — P! above z;. The orbit O has cardinality ¢* because C, — P! is
unramified away from oco,. Two points 71,72 € ) are in the same orbit under @ if and only if z; = 2.

Each orbit of I' on € is a union of some of the orbits of @ on . The problem of studying the orbit of 1,
under I' thus reduces to studying the action of G on the variable z. Note that zo = g(z1) for some g € G if
and only if zo = (z; for some (¢" + 1)(¢ — 1)th root of unity ¢. Thus 7;,12 € Q are in the same orbit of T’
on Q if and only if z9 = (21 for some (¢" 4+ 1)(g — 1)-th root of unity ¢. This proves part (i).

For part (ii), by definition, the action of I' fixes P.,. The affine points in C, (F,2) are exactly the points
n = (z,y,0) with z,y € F,2 and 29 4+ 2 = y?*'. By part (i), this yields an orbit of cardinality ¢>.

Finally, if n = (z,y,2) € Q with z # 0, then the orbit of 5 consists of |I'| points. The number of orbits
of I'on Q — C,,(F2) is thus

(#Q =) /T = (" ="+ " = )/ 0 = (" = 1)/(g - D).
Part (iii) is immediate from part (ii) and Proposition 3.8. O
Proposition 3.12. The Sylow-p subgroups of Aut(C,) are isomorphic to Q.

Proof. By Proposition 3.11(ii), Q has exactly one fixed point P, on C, and all other orbits have size ¢°.
The normalizer N4(Q) fixes the unique fixed point of @ and so is contained in the inertia group of P,. If Q
were properly contained in a Sylow p-subgroup P, then Np(Q) would properly contain (). However, p does
not divide [N4(Q) : Q] by Proposition 3.10. This would give a contradiction and so @ is a Sylow p-subgroup
of Aut(Cy). O

3.5. Lifting automorphisms of the Hermitian curve

In this section, we show that there are automorphisms of H, which do not lift to automorphisms of C,
when n > 3. The strategy is to consider a specific involution w € Aut(H,). If w lifts to an automorphism @
of C,, then w exchanges P,, with another point; using valuation theory, we show this implies n = 3.

Let Py € C,, be the point (z,y,z) = (0,0,0). Let vy (resp. vs) denote the valuation of C,, at Py (resp.

Py). Let t = 24" /a.

Lemma 3.13. (i) At the point Py, the functions x,y, z have the following valuations:
Uo(y) =m, ’Uo(x) = qn + 17 UO(Z) =1
(ii) At the point Py, the functions x,y, z,t have the following valuations:

Voo (Y) = —qm, veo(z) = —(¢" + 1), veo(2) = _q37 Voo (t) = 1.



Proof. (i) The functions , y, z all equal 0 at Py, so their valuations at P, are all positive. The ramification
index of Py above the point y = 0 in IP’; equals m, and so vo(y) = m. The relation 27+ = y?*! shows

that vo(z) = m(q+ 1) = ¢" + 1. The relation 2™ = y?° — y shows that vy(z) = 1.

(ii) The functions z,y, z all have poles at P, so their valuations at P, are all negative. The ramification
index of P, above the point oo, in P} equals gm, and so v (y) = —gm. The relation 29 + z = y4+!

shows that v, (2) = ¢™ + 1. The relation 2™ = y4° — y shows that Voo (2) = —¢3. The valuation of t at
Py is —q3¢" 3 + (¢" + 1) and so t is a uniformizer at P..
O

Consider the automorphism w of H, given by w(z) = 1/x and w(y) = y/x.
Proposition 3.14. Ifn > 3, then the automorphism w of H, does not lift to an automorphism of C,,.

Proof. Suppose that w lifts to an automorphism @ of C,,. Since w(z) = 1/z, it follows that @(Py) = Pp.
Applying w to the equation 2™ = yq2 —y implies that ©(2)™ = (%)‘12 — . By Lemma 3.13, v (©(2)) = 1.
Thus @(z) = tf for some function f € O(C) which has no pole or zero at Pu,. Letting P = (x,vy, z), this
means that v, (f(P)) = 0.
Now w? = id € Aut(H,) so @?* € M. Since @* € M, this implies that ©?(z) = (z for some mth root of
unity ¢. Thus v (©?(2)) = —¢® and vo(@%(2)) = 1 by Lemma 3.13.

Claim: The function f has a zero of order (¢"~3 — 1)(¢® + 1) at Py.. To prove the claim, a computation
shows that:

3

~ - (=3 _ 2n—6 n—
O*(2) = 0(tf) == @ VTP f(w(P)). (3.1)
Taking the valuation of both sides of Equation 3.1 at P, yields that:

—¢° =050 (@%(2)) = —¢" + 0" — 1 + v (f(w(P))).

Now there is an isomorphism of local rings @* : O¢,, . (p) — Oc,,,p. In particular, this implies that v (f(P)) =
Voo (f(w(P)) = (¢" 73 — 1)(¢® + 1), which completes the proof of the claim.
Now taking the valuation of both sides of Equation 3.1 at Py yields that:

1=0(@*(2)) = ¢*"° = (¢" + 1)(¢"° = 1) + ¢"*wo(f(P)) + vo(f(&(P)))-

Now vg(f(@(P)) = veo (f(P)) = 0. Substituting for vo(f(P)) and simplifying yields that 0 = 2¢"~3(¢" 3 1),
which implies that n = 3. O

3.6. A structural result on automorphism groups of curves

The purpose of this section and the next is to prove that the subgroup M is normal in the full automor-
phism group of C,,. We start with some group theoretic preliminaries, refering the reader to [3] for definitions
and terminology. Fix a prime p. A p’-group is a group of order prime-to-p. If 7w is a set of primes, then
O (J) is the unique maximal normal subgroup of J that is a m-group (i.e. has order divisible only by primes
in 7). A group J is almost simple if it has a unique minimal normal subgroup S with S nonabelian simple;
we say that S is the socle of J. Thus, S C J C Aut(S). For completeness, we include a proof of the following
well-known result, e.g., [13, Thm. 6.21].

Lemma 3.15. Let Q be a p-group which is not cyclic or generalized quaternion (for p=2). If Q acts on a
p’-group R, then R = (Cr(h)|1 # h € Q).

Proof. We can replace @ by any subgroup still satisfying the hypotheses and so assume that @ is elementary
abelian of order p2. First consider the case that R is an r-group for some prime r (necessarily r # p). Let
®(R) denote the Frattini subgroup of R and set R = R/®(R). Since Cz(Qo) = Cr(Qo)®(R)/®(R) for
any subgroup Qo of @, it suffices to assume that ®(R) = 1, i.e., R is an elementary abelian r-group. By
Maschke’s theorem, it suffices to assume that R is irreducible. By Schur’s Lemma, @) cannot act faithfully
on R and so R = Cg(h) for some nontrivial h € Q.

Now consider the general case. Let r be a prime divisor of |R|. By the Sylow Theorem, () normalizes
some Sylow r-subgroup L of R. Applying the first paragraph shows that L = (Cp(h)|1 # h € Q). Thus,
(Cr(h)|1 # h € Q) contains a Sylow r-subgroup of R for each prime divisor r of |R|, whence the result. O
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We now identify certain groups. Recall that a subgroup H of a finite group G is called a TI subgroup if
forye G\ Ng(H), HNHY = 1.

Theorem 3.16. Let Q be a Sylow p-subgroup of a finite group A and suppose that Q) is not cyclic or
generalized quaternion (if p = 2). Assume that I = Nao(Q) = QC with C cyclic. Assume also that Q is a
TT subgroup of A and Q # A. Set M = Z(I). Then M = O, (A), and A/M is almost simple and the socle
of A/M is isomorphic to one of:

1. PSL2(p®),a > 2;

2. PSU3(p%), p" > 2;

3. Sz(22*tY) p=2,a>1; or
4. 2Gy(329Y p=3.

In particular, A acts 2-transitively on the set of Sylow p-subgroups of A

Remark 3.17. Theorem 3.16 partially extends the main result of [14] (where the permutation action of A
on the set of Sylow p-subgroups was assumed to be doubly transitive) and it follows from [14] under that
permutation condition. See [2] which generalized the result of [14] in a different direction. Note that the
proof of Theorem 3.16 uses the classification of finite simple groups whereas the results in [2] and [14] do
not.

Proof. Since @ is a TI-subgroup, it follows that O,(A) = 1. Indeed, this implies that C4(h) C I for any
1# h €Q (since Q is the unique Sylow p-subgroup containing h).

Now apply Lemma 3.15 to conclude that R := O, (A) C Oy (I). Since R normalizes @ and @ normalizes
R, it follows that [Q, R] C @ N R =1, whence R C M.

Set J = A/R. Then O, (J) = 1. We identify @ with its image in J. If Q; is any nontrivial subgroup of
@, then N;(Q1) C Na(Q1)R/R C R. Thus, we can apply [10, 7.6.1] to conclude that J is almost simple and
given as in that theorem. Now use the fact that I = (N;(Q1),1 # @1 C Q) (and I/Q is cyclic) to conclude
from [10, 7.6.2] that only 7.6.1(a) can hold.

Finally, note that Z(I/R) = 1 in each case, whence R = M. This completes the proof. O

We apply this in the situation of a group acting on a curve with the following setup:

Notation 3.18. Let k be a field of characteristic p. Let X be a curve of genus at least 2 and set A = Autg(X).
Let @ be a p-subgroup of A and let I = N4(Q). We assume the following conditions:

(i) Q is a Sylow p-subgroup of A;

(ii) @ is not cyclic or generalized quaternion (if p = 2) — equivalently, @) contains an elementary abelian
subgroup of order p2.

(iii) @ fixes precisely 1 point € X and acts semiregularly on X — {x} (i.e. every other orbit has size |Q)|);

In the situation of Notation 3.18, since () has a unique fixed point z, then I also fixes x and thus I is the
inertia group of x. Note that condition (iii) is equivalent to the condition that every element of order p has
a unique fixed point. This condition implies that, for any H C Aut(X’) containing a Sylow p-subgroup, the
cover X — X /H has one wildly ramified branch point, with the inertia group containing a Sylow p-subgroup,
and all other branch points are tamely ramified.

We obtain:

Theorem 3.19. With notation as in 3.18, suppose that A # I. Then the center M of I is a (possibly trivial)
p’-subgroup normal in A and A/M is almost simple with socle one of:

1. PSLy(p*),a > 2;

2. PSU3(p%),p* > 2;

3. Sz(229t) p=2,a > 1; or

4. 2Go(3%*H1) p = 3.
Proof. Note that if a € A\ I, then Q® fixes a(z) # x, whence @ N Q* = 1. Thus, Q is a TT subgroup of A.
The result then follows from Theorem 3.16. O
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3.7. The case q = 2

When ¢ = 2, condition (ii) of Notation 3.18 is not satisfied, and so different methods are needed. Recall
that I" is the inertia group of C,, at P and that M is the center of I Let A = Aut(C,) denote the
automorphism group of C,.

Proposition 3.20. Suppose ¢ =2 and n > 3 is odd. Then M is normal in A = Aut(C,,) and either A =T
or [A:T]=3.

Proof. By Proposition 3.12, a Sylow 2-subgroup @ of A is a quaternion group of order 8. Proposition 3.11
and Proposition 3.10 imply that every nontrivial element of @ has a unique fixed point x on the curve.

Let z be the central involution in Q. By Glauberman’s Z* Theorem [9], z is central in A/O(A) where
O(A) = Ox(A). By the Sylow Theorem, this implies that A = O(A)C4(z). Since z has a unique fixed point,
Ca(z) = I. In particular, this implies that A is solvable. Thus A contains an odd order subgroup H of index
8 in A.

By the Hurwitz bound, |H| < 84(ge, — 1). When ¢ = 2, then ge, = 2" +2""! —2and [T N H| = 2"+ 1.
This implies that [H : T'N H] < 126.

Suppose that a prime r > 3 divides |O(A)|. If so, then by the Sylow Theorem, I" would normalize a Sylow
r-subgroup S of O(A). Since z does not centralize any element of order r, it follows that S is abelian; (it
is inverted by z). Let V' C S be a minimal normal T'-invariant r-subgroup. Then V must be an irreducible
I'-module. Let E = Endg(V). So V is absolutely irreducible as an EQ-module with E a field. Thus,
|V|=|EJ]? <126 and so |E| < 11.

Continuing with the assumption that a prime r > 3 divides |O(A)|, let s > 11 be a prime dividing m
(which always exists by Zygmundy’s theorem and the fact that n > 5). Let h € M be an element of order s;
the 9 points in C,,(F4) are the fixed points of h. Thus, h must centralize V, whence V acts trivially on the
9 fixed points of h. Thus V' C M, a contradiction.

Thus O(A) is a 3-group of order 3% with a < 4. All Q-composition factors on O(A) are nontrivial (since z
centralizes no elements of O(A)). It follows that a is even, so a = 2 or 4. Arguing as above, the element A of
order s in I must centralize O(A). Thus, O(A) acts on the 9 fixed points of h. The subgroup of A fixing these
9 points is precisely M, whence A/M acts faithfully on these 9 points. If it is not transitive, then A =T. If
it is transitive, then it is 2-transitive with point stabilizer I'/M, whence A/M = 3%2.5Ly(3) & PGU3(2).

Thus either A =T or [A:T] = 3. In both cases, M is normal in A. O

Remark 3.21. When ¢q = 2, the equation for X, is the same as y972 —y = 2z™. In [1, Thm. 3], the authors
show that &, is a quotient of the Hermitian curve Hy~» by a cyclic group of order 2" + 1. We remark that
[4, Prop. 4.1(1)] is not set-up correctly, leading to a gap in the proof of [4, Thm. 1.2]; and so it not yet clear
whether C, is a quotient of a Hermitian curve when ¢ = 2.

3.8. The automorphism group of Cy,

Theorem 1.1 is equivalent to the following result.

Theorem 3.22. Suppose n > 3 is odd. The automorphism group Aut(C,) fizes the point at infinity on C,
and is isomorphic to I' = Q x4 3.

Proof. Let A = Aut(C,) and I =T. When ¢ # 2, first note that the hypotheses of Notation 3.18 are satisfied.
By Proposition 3.10, I' = @ x4 X C A is the inertia group of C,, at Ps. This implies that I' = N4(Q). By
Proposition 3.12, @ is the Sylow p-subgroup of A which gives condition (i). Condition (ii) follows from the
information about @ in Section 2.2. Condition (iii) is guaranteed from Proposition 3.11.

It follows that M = Z(I) is normal in A by Theorem 3.19 when ¢ # 2 and by Proposition 3.20 when
q = 2. Thus, A/M embeds in Aut(H,) = PGU;s(q). Since I/M is a maximal subgroup of PGUjs(q), it follows
that either A = I or A/M = PGUj3(q). If the latter holds, it follows that every automorphism of H,, lifts
to C,,. However, when n > 3, this fails by Proposition 3.14. Thus, A = I as required. This completes the
proof. O
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