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ABSTRACT. We prove results about the intersection of the p-rank strata and the boundary of the
moduli space of hyperelliptic curves in characteristic p ≥ 3. This yields a strong technique that
allows us to analyze the stratum H f

g of hyperelliptic curves of genus g and p-rank f . Using this,
we prove that the endomorphism ring of the Jacobian of a generic hyperelliptic curve of genus g
and p-rank f is isomorphic to Z if g ≥ 4. Furthermore, we prove that the Z/`-monodromy of every
irreducible component of H f

g is the symplectic group Sp2g(Z/`) if g ≥ 3, and ` 6= p is an odd prime
(with mild hypotheses on ` when f = 0). These results yield numerous applications about the generic
behavior of hyperelliptic curves of given genus and p-rank over finite fields, including applications
about Newton polygons, absolutely simple Jacobians, class groups and zeta functions.
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1. INTRODUCTION

Suppose C is a smooth connected projective hyperelliptic curve of genus g ≥ 1 over an alge-
braically closed field k of characteristic p ≥ 3. The Jacobian Pic0(C) is a principally polarized
abelian variety of dimension g. The number of physical p-torsion points of Pic0(C) is p f for some
integer f , called the p-rank of C, with 0 ≤ f ≤ g.

LetHg be the moduli space over k of smooth connected projective hyperelliptic curves of genus
g; it is a smooth Deligne-Mumford stack over k. The p-rank induces a stratification Hg = ∪H f

g by

locally closed reduced substacks H f
g , whose geometric points correspond to hyperelliptic curves

of genus g and p-rank f .
In this paper, we prove three cumulative results about H f

g . The first is about the boundary of

H f
g ; specifically, when g ≥ 2, we prove that the boundary of every irreducible component of H f

g
contains the moduli point of some singular curve which is a tree of elliptic curves and which has
p-rank f . The second is that the Jacobian of a generic geometric point of H f

g has endomorphism
ring Z if g ≥ 4. The third is that, for an odd prime number ` distinct from p, the `-adic mon-
odromy group of every irreducible component of H f

g is the symplectic group Sp2g(Z/`) (with
mild hypotheses on ` when f = 0). Heuristically, this means that p-rank constraints alone do not
force the existence of extra automorphisms (or other algebraic cycles) on a family of hyperelliptic
curves.

We now state the results of this paper more precisely.

Theorem 3.11(c). Suppose p is an odd prime, g ≥ 2, and 0 ≤ f ≤ g. Let S be an irreducible component
ofH f

g , the p-rank f stratum inHg. Then the closure S of S inHg contains the moduli point of some tree of
g elliptic curves, of which f are ordinary and g− f are supersingular.
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ported by NSF grant DMS-07-01303.
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Our proof does not yield much information on the structure of the tree in Theorem 3.11; how-
ever, once the tree’s structure is fixed, we prove that any choice of labeling of f components as
ordinary and g− f components as supersingular will occur for some moduli point in S.

Theorem 3.11 yields a powerful technique to analyze H f
g . Using it, we prove the following two

results.

Theorem 4.6. Suppose p is an odd prime, g ≥ 4, and 0 ≤ f ≤ g. Suppose ξ is a geometric generic point
ofH f

g with Jacobian Xg,ξ = Pic0(Cg,ξ). Then End(Xg,ξ) ∼= Z and thus Xg,ξ is simple.

The third theorem requires some notation. Let S be a connected stack over k, and let s be a
geometric point of S. Let C → S be a relative smooth proper curve of genus g over S. Then
Pic0(C)[`] is an étale cover of S with geometric fibers isomorphic to (Z/`)2g. The fundamental
group π1(S, s) acts linearly on the fiber Pic0(C)[`]s, and the monodromy group M`(C → S, s)
is the image of π1(S, s) in Aut(Pic0(C)[`]s). For the third main result, we determine M`(S) :=
M`(C→ S, s), where S is an irreducible component ofH f

g and C→ S is the universal curve.

Theorem 5.2-5.7. Suppose p is an odd prime, g ≥ 1, and 0 ≤ f ≤ g. Let S be an irreducible component
ofH f

g .
(i) If 1 ≤ f ≤ g and ` is an odd prime distinct from p, then M`(S) ∼= Sp2g(Z/`).

(ii) If f = 0 and if g ≥ 4, then M`(S) ∼= Sp2g(Z/`) for all primes ` outside a finite set which depends
only on p.

We also prove that the `-adic monodromy group is Sp2g(Z`) in the situation of Theorem 5.2-
5.7. (Note that the case of ordinary hyperelliptic curves, i.e., when f = g, follows directly from
previous work, see J.K.Yu [unpublished], [AP07, Thm. 3.4], or [Hal06, Thm. 5.1].) In addition, we
determine the p-adic monodromy group of components ofH f

g when f ≥ 1 (Proposition 5.4).

This paper is a natural generalization of our paper [AP08], which is aboutM f
g, the p-rank strata

of the moduli space of curves. The two papers share essential similarities, but there are several
new phenomena for hyperelliptic p-rank strata which increase the difficulty of the proofs and
influence the final results in this paper. First, the boundary component ∆0 is more complicated
for Hg than for Mg. Second, for a singular hyperelliptic curve which is formed as a chain of
two hyperelliptic curves of smaller genera, the set of possibilities for the location of the ordinary
double point is discrete. These two facts play a key role in the degeneration arguments found in
the proof of Theorem 3.11. The third issue, which arises in a base case when f = 0, is that the
stratumH0

3 is not nearly as well understood asM0
3.

The second and third main results of the paper rely on Theorem 3.11 because the proofs use
degeneration in order to proceed by induction on the genus. For the inductive step, Theorem
3.11 implies that the closure of every component S of H f

g in Hg intersects the stratum ∆1,1 of
the boundary of Hg (Corollary 3.14). This is used in the proof of Theorem 4.6 to show that the
endomorphism ring of Pic0(Cg,ξ) acts diagonally on the Tate module. It is also used in the proof
of Theorem 5.2-5.7 to show that the monodromy group of S contains two non-identical copies of
Sp2g−2(Z/`).

There are two base cases needed in this paper. The first, when g = 2 and f ≥ 1, uses facts
about H f

2 from a special case of [Cha05, Prop. 4.4]. The second, when g = 3 and f = 0, we found
somewhat intractable. For this reason, the results required a novel analysis of endomorphism
algebras of generic Jacobians of small genus with p-rank zero. Applying Theorem 3.11 and [Oor91,
Thm. 1.12], we were able to constrain the possibilities (Lemma 4.1) for the endomorphism algebra
of the Jacobian of a generic hyperelliptic curve of genus 3 with p-rank 0. This, combined with an
understanding of abelian varieties of Mumford type, allowed us enough leverage to understand
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the case when g = 4 and f = 0. In particular, it allowed us to determine the endomorphism ring
of a generic hyperelliptic curve of genus 4 and p-rank 0 and to compute the monodromy group of
components ofH0

4.
This paper also contains multiple applications about hyperelliptic curves of given genus and

p-rank. For example, results on Newton polygons of (hyperelliptic) curves for arbitrary g and p
are notoriously elusive. As a consequence of Theorem 3.11, we give an application about Newton
polygons of hyperelliptic curves. The application relies on and generalizes [Oor91, Thm. 1.12],
which is the case g = 3.

Corollary 3.16. Suppose p is an odd prime and g ≥ 3. Let S be an irreducible component of H0
g, the

p-rank 0 stratum inHg. Then S contains the moduli point of a curve whose Jacobian is not supersingular.

We also give applications about class groups and zeta functions of hyperelliptic curves of given
genus and p-rank over finite fields. These build upon [KS99, Thm. 9.7.13] and [Kow06, Thm. 6.1].
Applications: Let F be a finite field of characteristic p. Under the hypotheses of Theorem 5.2-5.7:

(i) there is a hyperelliptic F-curve C of genus g and p-rank f whose Jacobian is absolutely
simple (Application 5.9);

(ii) if |F| ≡ 1 mod `, about `/(`2 − 1) of the hyperelliptic F-curves of genus g and p-rank f
have a point of order ` on their Jacobian (Application 5.11);

(iii) for most hyperelliptic F-curves C of genus g and p-rank f , the splitting field of the numer-
ator of the zeta function of C achieves the maximal possible degree (2gg!) over Q (Applica-
tion 5.13).

Here is an outline of the paper. Notation and background are found in Section 2. Section 3
contains the results about the boundary of the p-rank f stratumH f

g and the application to Newton

polygons. This section ends with some open questions about the geometry of H f
g . For example,

the number of irreducible components of H f
g is known only in special cases. The results about

endomorphism rings are in Section 4 while the results about monodromy and the applications to
absolutely simple Jacobians, class groups and zeta functions are in Section 5.

We thank the referee of this paper, as well as that of [AP08] for suggestions which we used in
this paper; and thank F. Oort for helpful comments.

2. BACKGROUND

Let k be an algebraically closed field of characteristic p ≥ 3. With the exception of Section 5.4,
where we work over a finite field, all objects are defined on the category of k-schemes. Let ` be an
odd prime distinct from p. We fix an isomorphismµµµ`

∼= Z/`.

2.1. Moduli spaces. For a natural number g consider the following well-known categories, each
of which is fibered in groupoids over the category of k-schemes in the étale topology:

• Ag principally polarized abelian schemes of dimension g;
• Mg smooth connected proper curves of genus g;
• Mg stable curves of genus g.

Each of these is a smooth Deligne-Mumford stack, andMg is proper [DM69, Thm. 5.2].
A relative smooth connected proper curve C → S of genus g is hyperelliptic if there exists an

involution ι ∈ AutS(C) such that each fiber Cs/〈ιs〉 is a rational curve; let Hg denote the moduli
stack of all such. Since a smooth curve admits at most one hyperelliptic involution, Hg may be
equivalently defined [Yam04, 1.4] as the corresponding substack ofMg.

LetHg be the closure ofHg inMg. Thus there are the following categories:
• Hg smooth connected proper hyperelliptic curves of genus g;
• Hg stable hyperelliptic curves of genus g;
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• H̃g stable hyperelliptic curves of genus g, along with a labeling of the smooth ramification
locus (see [AP07, Section 2.2]).

Both Hg and H̃g are smooth proper Deligne-Mumford stacks, by [Eke95, Thm. 3.2] and [AP07,
Lemma 2.2], respectively. The forgetful map $g : H̃g → Hg is étale and Galois, with covering
group Sym(2g + 2). If S ⊂ Hg, let S be the closure of S in Hg. Let Cg be the universal curve over
Hg, i.e., the pullback toHg of the universal curve overMg (cf. [DM69, Thm. 5.2]).

For a natural number r, letMg;r be the Deligne-Mumford stack of stable curves of genus g with
r labeled smooth points. Let Hg;r = Hg ×Mg

Mg;r and let H̃g;r = H̃g ×Mg
Mg;r. The forgetful

map φg;r : Hg;r → Hg is proper, flat and surjective with connected fibers, and thus is a fibration.
LetHg;r = Hg;r ×Hg

Hg.

2.2. Stratifications. Let X be a principally polarized semiabelian variety of dimension g defined
over k. Its p-rank f (X) = dimFp Hom(µµµp, X) is an integer between 0 and g. If X is an abelian
variety, then X[p](k) ∼= (Z/p) f (X). The p-rank of a curve is that of its Jacobian. If X → S is
a semiabelian scheme over a Deligne-Mumford stack, then there is a stratification S = ∪S f by
locally closed substacks such that s ∈ S f (k) if and only if f (Xs) = f (this follows from [Kat79,
Thm. 2.3.1], see, e.g., [AP08, Lemma 2.1]). Thus,H f

g is the locus inHg parametrizing hyperelliptic

curves of p-rank f . Every component ofH f
g has dimension g− 1 + f [GP05, Thm. 1].

Here is the definition of the Newton polygon of an abelian variety; see [Dem72, Chap. IV]
for details. The isogeny class of a p-divisible group G/k is determined by ν(G), a lower-convex
polygon in R2 connecting (0, 0) to (height(G), dim(G)) with slopes λ ∈ Q ∩ [0, 1] and integral
breakpoints. If X/k is an abelian variety, its Newton polygon is that of its p-divisible group X[p∞].
The Newton polygon is a finer invariant than the p-rank; indeed, the p-rank of X is exactly the
length of the slope 0 part of the Newton polygon. For example, X is ordinary exactly when its
Newton polygon only has slopes 0 and 1. By definition, X is supersingular if its Newton polygon
only has slope 1/2.

2.3. The boundary of the moduli space of hyperelliptic curves. The boundary of Hg is ∂Hg =
Hg −Hg. The description here of ∂Hg follows [CH88, Sec. 4(b)] closely. In fact, while [CH88] is
written for the base field C, the description of Hg and Hg is valid in any characteristic [Yam04].
Briefly, the irreducible components of ∂Hg come from restriction of the components of the bound-
ary ofMg, except that ∆0 breaks into several components. The informal discussion in this section
is supplemented with precise definitions in Section 2.4.

If g ≥ 2, the boundary ∂Hg is the union of components ∆i = ∆i[Hg] for 1 ≤ i ≤ g − 1 and
Ξi = Ξi[Hg] for 0 ≤ i ≤ g− 2 by [Yam04, p.410]. Here ∆i and ∆g−i are the same substack of Hg

and Ξi and Ξg−i−1 are the same substack ofHg. Each ∆i and Ξi is an irreducible divisor inHg.
For 1 ≤ i ≤ g− 1, if η is the generic point of ∆i, then the curve Cg,η is a chain of two smooth ir-

reducible hyperelliptic curves Y1 and Y2, of genera i and g− i, intersecting in one ordinary double
point P. The hyperelliptic involution ι stabilizes each of Y1 and Y2. The point P is a ramification
point for the restriction of ι to each of Y1 and Y2 but is not part of the smooth ramification locus.

If η is the generic point of Ξ0, then the curve Cg,η is an irreducible hyperelliptic curve self-
intersecting in an ordinary double point P. The normalization of Cg,η is a smooth hyperelliptic
curve Y1 of genus g− 1 and the inverse image of P in the normalization consists of an orbit under
the hyperelliptic involution.

For 1 ≤ i ≤ g − 2, if η is the generic point of Ξi, then the curve Cg,η has two components Y1
and Y2, which are smooth irreducible hyperelliptic curves, of genera i and g− 1− i, intersecting
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in two ordinary double points P and Q. The hyperelliptic involution ι stabilizes each of Y1 and Y2.
The points P and Q form an orbit of the restriction of ι to each of Y1 and Y2.

One can associate to a stable curve C its dual graph, in which the vertices are in bijection with
the irreducible components of C and in which there is an edge between two vertices exactly when
the corresponding components intersect. A component of C is called terminal if the corresponding
vertex is a leaf of the dual graph. A curve is called a tree if its dual graph is a tree. A curve is called
a tree of elliptic curves if it is a tree and if each of its irreducible components is an elliptic curve.

A stable curve is a tree if and only if its Picard variety is represented by an abelian scheme;
such a curve is also said to be of compact type. Let ∆0 = ∆0[Hg] be the union of Ξi for 0 ≤ i ≤
b(g− 1)/2c. The moduli points of stable hyperelliptic curves which are not of compact type are
exactly the points of ∆0[Hg].

If S is a stack equipped with a map S → Hg, let ∆i[S] denote S ×Hg
∆i[Hg]. In particular,

∆i[H̃g] = H̃g ×Hg
∆i. Also define ∆i[Hg] f := (∆i[Hg]) f . Similar conventions are employed for Ξi.

2.4. Clutching maps. Recall from [Knu83] that there are three types of clutching maps for positive
integers g1 and g2:

κg1 ,g2 : H̃g1 × H̃g2

κ̃g1,g2 // H̃g1+g2

$g1+g2 // Hg1+g2 ;

κg1 : Hg1 ;1 // Hg1+1;

λg1 ,g2 : Hg1 ;1 ×Hg2 ;1 // Hg1+g2+1.

Each of these clutching maps is the restriction of a finite, unramified morphism between moduli
spaces of labeled curves [Knu83, Cor. 3.9]. One defines

∆g1 [Hg1+g2 ] = Im(κg1 ,g2); Ξ0[Hg1+1] = Im(κg1); and Ξg1 [Hg1+g2+1] = Im(λg1 ,g2).

These clutching maps can be described in terms of their images on T-points for an arbitrary
k-scheme T. We give explicit descriptions only for sufficiently general T-points and for the one
special case (in 2.4.3) we need later, and defer to [Knu83] for complete definitions.

2.4.1. Information about κg1 ,g2 . For i = 1, 2, suppose si ∈ H̃gi(T) is the moduli point of a hyper-
elliptic curve Yi with labeled smooth ramification locus. Then κ̃g1 ,g2(s1, s2) is the moduli point of
the labeled T-curve Y where Y has components Y1 and Y2, and where the last ramification point
of Y1 and the first ramification point of Y2 are identified in an ordinary double point. This nodal
section is dropped from the labeling of the ramification points; the remaining smooth ramification
sections of Y1 maintain labels {1, . . . , 2g1 + 1} and the remaining ramification sections of Y2 are
relabeled {2g1 + 2, . . . , 2(g1 + g2) + 2}. There is a unique hyperelliptic involution on Y which
restricts to the hyperelliptic involution on Y1 and Y2. Moreover, κg1 ,g2(s1, s2) is the moduli point
of the (unlabeled) hyperelliptic curve Y.

By [BLR90, Ex. 9.2.8],

Pic0(Y) ∼= Pic0(Y1)× Pic0(Y2).(2.4.1)

Then the p-rank of Y is

f (Y) = f (Y1) + f (Y2).(2.4.2)
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2.4.2. Information about κg1 . Suppose s1 ∈ Hg1 ;1(T) is the moduli point of (Y1; P), a hyperelliptic
curve with a labeled section. Consider the T-curve Y′ obtained by identifying the sections P and
ι(P) in an ordinary double point P′. Then κg1(s1) is the moduli point of the stable model Y of Y′.
The hyperelliptic involution on Y1 descends to a unique hyperelliptic involution on Y.

By [BLR90, Ex. 9.2.8], Pic0(Y) is an extension

(2.4.3) 0 // Z // Pic0(Y) // Pic0(Y1) // 0 ,

where Z is a one-dimensional torus. In particular, the toric rank of Pic0(Y) is one greater than that
of Pic0(Y1), and their maximal projective quotients are isomorphic, so that

(2.4.4) f (Y) = f (Y1) + 1.

2.4.3. Information about λg1 ,g2 . For i = 1, 2, suppose si ∈ Hgi ;1(T) is the moduli point of (Yi; Pi), a
hyperelliptic curve with a labeled section. Consider the T-curve Y′ obtained by identifying P1 and
P2 in an ordinary double point P and by identifying ι(P1) and ι(P2) in an ordinary double point Q.
Then λg1 ,g2(s1, s2) is the moduli point of the stable model Y of Y′. There is a unique hyperelliptic
involution ιY on Y which restricts to the hyperelliptic involution on Y1 and Y2.

By [BLR90, Ex. 9.2.8], Pic0(Y) is an extension

(2.4.5) 0 // Z // Pic0(Y) // Pic0(Y1)× Pic0(Y2) // 0 ,

where Z is a one-dimensional torus. In particular,

(2.4.6) f (Y) = f (Y1) + f (Y2) + 1.

For later use, here is a description of the stable model Y when P1 is a ramification point of
Y1, but P2 is not a ramification point of Y2. Then Y consists of three components, namely the
strict transforms of Y1 and Y2 and an exceptional component W which is a projective line. Also
Y1 intersects W in an ordinary double point P and Y2 intersects W in two other ordinary double
points, Q and Q′. The restriction of ιY to W fixes P and exchanges Q and Q′.

2.4.4. Clutching along trees. The definition of κ̃g1 ,g2 above relies on an arbitrary, although conve-
nient, choice of sections along which to glue, and a labeling of the smooth ramification locus of
the resulting curve. By considering morphisms of the form γg1+g2 ◦ κ̃g1 ,g2 ◦ (γg1 × γg2), where
γg1+g2 ∈ Sym2(g1+g2)+2 and γg1 ∈ Sym2g1+2 and γg2 ∈ Sym2g2+2, it is possible to clutch along
arbitrary sections, with complete control over the subsequent labeling.

This can be used to describe configurations of curves of compact type, as follows. A clutching
tree is a finite tree Λ along with a choice of natural number gv for each vertex v ∈ Λ such that
deg(v) ≤ 2gv + 2. Such a tree is called a clutching tree of elliptic curves if gv = 1 for all v ∈ Λ. Let
|Λ| be the number of vertices in Λ, and let g(Λ) = ∑v∈Λ gv.

Using a product of the clutching maps defined above, one can define a morphism

κΛ : ×v∈VH̃gv

κ̃Λ // H̃g(Λ)
$g(Λ) // Hg(Λ).

Let ∆Λ be the image of κΛ. If η is the generic point of ∆Λ, then Cg,η is a hyperelliptic curve
of compact type with dual graph isomorphic to Λ, such that the irreducible component of Cg,η
corresponding to the vertex v has genus gv.

Suppose v1 and v2 are adjacent vertices in a clutching tree Λ. Consider the tree Λ′ obtained by
identifying v1 and v2 in a new vertex, v, which is adjacent to all neighbors of v1 or v2 in Λ, with
label gv = gv1 + gv2 . Then κΛ factors through κΛ′ and ∆Λ ⊂ ∆Λ′ . A tree Λ refines a tree Λ′ if Λ′

can be obtained from Λ through iterations of this construction.
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2.4.5. One more clutching map. In the special case where Λ is a tree on three vertices, where the
leaves v1 and v3 have gv1 = gv3 = 1, and where gv2 = g− 2, one obtains the following diagram:

(2.4.7) H̃1 × H̃g−2 × H̃1

��

//

κ̃1,g−2,1

((PPPPPPPPPPPPPP
H̃g−1 × H̃1

��

H̃1 × H̃g−1
// H̃g.

Let ∆1,1[Hg] be the image of κ1,g−2,1 = $g ◦ κ̃1,g−2,1; it is an irreducible component of the self-
intersection locus of ∆1[Hg]. If η is the generic point of ∆1,1[Hg], then the curve Cg,η is a chain of
three smooth irreducible hyperelliptic curves Y1, Y2, Y3 with gY1 = gY3 = 1 and gY2 = g− 2. For
i ∈ {1, 3}, the curves Yi and Y2 intersect in a point Pi which is an ordinary double point.

3. BOUNDARY OF THE HYPERELLIPTIC p-RANK STRATA

3.1. Preliminary intersection results. Suppose p ≥ 3, and g ≥ 1 and 0 ≤ f ≤ g. The p-rank
strata of the boundary ofHg are easy to describe using the clutching maps. First, if 1 ≤ i ≤ g− 1,
then (2.4.2) implies that ∆i[Hg] f is the union of the images of H̃ f1

i × H̃
f2
g−i under κi,g−i as ( f1, f2)

ranges over all pairs such that

(3.1.1) 0 ≤ f1 ≤ i, 0 ≤ f2 ≤ g− i and f1 + f2 = f .

Second, if f ≥ 1, then Ξ0[Hg] f is the image of H f−1
g−1;1 under κg−1 by (2.4.4). Third, if f ≥ 1 and

1 ≤ i ≤ g− 2, then (2.4.6) implies that Ξi[Hg] f is the image of H f1
i;1 ×H

f2
g−1−i;1 under λi,g−1−i as

( f1, f2) ranges over all pairs such that

(3.1.2) 0 ≤ f1 ≤ i, 0 ≤ f2 ≤ g− 1− i and f1 + f2 = f − 1.

Lemma 3.1. Suppose g ≥ 1 and 0 ≤ f ≤ g.

(a) Every component ofH f
g and H̃ f

g has dimension g− 1 + f .
(b) If g ≥ 2 and 1 ≤ i ≤ g − 1, then every component of ∆i[Hg] f and of ∆i[H̃g] f has dimension

g− 2 + f .
(c) If g ≥ 2 and f ≥ 1 and 0 ≤ i ≤ g − 2, then every component of Ξi[Hg] f and of Ξi[H̃g] f has

dimension g− 2 + f .

Proof. For parts (a)-(c), the claims forHg and for H̃g are equivalent, since$g is a finite map which

preserves the p-rank stratification. Part (a) forH f
g is the statement of [GP05, Prop. 2].

For part (b), suppose 0 ≤ f ≤ g, 1 ≤ i ≤ g− 1, and that ( f1, f2) is a pair which satisfies (3.1.1).
Then H̃ f1

i × H̃
f2
g−i is pure of dimension dim(H̃ f1

i ) + dim(H̃ f2
g−i) = g− 2 + f . Since κi,g−i is finite,

∆i[Hg] f is pure of dimension g− 2 + f as well.

For part (c), first suppose i = 0. Then H f−1
g−1;1 is pure of dimension dim(H f−1

g−1) + 1 = g− 2 + f .
Since κg−1 is finite, Ξ0[Hg] f is pure of dimension g− 2 + f as well.

To finish part (c), suppose 1 ≤ i ≤ g− 2, and that ( f1, f2) is a pair which satisfies (3.1.2). Then
H̃ f1

i;1 × H̃
f2
g−1−i;1 is pure of dimension dim(H̃ f1

i ) + dim(H̃ f2
g−i−1) + 2 = g− 2 + f . Since λi,g−1−i is

finite, Ξi[Hg] f is pure of dimension g− 2 + f as well. �

The next lemma shows that if η is a generic point ofH f
g, then the curve Cg,η is smooth. Thus no

component ofH f
g is contained in the boundary ∂Hg.
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Lemma 3.2. Suppose g ≥ 1 and 0 ≤ f ≤ g.

(a) ThenH f
g is open and dense inH f

g and H̃ f
g ×Hg

Hg is open and dense in H̃ f
g .

(b) If r ≥ 1, thenH f
g;r is open and dense inH f

g;r and H̃ f
g ×Hg

Hg is open and dense in H̃ f
g .

Proof. Part (a) is well-known for g = 1. For g ≥ 2, part (a) follows from Lemma 3.1. Part (b)
follows from part (a) since the p-rank of a labeled curve depends only on the underlying curve, so

thatH f
g;r = Hg;r ×Hg

H f
g. �

Suppose S is an irreducible component of H f
g and let S be its closure in Hg. Note that S can

contain the moduli points of curves with lower p-rank; (in fact, this always happens when f ≥ 1,
see Corollary 3.15).

Lemma 3.3. (a) Let S be an irreducible component of H f
g . If S intersects a component Γ of ∆i[Hg] f

then S contains Γ .
(b) Let S̃ be an irreducible component of H̃ f

g , with closure S∗. If S∗ intersects a component Γ̃ of
∆i[H̃g] f , then S∗ contains Γ .

Proof. Part (a) is proved here; part (b) is proved in an entirely analogous fashion. A smooth proper
stack has the same intersection-theoretic properties as a smooth proper scheme [Vis89, p. 614].
In particular, if two closed substacks of Hg intersect then the codimension of their intersection
is at most the sum of their codimensions. Now S and ∆i[Hg] are closed substacks of Hg and
S 6⊂ ∆i[Hg]. Thus the intersection of S with the divisor ∆i[Hg] has pure dimension dim S − 1,
which equals dim(∆i[Hg] f ) by Lemma 3.1. Thus if S intersects a component Γ of ∆i[Hg] f then it
must contain the full component Γ . �

Lemma 3.4. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let S be an irreducible component ofH f
g .

(a) Then S intersects ∆0[Hg] if and only if f ≥ 1.
(b) If f ≥ 1, then each irreducible component of ∆0[S] contains either (i) the image of a component

of H f−1
g−1;1 under κg−1 or (ii) the image of a component of H f1

i;1 ×H
f2
g−1−i;1 under λi,g−1−i for some

1 ≤ i ≤ g− 2 and some pair ( f1, f2) which satisfies (3.1.2).
(c) If f = 0, then S contains the image of a component of H̃0

i × H̃0
g−i under κi,g−i for some 1 ≤ i ≤

g− 1.

Proof. If f = 0, then (2.4.4) implies that S does not intersect ∆0[Hg]. If f ≥ 1, then S is a complete
substack of dimension greater than g− 1. By [FvdG04, Lemma 2.6], a complete substack of Hg −
∆0[Hg] has dimension at most g− 1. Therefore, S intersects ∆0[Hg]. This completes part (a).

For part (b), each irreducible component of ∆0[S] intersects either κg−1(H
f−1
g−1;1) ⊂ Ξ0[Hg] or

λi,g−1−i(H
f1
i;1 ×H

f2
g−1−i;1) ⊂ Ξi[Hg] for some 1 ≤ i ≤ g− 2 and some pair ( f1, f2) which satisfies

(3.1.2). The result then follows from Lemma 3.3(a).
For part (c), recall that Hg contains no complete substacks of positive dimension (e.g., [Yam04,

Cor. 1.9]). Thus S intersects ∆i for some 0 ≤ i ≤ g− 1. By part (a), i 6= 0. The result follows from
Lemma 3.3(a). �

3.2. Complements on trees. Many of the results for ∆i for positive i have analogues for ∆Λ. For
a clutching tree Λ and a nonnegative integer f , define an index set by

(3.2.1) F (Λ, f ) =
{
{ fv : v ∈ Λ} : 0 ≤ fv ≤ gv, ∑

v
fv = f

}
.
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Lemma 3.5. Let Λ be a clutching tree with g(Λ) = g.
(a) The p-rank strata of ∆Λ[Hg] are given by

(3.2.2) ∆Λ[Hg] f =
⋃

{ fv}∈F (Λ, f )

κΛ(×v∈ΛH̃ fv
gv).

(b) Every component of ∆Λ[Hg] f has dimension g + f − |Λ|.

Proof. Part (a) follows from (3.1.1) and induction on |Λ|. Part (b) follows from this and the calcu-
lation that, for { fv} ∈ F (Λ, f ),

dim(×v∈ΛH̃ fv
gv) = ∑

v∈Λ

(gv + fv − 1) = g + f − |Λ|.

�

Lemma 3.6. Let S be an irreducible component of H f
g . Let Λ be a clutching tree with g(Λ) = g. If S

intersects a component Γ of ∆Λ[Hg] f , then S contains Γ .

Proof. The proof is similar to that of Lemma 3.3(a). Note that dim Γ ≥ dim S + dim ∆Λ − dimHg.
By Lemma 3.5(b), this equals g + f − |Λ| = dim ∆Λ[Hg] f . �

3.3. Adjusting labeled points and trees. The next lemma shows that one can adjust the labeled
points of an r-labeled hyperelliptic curve of genus g and p-rank f without leaving the irreducible

component ofH f
g;r to which its moduli point belongs.

Lemma 3.7. Let S be an irreducible component of H f
g;r, and let S be the closure of S in H f

g;r. Then
S = φ−1

g;r (φg;r(S)). Equivalently, if T is a k-scheme, if (C; P1, . . . , Pr) ∈ S(T), and if (Q1, . . . , Qr) is any
other labeling of C, then (C; Q1, . . . , Qr) ∈ S(T).

Proof. It suffices to show that φ−1
g;r (φg;r(S)) ⊆ S. Note that S is the largest irreducible substack of

H f
g;r which contains S. The fibers of φg;r|S are irreducible, so φ−1

g;r (φg;r(S)) is also an irreducible

substack ofH f
g;r which contains S. Thusφ−1

g;r (φg;r(S)) ⊂ S. This shows thatφ−1
g;r (φg;r(S)) = S.

To finish the proof, it suffices to show that the T-points of S and φ−1
g;r (φg;r(S)) coincide for an

arbitrary k-scheme T. To this end, let α = (C; P1, . . . , Pr) ∈ S(T), and let β = (C; Q1, . . . , Qr) ∈
H f

g;r(T). Note that φg;r(β) = φg;r(α), and φg;r(α) is supported in the closure of φg;r(S) in H f
g.

Because Hg;r is dense in Hg;r, it follows that β is supported in the closure of φ−1
g;r (φg;r(S)) in H f

g;r,
which is S. �

It is not clear whether one can change the labeling of the smooth ramification locus of a hyperel-
liptic curve without changing the irreducible component of H̃ f

g to which its moduli point belongs.
To circumvent this issue, the following lemma about hyperelliptic curves of genus 2 and p-rank 1
will be useful.

Lemma 3.8. (a) First,H1
2 is irreducible and intersects κ1,1(H̃1

1 × H̃0
1).

(b) Second, let S̃ be an irreducible component of H̃1
2. If S̃ intersects κ̃1,1(H̃1

1 × H̃0
1), then S̃ also inter-

sects κ̃1,1(H̃0
1 × H̃1

1).

Proof. For part (a), recall that the Torelli morphism H2 → A2 is an inclusion [OS80, Lemma 1.11].
Since dim(H1

2) = dim(A1
2), and since A1

2 is irreducible (e.g., [EvdG09, Ex. 11.6]), it follows that

H1
2 is irreducible. Consider a chain Y of two elliptic curves, one ordinary and one supersingular,
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intersecting in an ordinary double point, which is a fixed point of the hyperelliptic involution on
each elliptic curve. The moduli point of Y is in the intersection of κ1,1(H̃1

1 × H̃0
1) andH1

2.
For part (b), let S∗ be the closure of S̃ in H̃2. By hypothesis and Lemma 3.3(b), S̃ contains a

component of κ̃1,1(H̃1
1 × H̃0

1). Every component of H̃1
1 contains a component of H̃0

1 in its closure
since any nonisotrivial proper family of curves of genus one has supersingular fibers. It follows
that S∗ contains a component of κ̃1,1(H̃0

1 × H̃0
1), and thus intersects the closure of a component of

κ̃1,1(H̃0
1 × H̃1

1). By Lemma 3.3(b), S∗ contains a component of κ̃1,1(H̃0
1 × H̃1

1), which then implies
the same for S̃. �

Remark 3.9. Note that a genus two curve has six ramification points and thus there are potentially
up to 6! =

∣∣Sym6

∣∣ irreducible components of H̃1
2. In particular, the fact from Lemma 3.8(a) thatH1

2

intersects κ1,1(H̃1
1 × H̃0

1) does not imply the hypothesis in part (b) that S̃ intersects κ̃1,1(H̃1
1 × H̃0

1).

Lemma 3.10. Let S be an irreducible component of H f
g . Suppose Λ is a clutching tree of elliptic curves

with g(Λ) = g. If S intersects ∆Λ[Hg], then for any choice of { fv} ∈ F (Λ, f ), S contains an irreducible
component of κΛ(×v∈ΛH̃ fv

gv).

Proof. By Lemma 3.6, there exist a choice of data { f ∗v } ∈ F (Λ, f ) and components T̃v ⊂ H̃ f ∗v
gv such

that S contains κΛ(×v∈ΛT̃v). One immediately reduces to the case in which v1 and v2 are adjacent
vertices in Λ with f ∗v1

= 1 and f ∗v2
= 0, and { fv} ∈ F (Λ, f ) is given by

fv =

{
f ∗v v 6∈ {v1, v2}
1− f ∗v v ∈ {v1, v2}.

Let Λ′ be the tree obtained by identifying v1 and v2 in a new vertex v12 with gv12 = 2. By Lemma
3.6, there is a component T̃v12 ⊂ H̃1

2 such that S contains

κΛ′(T̃v12 × (×v∈Λ′ ,v 6=v12 T̃v)).

Now, T̃v12 contains a component of κ̃1,1(H̃1
1 ×H0

1). By Lemma 3.8(b), T̃v12 contains a component of
κ̃1,1(H̃0

1 × H̃1
1) as well. Then S contains a component of κΛ(×v∈ΛH̃ fv

gv). �

3.4. Main intersection result. In this section, we prove that the closure of each irreducible com-
ponent S ofH f

g contains the moduli point of a singular curve which is a tree of elliptic curves and
has p-rank f .

Theorem 3.11. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let S be an irreducible component ofH f
g .

(a) There exists a clutching tree of elliptic curves Λ with g(Λ) = g such that S contains an irreducible
component of ∆Λ[Hg] f .

(b) For any choice of { fv} ∈ F (Λ, f ), S contains an irreducible component of κΛ(×v∈ΛH̃ fv
gv).

(c) In particular, S contains the moduli point of some tree of elliptic curves, of which f are ordinary
and g− f are supersingular.

Proof. It suffices to prove part (c) since parts (a) and (c) are equivalent by Lemma 3.6 and since
parts (a) and (b) are equivalent by Lemma 3.10.

First suppose g = 2. If f = 2, then H2
2 is irreducible and affine and H2

2 contains the moduli
point of a tree of 2 ordinary elliptic curves. If f = 1 (resp. f = 0), the result is true by Lemma
3.8(a) (resp. Lemma 3.4(c)). Now suppose g ≥ 3 and 0 ≤ f ≤ g and suppose as an inductive
hypothesis that the result is true when 2 ≤ g′ < g. Let S be an irreducible component ofH f

g .
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Claim 3.12. To complete the proof, it suffices to show that S intersects ∆i[Hg] f for some 1 ≤ i ≤ g− 1.

Proof of claim. Suppose S intersects ∆i[Hg] f for some 1 ≤ i ≤ g− 1. Let g1 = i and g2 = g− i.
By Lemma 3.3(a), S contains a component of ∆g1 [Hg] f . In other words, there exist a pair ( f1, f2)

satisfying (3.1.1) and, for j = 1, 2, components Ṽj of H̃ f j
g j such that S containsκg1 ,g2(Ṽ1× Ṽ2). Then

V j =$g j(Ṽj) is a component ofH f j
g j

.
By the inductive hypothesis, V j contains the moduli point s j of a tree Yj of g j elliptic curves, of

which f j are ordinary and g j − f j are supersingular. Let Λ j be the dual graph of Yj. Let s̃ j ∈ Ṽj be
such that$g j(s̃ j) = s j. In other words, s̃ j is the moduli point of Yj along with the data of a choice
of labeling of the smooth ramification locus. Then κg1 ,g2(s̃1, s̃2) is the moduli point of a curve C
whose dual graph is obtained by connecting a vertex of Λ1 with a vertex of Λ2. Since C is a tree,
κg1 ,g2(s̃1, s̃2) is the moduli point of a tree of g elliptic curves, of which f = f1 + f2 are ordinary and
g− f are supersingular. This completes the proof of the claim since κg1 ,g2(s̃1, s̃2) is in S. �

Continuing the proof of Theorem 3.11, first suppose f = 0. By Lemma 3.4(c), S intersects
∆i[Hg] f for some 1 ≤ i ≤ g− 1. By Claim 3.12, this completes the proof when f = 0.

Now suppose f > 0. By Lemma 3.4(a), S intersects ∆0[Hg] f .

Case (i): S intersects Ξ0.
By Lemma 3.4(b), S contains the image of a component V′ of H f−1

g−1;1 under κg−1. Consider

V = φg−1;1(V′) which is a component of H f−1
g−1. By the inductive hypothesis, V contains the

moduli point of a curve Y1 which is a tree of g− 1 elliptic curves, of which f − 1 are ordinary and
g− f are supersingular. Let E be a terminal component of Y1 and let Y′1 be the closure of Y1 − E
in Y1. Let R be the point of intersection of E and Y′1. Since the quotient of Y1 by the hyperelliptic
involution ι has genus 0, the elliptic curve E is stabilized by ι. Let P 6= R be a point of E which is
not a ramification point of ι. By Lemma 3.7, the moduli point t of (Y1; P) is in V′.

Let Z be the singular irreducible hyperelliptic curve of genus two with exactly one ordinary
double point P′ such that the normalization of Z is the elliptic curve E and the pre-image of P′
consists of the points P and ι(P). In other words, the moduli point of Z is the image of the moduli
point of (E; P) under κ1.

Consider the point s = κg−1(t) of S. The curve Cg,s has components Z and Y′1 which intersect in
exactly one ordinary double point R. The p-rank of Cg,s is f (E) + f (Y′1) + 1 = f . Since g ≥ 3, there
is a terminal component of Y′1 not containing R which is an elliptic curve. Thus s is in ∆1[Hg] f . (In
fact, s is also in ∆2[Hg] f because of the component Z.) By Claim 3.12, this completes Case (i).

Case (ii): S intersects Ξi for some 1 ≤ i ≤ g− 2.
Let g1 = i and g2 = g− 1− i. By Lemma 3.4(b), S contains a component of Ξi[Hg] f . In other

words, there exists a pair ( f1, f2) satisfying (3.1.2) and, for j = 1, 2, there exist components V′j of

H f j
g j ;1

such that S contains λg1 ,g2(V′1 ×V′2). Then V j = φg j ;1(V′j) is a component ofH f j
g j

.

By the inductive hypothesis, V j contains the moduli point s j of a tree Yj of g j elliptic curves,
of which f j are ordinary and g j − f j are supersingular. Let E j be a terminal component of Yj and
let Y′j be the closure of Yj − E j in Yj. Let R j be the point of intersection of E j and Y′j. Since the
quotient of Yj by the hyperelliptic involution ι j has genus 0, the elliptic curve E j is stabilized by ι j.
Let P1 6= R1 be a point of E1 which is a ramification point of ι1. Let P2 6= R2 be a point of E2 which
is not a ramification point of ι2.

By Lemma 3.7, the moduli point s′j of (Yj; Pj) is in V′j. Consider s = λg1 ,g2(s′1, s′2) which is a
point of S. By Section 2.4.3, the components of the stable model Cg,s are the strict transforms of Y1



12 JEFFREY D. ACHTER AND RACHEL PRIES

and Y2 and an exceptional component W which is a projective line. Moreover, Y1 intersects W in
an ordinary double point and Y2 intersects W in two other points, which are also ordinary double
points. The p-rank of Cg,s is f (Y1) + f (Y2) + 1 = f .

The curve Cg,s has a terminal component E′1 of genus 1. To see this, when i = 1 let E′1 = E1, and
when i > 1 let E′1 6= E1 be another terminal component of Y1. It follows that s is in ∆1[Hg] f . (Also
s is in ∆i[Hg] f because of the component Y1.) By Claim 3.12, this completes Case (ii). �

3.5. Three corollaries. Here are several consequences of Theorem 3.11 which will be used later in
the paper.

In the setting of Theorem 3.11, one can deduce that S intersects ∆i nontrivially only when Λ has
an edge whose removal yields two trees of size i and g− i. This is only guaranteed when i = 1.
Luckily, the following information on degeneration to ∆1 is sufficient for the later applications in
the paper.

Corollary 3.13. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let S be an irreducible component of H f
g . Then S

intersects ∆1[Hg] f . Furthermore:

(a) if f ≤ g− 1, then S contains an irreducible component of κ1,g−1(H̃0
1 × H̃

f
g−1); and

(b) if f ≥ 1, then S contains an irreducible component of κ1,g−1(H̃1
1 × H̃

f−1
g−1).

Proof. By Theorem 3.11(c), S contains the moduli point of a tree of elliptic curves, of which f are
ordinary and g− f are supersingular. Every tree has a leaf; by Theorem 3.11(b), that leaf can be
chosen to be ordinary or supersingular if the obvious necessary constraint is satisfied. The result
follows by Lemma 3.6. �

The `-adic and p-adic monodromy proofs in Section 5 rely on degeneration to ∆1,1. One can
label the four possibilities for ( f1, f2, f3) such that f1 + f2 + f3 = f and 0 ≤ f1, f3 ≤ 1 as follows:
(A) (1, f − 2, 1); (B) (0, f − 1, 1); (B’) (1, f − 1, 0); and (C) (0, f , 0).

Corollary 3.14. Suppose g ≥ 3 and 0 ≤ f ≤ g. Let S be an irreducible component ofH f
g .

(a) Then S intersects ∆1,1[Hg] f .
(b) There is an irreducible component S̃ of S× H̃g, and a choice of ( f1, f2, f3) from cases (A)-(C); and

there are irreducible components S1 of H̃ f1
1 and S2 of H̃ f2

g−2 and S3 of H̃ f3
1 ; and there are irreducible

components SR of H̃ f2+ f3
g−1 and SL of H̃ f1+ f2

g−1 ; such that the restriction of the clutching maps of 2.4.7
yields a commutative diagram

(3.5.1) S1 × S2 × S3 //

��

κ̃1,g−2,1

((PPPPPPPPPPPP S1 × SR

��

SL × S3 // S̃ ∩ ∆1,1[H̃g].

(c) Furthermore, case (A) occurs as long as f ≥ 2, case (B) or (B’) occurs as long as 1 ≤ f ≤ g− 1,
and case (C) occurs as long as f ≤ g− 2.

Proof. By Theorem 3.11(a), there is a clutching tree of elliptic curves Λ such that S contains a
component of ∆Λ[Hg] f . Let v1 and v3 be two leaves of Λ; using Theorem 3.11(b), one can assume
that fvi = fi where ( f1, f2, f3) is chosen as in part (c). Let Λ′ be the tree obtained by coalescing
all vertices of Λ except for v1 and v3. Let v2 denote this new vertex and let fv2 = f2. Since Λ

refines Λ′, then S intersects ∆Λ[Hg] f which completes part (a). Moreover, there is an irreducible
component S̃ of S×Hg

H̃g such that S̃ intersects ∆1,1[H̃g] f . Part (b) follows from the definition of

∆1,1[H̃g] f and Lemma 3.6. �
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Corollary 3.15. Let S be an irreducible component ofH f
g . For each 0 ≤ f ′ < f , there exists an irreducible

component T ofH f ′
g such that S contains T.

Proof. It suffices to prove the result for f ′ = f − 1. Let S∗ be the closure of S in Hg − ∆0[Hg].
A purity result [Oor74, Lemma 1.6] shows that S∗ − (S∗) f , if nonempty, is pure of dimension
dim S∗ − 1. In particular, let Z = (S∗) f−1; then Z, if nonempty, is pure of dimension g− 2 + f .

By Corollary 3.13(b), S∗ contains an irreducible component of κ1,1(H̃1
1 × H̃

f−1
g−1). Since H̃1

1 is

dense in H̃1, its closure contains the moduli points of supersingular elliptic curves (with labeled
smooth ramification locus). Therefore, S∗ contains an irreducible component of κ1,1(H̃0

1 × H̃
f−1
g−1),

and Z is nonempty. Then dim Z = g− 2 + f = dimH f−1
g , and so Z contains a component T of

H f−1
g . By Lemma 3.2(a) S contains a component T ofH f−1

g . �

3.6. Application to Newton polygons. Recall that a stable curve C of compact type is supersin-
gular if all the slopes of the Newton polygon of its Jacobian equal 1/2. This is equivalent to the
condition that the Jacobian of C is isogenous to a product of supersingular elliptic curves. Note
that a supersingular curve necessarily has p-rank zero. An abelian variety of p-rank zero is neces-
sarily supersingular only when the dimension satisfies g ≤ 2.

In this section, we prove that the Newton polygon of a generic hyperelliptic curve of p-rank 0 is
not supersingular when g ≥ 3. The result generalizes [Oor91, Thm. 1.12] which is the case g = 3.

Newton polygons have the following semicontinuity property: let S = Spec(R) be the spectrum
of a local ring, with generic point η and geometric closed point s; if G is a p-divisible group over
S, then ν(Gη) either equals or lies below ν(Gs). (The latter condition means that ν(Gη) and ν(Gs)
have the same endpoints and all points of ν(Gη) lie below ν(Gs).)

Corollary 3.16. Suppose p is an odd prime and g ≥ 3. Let η be a generic point of H0
g. Then Cg,η is not

supersingular. In particular, there exists a smooth hyperelliptic curve of genus g and p-rank 0 which is not
supersingular.

Proof. When g = 3, this follows from [Oor91, Thm. 1.12]. For g ≥ 4, the proof proceeds by
induction. Let S be the closure of η in H0

g. By Corollary 3.13, S contains a component of ∆1[Hg]0.

Thus there are components Ṽ1 of H̃0
1 and Ṽ2 of H̃0

g−1 such that S contains κ1,g−1(Ṽ1 × Ṽ2). By

the inductive hypothesis, the Newton polygon of the generic point of Ṽ2 is not supersingular; in
particular, it has a slope λ such that 0 < λ < 1/2. The same is then true of the generic point of
κ1,g−1(Ṽ1 × Ṽ2). By semicontinuity [Kat79, Thm. 2.3.1], the generic Newton polygon of S (and
thus of S) either equals or lies below that of κ1,g−1(Ṽ1 × Ṽ2). In particular, it has a slope λ′ < 1/2.
Thus Cg,η is not supersingular. �

Remark 3.17. When p = 2 (a case not considered in this paper), there are some results about the
slopes of Newton polygons of hyperelliptic curves of p-rank 0, see e.g. [Bla09, SZ02].

3.7. Open questions about the geometry of the hyperelliptic p-rank strata.

Question 3.18. Does the closure of each component of H f
g contain the moduli point of a chain of

elliptic curves with p-rank f ?

More generally, one could ask which trees arise in the boundary ofH f
g . If the answer to Question

3.18 is affirmative then Lemma 3.10 implies that every ordering of f ordinary and g− f supersin-
gular elliptic curves occurs for such a chain. In [AP08, Cor. 3.6], the authors show the analogous
question has a positive answer for every component of M f

g. The difference for M f
g is that the
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clutching morphism identifies two curves at an arbitrary point of each, rather than a ramification
point of each. The location of these points can then be changed using an analogue of Lemma 3.7.

Question 3.19. For 2 ≤ i ≤ g− 2, does the closure of each component ofH f
g intersect ∆i[Hg] f ?

In [AP08, Prop. 3.4], the authors show that the analogous question has a positive answer for ev-
ery component ofM f

g, also with control over the arrangement of p-ranks. An affirmative answer
to Question 3.18 would imply an affirmative answer to Question 3.19.

Question 3.20. How many irreducible components doesH f
g have?

One knows that H f
g is irreducible for all p when f = g or when g = 2 and f = 1. If g ≥ 3, then

A f
g is irreducible by [Cha05, Remark 4.7]. IfH f

g is irreducible, then there is a very short proof that
Questions 3.18 and 3.19 have affirmative answers.

Question 3.21. Let η be a generic point of H f
g . What is the Newton polygon of the Jacobian of

Cg,η?

The answer to Question 3.21 is known only for pairs (g, f ) such that g − f ≤ 2. For the
generic point ξ of A0

g with g ≥ 3, one knows that the Newton polygon of the abelian variety
Xξ is {1/g, (g− 1)/g} [Oor01, Cor. 3.2].

4. ENDOMORPHISM RINGS

In this section, we use degeneration to constrain the endomorphism ring of a generic curve of
given genus and p-rank.

Let Xg = Pic0
Cg/Hg

be the neutral component of the relative Picard functor of Cg over Hg; then

Xg → Hg is a semiabelian scheme. To ease notation, if X is an abelian variety, let E(X) =
End(X) ⊗ Q, and let E`(X) = End(X) ⊗ Z`; then E`(X) acts on the Tate module T`(X), and
the endomorphism algebra E(X) acts on each rational Tate module V`(X) := T`(X)⊗Z`

Q`. If X
is simple, then the center of E(X) is either a totally real or totally imaginary number field.

Lemma 4.1. Let ξ be a geometric generic point of H0
3. Then X3,ξ is simple and either E(X3,ξ) ∼= Q or

E(X3,ξ) is a totally real cubic field.

Proof. Suppose there is an isogeny X3,ξ ∼ A1⊕ A2 for abelian varieties A1 and A2 of dimensions 1
and 2. Then A1 and A2 each have p-rank 0 and are thus supersingular. Then X3,ξ is supersingular,
which contradicts the fact that the Newton polygon of X3,ξ has slopes 1/3 and 2/3 [Oor91, Thm.
1.12]. Thus X3,ξ is simple.

By the classification of endomorphism algebras of simple abelian varieties of prime dimension
(e.g., [Oor88, 7.2]), to complete the proof it suffices to show that neither a complex multiplication
field of degree six nor a quadratic imaginary field acts on X3,ξ . Let S be the closure of ξ in H0

3.
Since dim S = 2 > 0 but abelian varieties with complex multiplication are rigid, E(X3,ξ) is not a
complex multiplication field of degree 6.

To address the possibility of an action by a quadratic imaginary field K, suppose to the contrary
that there is a subring of End(X3,ξ) isomorphic to an order OK in K. Then OK ⊗ Zp acts on the
p-divisible group X3,ξ [p∞]. There is an inclusion K⊗Qp ↪→ End(X3,ξ [p∞])⊗Qp ∼= D1/3 ⊕ D2/3.
(Here, Dλ denotes the central simple Qp-algebra with Brauer invariant λ.) Every maximal subfield
of D1/3 or D2/3 is a cubic extension of Qp, but K ⊗Qp is a Qp-algebra of degree two, so K ⊗Qp
cannot be a field. In particular, X3,ξ does not admit an action by a quadratic imaginary field inert
or ramified at p.

Finally, suppose X3,ξ admits an action by a quadratic imaginary field K which splits at p. Let
(r, s) be the signature of the action of OK on Lie(X3,ξ); the dimensions r and s are nonnegative
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and r + s = 3. Consider the moduli space ShOK ;(r,s) of abelian threefolds with an action by OK of
signature (r, s). The Torelli morphism τ restricts to a finite morphism from S to a component of
ShOK ;(r,s). Since dim S = 2 and dim ShOK ;(r,s) = r · s, then (r, s) is either (1, 2) or (2, 1). Thus τ(S)
is dense in ShOK ;(r,s). This gives a contradiction since X3,ξ has p-rank zero but the generic member
of ShOK ;(r,s) is ordinary [Wed99, Thm. 1.6.2]. �

Question 4.2. Is End(Pic0(C3,ξ)) ∼= Z for every geometric generic point ξ ofH0
3?

Consider the situation of Lemma 4.1. Using the description of the p-rank strata of Hilbert mod-
ular threefolds, one can show that if E(X3,ξ) is a cubic field L, then L is either (totally) inert or
ramified at p. The authors tentatively expect that E(X3,ξ) is always Q, simply because there is
no obvious source of such a totally real cubic field for each p. Note that since the number of ir-
reducible components of H0

3 remains unknown (see Question 3.20), even numerical experiments
remain challenging.

Lemma 4.3. Let Y be a simple abelian variety whose dimension g is relatively prime to 3. If there exists a
geometric generic point ξ3 ofH0

3 for which there is a nontrivial homomorphism End(Y)→ E(X3,ξ3), then
End(Y) ∼= Z.

Proof. If Z is a simple abelian variety, let E0(Z) be the subfield of E(Z) fixed by the Rosati involu-
tion, and let e0(Z) = [E0(Z) : Q]. Then e0(Z)| dim(Z).

By Lemma 4.1, E(X3,ξ3) is a totally real field of dimension 1 or 3 over Q. On one hand, the
existence of a nontrivial homomorphism End(Y) → E(X3,ξ3) forces e0(Y) to divide e0(X3,ξ3), and
thus e0(Y)|3. On the other hand, e0(Y)|g. Therefore, e0(Y) = 1 and E0(Y) ∼= Q. Neither a non-
commutative algebra nor a totally imaginary field admits a nontrivial homomorphism to E(X3,ξ3),
and thus E(Y) = E0(Y) and End(Y) ∼= Z. �

Lemma 4.4. Let X → S be a polarized abelian scheme over a reduced irreducible Noetherian stack. Let η
be the generic point of S, and let s ∈ S be any point. Then there exists an inclusion End(Xη) ↪→ End(Xs).

Proof. By introducing a rigidifying structure on X → S, such as coordinates on the space of sec-
tions of the third power of the ample line bundle given by the polarization, one can assume S is
a reduced irreducible Noetherian scheme. Since the absolute endomorphism ring of an abelian
variety is defined over a finite extension of the base field, it suffices to show the existence of an in-
clusion End(Xη) ↪→ End(Xs). If S is normal, then End(Xη) extends uniquely to End(XS), and in
particular to End(Xs) [FC90, I.2.7]. In general, letν : S′ → S be the normalization map; let η′ be the
generic point of S′, and let s′ be a point of S′ over s′. The desired result follows from the canonical
map End((ν∗X)η′) ↪→ End((ν∗X)s′) and the isomorphisms of abelian varieties (ν∗X)η′ ∼= Xη× η′
and (ν∗X)s′

∼= Xs × s′. �

Proposition 4.5. If ξ4 is a geometric generic point ofH0
4, then X4,ξ4 is simple and End(X4,ξ4) ∼= Z.

Proof. Let S4 be the closure of ξ4 in H0
4. Suppose there is an isogeny X4,ξ4 ∼ A1 ⊕ A2 for two

abelian varieties A1 and A2. If A1 and A2 each have dimension 2, then they are supersingular
since they have p-rank 0. Then X4,ξ4 is supersingular, which contradicts Corollary 3.16. If A1 has
dimension 1 and A2 has dimension 3, then there is a curve W of genus 3 such that Jac(W) ∼= A2.
The inclusion of A2 into X4,ξ4 yields a cover ψ : C4,ξ4 → W. By the Riemann-Hurwitz formula
6 ≥ 4deg(ψ) which is impossible since deg(ψ) ≥ 2. Thus X4,ξ4 is simple.

By Corollary 3.13(a) there exist components Ṽ1 ⊂ H̃0
1 and Ṽ2 ⊂ H̃0

3 such that S4 contains
κ1,3(Ṽ1 × Ṽ2). Let ξ1 and ξ3 be geometric generic points of Ṽ1 and Ṽ2, respectively, and let η =
κ1,3(ξ1,ξ3). Since X3,ξ3 is simple by Lemma 4.1, there are no nontrivial homomorphisms between
X3,ξ3 and X1,ξ1 . This yields an isomorphism

E(X4,η) ∼= E(X1,ξ1)⊕ E(X3,ξ3).
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By Lemma 4.4, there is an inclusion E(X4,ξ4) ↪→ E(X4,η) and thus an inclusion E(X4,ξ4) ↪→
E(X3,ξ3). Since X4,ξ4 is simple, Lemma 4.3 implies that End(X4,ξ4) ∼= Z. �

Theorem 4.6. Suppose g ≥ 4 and 0 ≤ f ≤ g. Ifξ is a geometric generic point ofH f
g , then End(Xg,ξ) ∼= Z

and thus Xg,ξ is simple.

Proof. By Corollary 3.15 and Lemma 4.4, it suffices to prove the result when f = 0. For f = 0,
the proof is by induction on g with the base case g = 4 supplied by Proposition 4.5. Suppose
g ≥ 5 and let Sg be the closure of ξ in H0

g. By Corollary 3.14, Sg intersects ∆1,1[Hg]0 and there is

an irreducible component S̃ of Sg × H̃g, and there are irreducible components S1 of H̃0
1 and S2 of

H̃0
g−2 and S3 of H̃0

1; and there are irreducible components SR of H̃0
g−1 and SL of H̃0

g−1; such that
the restriction of the clutching maps yields a commutative diagram

(4.0.1) S1 × S2 × S3 //

��

κ̃1,g−2,1

((PPPPPPPPPPPP S1 × SR

��

SL × S3 // S̃ ∩ ∆1,1[H̃g].

Let ηi be the generic point of Si for 1 ≤ i ≤ 3; similarly, let ηL be the generic point of SL, and ηR
that of SR. Let s = κ̃1,g−2,1(η1, η2, η3). By Lemma 4.4, there are inclusions

(4.0.2) End(Xg,s) End(Xg,κ̃1,g−1(η1×ηR))oo

End(Xg,κ̃g−1,1(ηL×η3))

OO

End(Xg,ξ0
g
).oo

OO

Let ` be a prime such that E`(E) ∼= Mat2(Z`) for any supersingular elliptic curve E/k. There is a
canonical isomorphism T`(Xg,s) ∼= T`(X1,η1)× T`(Xg−2,η2)× T`(X1,η3) of Z`-modules. Choose co-
ordinates on T`(Xg,s) compatible with this decomposition. By the inductive hypothesis, E(Xg−1,ηL) ∼=
Q, and so E(Xg,κ̃g−1,1(ηL×η3))

∼= E(Xg−1,ηL) ⊕ E(X1,η3) ∼= Q ⊕ E(X1,η3). Thus E`(Xg,κ̃g−1,1(ηL×η3))
acts on T`(Xg,s) as diag2g−2(Z`) ⊕Mat2(Z`). Similarly, E`(Xg,κ̃1,g−1(η1×ηR)) acts as Mat2(Z`) ⊕
diag2g−2(Z`). Then

E`(Xg,ξ) ⊆ E`(Xg,κ̃g−1,1(ηL×η3)) ∩ E`(Xg,κ̃1,g−1(η1×ηR))

so E`(Xg,ξ) acts on T`(Xg,s) as diag2g(Z`). Thus, E`(Xg,ξ) ∼= Z` and End(Xg,ξ) ∼= Z. �

Remark 4.7. For g ≤ 3 and 1 ≤ f ≤ 3, it is also true that End(X
3,ξ f

3
) ∼= Z and X

3,ξ f
3

is simple.
More generally, for g ≥ 2 and f ≥ 1, Theorem 4.6 can be proved as an application of Theorem 5.2
as in [AP08, Application 5.7].

5. MONODROMY

In this section, we determine the `-adic monodromy of components of H f
g for odd primes `.

The proof uses an inductive process which depends on the degeneration results from Section 3.
For f ≥ 1, the base case g = 2 relies on a special case of [Cha05, Prop. 4.4]. When f = 0, the base
case g = 4 relies on the results on endomorphism rings from Section 4.
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5.1. Integral monodromy. We summarize the discussion in [AP07, Sec. 3.1] about Z/`- and Z`-
monodromy. Let S be a connected k-scheme on which the prime ` is invertible. Let π : C → S
be a relative curve of compact type whose fibres have genus g. Then R1π∗(µµµ`), or equivalently
Pic0(C)[`], is an étale sheaf of Z/`-modules. If s is a geometric point of S, then R1π∗(µµµ`) is equiv-
alent to a linear representation

ρC→S,Z/` : π1(S, s)→ Aut((R1π∗(µµµ`))s) ∼= GL2g(Z/`).

Let M`(C → S, s) be the image of ρC→S,Z/` and let M`(C → S) be the isomorphism class of this
image as an abstract group. If the family C → S is clear from context, these will be denoted
M`(S, s) and M`(S), respectively. There is a canonical polarization on Pic0(C), and thus (after
a choice of `th root of unity on S) there is a symplectic pairing on Pic0(C)[`]. Therefore, there
is an inclusion of groups M`(S) ⊆ Sp2g(Z/`). Similarly, for each natural number n there is a
representation

ρC→S,Z/`n : π1(S, s)→ Aut((R1π∗(µµµ`n))s).
Let MZ`

(C → S, s) = lim←
n ρC→S,Z/`n(π1(S, s)), and let MQ`

(C → S, s) be the Zariski closure of
MZ`

(C→ S, s) in Aut(lim←
n (R1π∗(µµµ`n))s ⊗Q`) ∼= GL2g,Q`

.
If C → S is a stable curve such that U, the locus where C has compact type, is open and dense,

for each coefficient ring Λ ∈ {Z/`, Z`, Q`} let MΛ(C→ S, s) = MΛ(C|U → U, s).
One can employ an analogous formalism to define the monodromy group of a relative curve

over a stack [Noo04].

5.2. Monodromy of the hyperelliptic p-rank strata. In this section, let p and ` be distinct odd
primes. We find the integral monodromy of the p-rank strata H f

g when 1 ≤ f ≤ g. The integral
monodromy of Hg, which is the same as the case f = g, already appears in [AP07, Thm. 3.4] (see
also unpublished work of J.-K. Yu, and [Hal06, Thm. 5.1]).

The following argument shows that to determine the monodromy of families of hyperelliptic
curves, one may work with eitherHg or H̃g.

Lemma 5.1. Let p and ` be distinct odd primes and suppose g ≥ 2. Let S ⊂ Hg be irreducible and let S̃ be
an irreducible component of S×Hg

H̃g. Then M`(S̃) ∼= Sp2g(Z/`) if and only if M`(S) ∼= Sp2g(Z/`).

Proof. Since S̃ → S is finite, M`(S̃) is a subgroup of M`(S). If M`(S̃) ∼= Sp2g(Z/`) then M`(S̃) is
maximal, and thus so are M`(S) and M`(S).

Conversely, suppose M`(S) ∼= Sp2g(Z/`). Since $g is étale with Galois group Sym(2g + 2),

the cover S̃ → S is Galois with Galois group G ⊆ Sym(2g + 2). To show M`(S̃) ∼= Sp2g(Z/`),
it suffices by the argument of [AP07, Lemma 3.3] to show that G and Sp2g(Z/`) have no com-

mon nontrivial quotient. Recall that
∣∣∣PSp2g(Z/`)

∣∣∣ = 1
2 ∏1≤ j≤g `2 j−1(`2 j − 1). On one hand,

ord`

∣∣∣PSp2g(Z/`)
∣∣∣ = g2. On the other hand, for any integer N we have the estimate ord`(N!) <

∑e≥1
N
`e = N

`−1 . We thus have ord`(|Sym(2g + 2)|) < ord`(
∣∣∣PSp2g(Z/`)

∣∣∣) for all (g, `) with
g ≥ 2 and ` ≥ 3. Therefore PSp2g(Z/`) is not a subquotient of Sym(2g + 2), and in particu-

lar M`(S̃) = M`(S) ∼= Sp2g(Z/`). �

Theorem 5.2. Let p and ` be distinct odd primes. Suppose g ≥ 1 and 1 ≤ f ≤ g. Let S be an irreducible
component ofH f

g , the p-rank f stratum inHg. Then M`(S) ∼= Sp2g(Z/`) and MZ`
(S) ∼= Sp2g(Z`).

Proof. The proof is by induction on g. The base cases involve the monodromy ofH2
2 andH1

2, which
follow from [Cha05, Prop. 4.4]; see [AP08, Thm. 4.5].
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Now suppose g ≥ 3 and 1 ≤ f ≤ g. As an inductive hypothesis assume, for all pairs (g′, f ′)
where 1 ≤ f ′ ≤ g′ < g, that M`(S′) ∼= Sp2g′(Z/`) for every irreducible component S′ ofH f ′

g′ .

Let S be an irreducible component ofH f
g . Recall the degeneration types identified immediately

before Corollary 3.14. If f = g, let ( f1, f2, f3) = (1, g − 2, 1) as in case (A); if f = g − 1, let
( f1, f2, f3) = (0, g− 2, 1) as in case (B); and if 1 ≤ f ≤ g− 2, let ( f1, f2, f3) = (0, f , 0) as in case
(C). By Corollary 3.14, there are irreducible components S̃ of S ×Hg

H̃g, S̃1 of H̃ f1
1 , S̃2 of H̃ f2

g−2

and S̃3 of H̃ f3
1 ; and there are irreducible components S̃R of H̃ f2+ f3

g−1 and S̃L of H̃ f1+ f2
g−1 ; such that the

restriction of the clutching maps yields a commutative diagram

(5.2.1) S̃1 × S̃2 × S̃3
//

��

κ̃1,g−2,1

&&MMMMMMMMMMM S̃1 × S̃R

��

S̃L × S̃3
// ∆1,1[S̃].

In all cases f1 + f2 and f2 + f3 are positive, and so S̃L and S̃R have monodromy Sp2(g−1)(Z/`), by
induction and Lemma 5.1.

The rest of the proof is identical to that of [AP07, Thm. 3.4]. Briefly, one calculates the mon-
odromy group of S̃ at a point s in the image of S̃1 × S̃2 × S̃3 under κ̃1,g−2,1. On one hand, there
is an a priori inclusion M`(S̃, s) ⊆ Sp2g(Z/`). On the other hand, the previous paragraph shows

that M`(S̃, s) contains two distinct subgroups isomorphic to Sp2(g−1)(Z/`). A group-theoretic re-

sult shows that M`(S̃, s) ∼= Sp2g(Z/`). The result then follows from Lemma 5.1.
The proof that MZ`

(S) ∼= Sp2g(Z`) is identical. �

5.2.1. A p-adic complement. In this section we determine the p-adic monodromy of components of
the p-rank strataH f

g when f ≥ 1.
Let S be a connected scheme of characteristic p with geometric point s, and let X → S be an

abelian scheme with constant p-rank f . The group scheme X[p] and p-divisible group X[p∞] admit
largest étale quotients, X[p]ét and X[p∞]ét. These are respectively classified by homomorphisms
π1(S, s) → Aut(X[p]ét)s ∼= GL f (Z/p) and π1(S, s) → Aut(X[p∞]ét)s ∼= GL f (Zp), whose images
are denoted Mp(X → S) and MZp(X → S), or simply Mp(S) and MZp(S).

Lemma 5.3. Suppose g ≥ 1 and 1 ≤ f ≤ g. Let S be an irreducible component of H f
g , and let S̃ be an

irreducible component of S×Hg
H̃g. Then Mp(S) ∼= GL f (Z/p) if and only if Mp(S̃) ∼= GL f (Z/p).

Proof. Since S̃ → S is finite, Mp(S̃) is a subgroup of Mp(S). If Mp(S̃) ∼= GL f (Z/p) then Mp(S̃) is
maximal, and thus so are Mp(S) and Mp(S).

Conversely, suppose Mp(S) ∼= GL f (Z/p). Let S∗ be the closure of S in Hg − ∆0[Hg] and let S̃∗

be the closure of S̃ in H̃g − ∆0[H̃g]. Let T = S∗ − (S∗) f be the locus with p-rank smaller than f .
Then T is nonempty by Corollary 3.15. On one hand, S̃∗ → S∗ is étale since p is odd and the cover
S̃∗ → S∗ is tantamount to a partial level-two structure. On the other hand, the GL f (Z/p)-cover
H f := HomS((Z/p), Jac(Cg,S)[p]ét) → S is ramified along T. Therefore, the covers H f → S and
S̃→ S are disjoint, and Mp(S̃) = Mp(S) ∼= GL f (Z/p). �

Proposition 5.4. Suppose g ≥ 2 and 1 ≤ f ≤ g. Let S be an irreducible component of H f
g . Then

Mp(S) ∼= GL f (Z/p) and MZp(S) ∼= GL f (Zp).
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Proof. First suppose f = g. When g = 2, the result for H2
2, or equivalentlyM2

2, is a special case of
[Eke91, Thm. 2.1]. For g ≥ 3, suppose as an inductive hypothesis that Mp(Hg−1

g−1) ∼= GLg−1(Z/p).

By Lemma 5.3, Mp(H̃g−1
g−1) ∼= GLg−1(Z/p).

Recall the diagram (2.4.7), and consider a geometric point s ∈ H̃g
g in the image of H̃1

1 × H̃
g−2
g−2 ×

H̃1
1 under κ̃1,g−2,1. By the inductive hypothesis and Lemma 5.3, Mp(H̃g

g , s) contains two distinct
copies of GLg−1(Z/p) and thus equals GLg(Z/p) by the argument of [AP07, Lemma 3.2].

Now suppose 1 ≤ f ≤ g− 1. By Corollary 3.13(a), there are irreducible components Ṽ1 ⊂ H̃0
1

and Ṽ2 ⊂ H̃ f
g−1 such that S contains κ̃1,g−1(Ṽ1 × Ṽ2). By the inductive hypothesis and Lemma 5.3,

Mp(Ṽ2) ∼= GL f (Z/p), and thus Mp(S) ∼= GL f (Z/p) as well.
The proof that MZp(S) ∼= GL f (Zp) is identical. �

5.3. Monodromy in p-rank zero. In this section, we determine the integral monodromy of com-
ponents of H0

g under a few mild hypotheses. The monodromy group of H0
2 is small, since super-

singular families of abelian varieties have finite `-adic monodromy groups; and the methods of
[Cha05] do not apply to H0

g for g ≥ 3, because the hyperelliptic Torelli locus is not a Hecke-stable
subset of Ag. Thus our proof requires another base case when f = 0. For lack of a strategy to
calculate the `-adic monodromy of H0

3, we analyze the case when g = 4 and f = 0 using re-
sults on endomorphism rings from Section 4. We thus determine the mod-` monodromy group
of components of H0

g when g ≥ 4, for all but finitely many `. Note that in Theorem 5.7, the set
of exceptional primes depends on the characteristic p of the base field, but not on g, so that our
results are valid for `�p 0.

Lemma 5.5. Let S be an irreducible component ofH0
3.

(a) Either MQ`
(S) ∼= Sp2g,Q`

for all ` 6= p, or there exists a totally real field L such that MQ`
(S) ∼=

(RL/Q SL2)×Q` for all ` 6= p.
(b) Let s ∈ S be a geometric point. For ` in a set of positive density, there exists a torus T` ⊂ MQ`

(S, s)
which acts irreducibly on V`(Xs).

Proof. Let η be the generic point of S, and consider the dichotomy of Lemma 4.1. If End(X3,η) ∼= Z,
then one knows (e.g., [Ser00, Thm. 3]) that MQ`

(S) ∼= Sp2g,Q`
for all ` 6= p.

Otherwise, if E(X3,η) ∼= L, a totally real cubic field, then S coincides with (a component of) the
p-rank zero locus of a Hilbert modular threefold attached to L. Therefore, MQ`

(S) ∼= RL/Q SL2×Q`

for all ` 6= p [Yu09, Lemma 6.5]. This proves (a).
For (b), if MQ`

(S) is the symplectic group, for each prime ` choose a CM field K(`) of degree 6
which is inert at `.

Otherwise, for each rational prime ` inert in L, let K(`) be a totally imaginary quadratic exten-
sion of L which is inert at `.

Then the norm one torus T` := (RK(`)/QGm)(1) ×Q` is a suitable torus. �

Proposition 5.6. Let S be an irreducible component ofH0
4. For each ` 6= p, MQ`

(S) ∼= Sp8,Q`
.

Proof. Fix a geometric point s ∈ S. By [LP95, Thm. 3.3], there exists a connected reductive
group G/Q and an 8-dimensional representation V of G such that for ` � 0, the representation
MQ`

(S, s) → Aut(V`(X4,s)) is isomorphic to the representation G×Q Q` → Aut(V ⊗Q Q`). From
Zarhin’s theorem and the classification of semisimple Lie algebras (see, e.g., [Noo00, Lemma 1.3]),
either G = Sp8, or the representation is of Mumford type [Mum69]; and in each case, MQ`

(S) is in
fact isomorphic to G×Q Q` for all ` 6= p. If the representation is of Mumford type, then G is isoge-
nous to a twist of RK/Q SL2 for some totally real cubic field K, and in particular has dimension
nine. Therefore, to prove the claim, it suffices to show that dimQ`

MQ`
(S, s) ≥ 10.
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By Corollary 3.14, S intersects ∆1,1(H1,1). As in the proof of Theorem 5.2, one can compute
MQ`

(S, s) at a point s in ∆1,1(S). Then there are components S̃L and S̃R of H̃0
3, and components S̃1

and S̃3 of H̃0
1, such that MQ`

(S, s) contains distinct subgroups isomorphic to MQ`
(S̃L)×MQ`

(S̃3)
and MQ`

(S̃1)×MQ`
(S̃R). Moreover, by Lemma 5.5(a), each of MQ`

(S̃L) and MQ`
(S̃R) has dimen-

sion at least nine. Therefore, dimQ`
MQ`

(S, s) ≥ 10, and MQ`
(S, s) ∼= Sp8,Q`

for all ` 6= p. �

Theorem 5.7. If ` �p 0, if g ≥ 4 and if S is an irreducible component of H0
g, then M`(S) ∼= Sp2g(Z/`)

and MZ`
(S) ∼= Sp2g(Z`).

Proof. The proof is by induction on g. For the base case, suppose g = 4. SinceH0
4 has only finitely

many irreducible components, it suffices to prove the statement for `�p 0 for each component S.
This follows from Proposition 5.6 and, e.g., [Ser00, 8.2].

For g > 4, the proof is identical to that of Theorem 5.2, with Corollary 3.14 being used to
degenerate to a component of κ̃1,g−2,1(H̃0

1 × H̃0
g−2 × H̃0

1). �

Remark 5.8. The assertion of Theorem 5.7 is false for H0
1 and H0

2 if ` ≥ 5. Indeed, a hyperelliptic
curve of genus g ≤ 2 and p-rank 0 is supersingular. Since a supersingular p-divisible group over
a scheme S becomes trivial after a finite pullback S̃→ S, the monodromy group MZ`

(H0
g) is finite

for g ≤ 2. The ambiguity in Lemma 4.1 propagates to Lemma 5.5, and we do not know whether
the assertion of Theorem 5.7 is true forH0

3.

5.4. Arithmetic applications. The results of the previous section about the monodromy of com-
ponents of H f

g have arithmetic applications involving hyperelliptic curves over finite fields. For
example, they imply that there exist hyperelliptic curves of given genus and p-rank with abso-
lutely simple Jacobian (Application 5.9). Moreover, they give estimates for the proportion of hy-
perelliptic curves with a given genus and p-rank which have a rational point of order ` on the
Jacobian (Application 5.11) or for which the numerator of the zeta function has large splitting
field (Application 5.13).

Throughout this section, F denotes a finite extension of Fp.

5.4.1. Technical context. We do not include proofs in this section, since they are very similar to
those found in [AP08, Section 5]. Here is a brief description of the main ideas involved. One first
defines Hg over the category of Fp-schemes and defines the arithmetic monodromy group of a
substack of Hg. For a relative curve π : C → S/F of genus g ≥ 2 defined over a finite field, one
shows that if M

geom
` (S) ∼= Sp2g(Z/`), then M

geom
Z`

(S) ∼= Sp2g(Z`); and Marith
Z`

(S) has finite index in
GSp2g(Z`); and M

geom
Q`

(S) ∼= Sp2g,Q`
[AP08, Lemma 5.1].

Secondly, in order to use Chebotarev arguments for curves over finite fields, it is necessary
to add rigidifying data, such as the data of a tricanonical structure, so that the corresponding
moduli problems are representable by schemes. Recall that Ω⊗3

C/S is very ample, that π∗(Ω⊗3
C/S) is a

locally free OS-module of rank 5g− 5, and that sections of this bundle define a closed embedding
C ↪→ P5g−5

S . A tricanonical (3K) structure on π : C → S is a choice of isomorphism O⊕5g−5
S

∼=
π∗(Ω⊗3

C/S), and the only automorphisms of a hyperelliptic curve with 3K-structure are the identity
and the hyperelliptic involution. The moduli spaceHg,3K of smooth hyperelliptic curves of genus
g equipped with a 3K-structure is representable by a scheme [KS99, 10.6.5], [MFK94, Prop. 5.1].

Third, since Hg may be constructed as the quotient of Hg,3K by GL5g−5, the forgetful functor
ψg : Hg,3K → Hg is open [MFK94, p. 6] and a fibration with connected fibers [Noo04, Thm.
A.12]. Thus, if S ⊂ Hg is a connected substack and S3K = S×Hg Hg,3K, then M`(S3K) ∼= M`(S)
[AP08, Lemma 5.2]. Since the data of a tricanonical structure exists Zariski-locally on the base,
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one can relate point counts on Hg,3K(F) to those on Hg(F). Specifically, if s ∈ H f
g(F) is such that

Aut(Cg,s) ∼= {±1}, then the fiber ofHg,3K(F) over s consists of
∣∣GL2g(F)

∣∣/2 points [KS99, 10.6.8].

5.4.2. Application to simple Jacobians. Using the Q`-monodromy of H f
g , we deduce that there exist

hyperelliptic curves of genus g and p-rank f with absolutely simple Jacobian.

Application 5.9. Suppose g ≥ 1 and 0 ≤ f ≤ g with f 6= 0 if g ≤ 2. Let S be an irreducible component
ofH f

g . Then there exists s ∈ S(F) such that the Jacobian of Cg,s is absolutely simple.

Proof. If f ≥ 1 or g ≥ 4, then this follows from Theorems 5.2 and 5.7 using [CO01, Prop. 4]. If
f = 0 and g = 3, then this follows from Lemma 5.5 using [CO01, Rem. 5(i)]. �

Remark 5.10. Note that, for arbitrary g, it is unknown how to deduce Application 5.9 from The-
orem 4.6. Also, under the hypotheses of Application 5.9, one can deduce that Aut(Cg,η) = {±1},
which yields a new proof of [AGP08, Thm. 3.7].

5.4.3. Application to class groups. Recall that if s ∈ Hg(F), then Pic0(Cg,s)(F) is isomorphic to the
class group of the function field F(Cg,s). The size of the class group is divisible by ` exactly when
there is a point of order ` on the Jacobian. Roughly speaking, Application 5.11 shows that among
all curves over F of specified genus and p-rank, slightly more than 1/` of them have an F-rational
point of order ` on their Jacobian.

Application 5.11. Suppose ` and p are distinct odd primes, g ≥ 1 and 1 ≤ f ≤ g. Suppose S is an
irreducible component of H f

g such that S(F) 6= ∅. Let m be the image of |F| in (Z/`)×. There exists a
rational functionαg,m(T) ∈ Q(T) and a constant B = B(p, g, `) such that

(5.4.1)

∣∣∣∣∣#{s ∈ S(F) : `|# Pic0(Cg,s)(F)}
#S(F)

−αg,m(`)

∣∣∣∣∣ <
B
√

q
.

If f = 0 and g ≥ 4, the same result is true for all `�p 0.

Proof. The proof is very similar to that of [AP08, Application 5.9] and uses Theorems 5.2-5.7 and
[KS99, Thm. 9.7.13]. �

Remark 5.12. For ` odd, one knows thatαg,1(`) = `
`2−1 +O(1/`3), whileαg,m(`) = 1

`−1 +O(1/`3)
if m 6= 1. A formula forαg,1(`) is given in [Ach06].

Note that Application 5.11 shows that for a given g, the distribution of (arithmetic) `-ranks
among hyperelliptic curves over F with fixed (geometric) p-rank f is essentially independent of
f . The reader interested in the field of definition of `-torsion in the Jacobians of individual hy-
perelliptic curves is invited to consult [BHL+11] and the discussion therein. To the best of our
knowledge, none of the works cited there directly analyzes the (lack of) interplay between `- and
p-ranks.

5.4.4. Application to zeta functions. If C/F is a smooth projective curve of genus g, its zeta function
has the form LC/F(T)/(1− T)(1− qT), where LC/F(T) ∈ Z[T] is a polynomial of degree 2g. The
principal polarization on the Jacobian of C forces a symmetry among the roots of LC/F(T); the
largest possible Galois group for the splitting field over Q of LC/F(T) is the Weyl group of Sp2g
which is a group of size g!2g.

Application 5.13. Suppose g ≥ 1 and 1 ≤ f ≤ g, or that g ≥ 4 and f = 0. Suppose p > 2g + 1 and
that S is an irreducible component of H f

g such that S(F) 6= ∅. There exists a constant γ = γ(g) > 0 and
a constant E = E(p, g) such that

(5.4.2)
#{s ∈ S(F) : LCg,s/F(T) is reducible, or has splitting field with degree < 2gg!}

#S(F)
< Eq−γ .
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Proof. The proof is very similar to that of [AP08, Application 5.11] and uses Theorems 5.2-5.7 and
[Kow06, Thm. 6.1 and Remark 3.2.(4)]. �
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