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A survey of Galois theory of curves in characteristic p

Rachel Pries and Katherine Stevenson

Abstract. This survey is about Galois theory of curves in characteristic p, a topic which has inspired major
research in algebraic geometry and number theory and which contains many open questions. We illustrate
important phenomena which occur for covers of curves in characteristic p. We explain key results on the
structure of fundamental groups. We end by describing areas of active research and giving two new results
about the genus and p-rank of certain covers of the affine line.
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1 Introduction

The purpose of this paper is to introduce the reader to the topic of Galois theory of curves in characteristic
p. Since topological methods are no longer applicable, this topic has inspired major research in algebraic geom-
etry and number theory, to recapture some information on the structure of fundamental groups. In spite of these
advances, there are still many fascinating open questions on this topic.

In section 2, we recall some Galois theoretic facts for complex curves which are meaningless or false for curves
in characteristic p. Section 3 contains some crucial examples of Kummer and Artin-Schreier covers of curves in
characteristic p. The main algebraic definitions of objects such as the fundamental group, higher ramification
groups, and Jacobians, can be found in Section 4. In Section 5, we outline the proofs of several major results,
including some of the contributions of Grothendieck, Harbater, Pop, Raynaud, Serre, and Tamagawa.

Finally, in Section 6, we describe a few areas of active research involving embedding problems and arithmetic
invariants of Galois covers defined over an algebraically closed field of characteristic p > 0. We prove two new
results on these topics. To describe the results, let ` be a prime distinct from p and let a be the order of ` modulo
p. Let L be an `-group whose maximal elementary abelian quotient is (Z/`)a. Let G be a semi-direct product
Lo Z/p. In Proposition 6.7, we prove that the smallest genus which occurs for a (wildly ramified) G-Galois cover
φ : W → P1

k branched only at ∞ is gW = 1 + |L|(p − 3)/2. This result can be viewed as the solution to an
embedding problem with prescribed ramification conditions. In Proposition 6.9, when L ' (Z/`)a, we prove that
W can be chosen such that its Jacobian JW has p-rank sW = (`a − 1)(p − 3)/2 and furthermore such that the
p-torsion JW [p] decomposes completely into sW copies of Z/p⊕µp and (p− 1)/2 copies of Ess[p], the p-torsion
group scheme of a supersingular elliptic curve. In particular, the Newton polygon of JW only has slopes 0, 1/2,
and 1. The result is interesting because this combination of arithmetic invariants is somewhat unusual.
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2 Facts about Galois covers of complex curves

Here are some of the basic properties of Galois covers of complex curves that are false for covers of curves
defined over a field of characteristic p > 0. Suppose X is a smooth connected projective complex curve, i.e., a
Riemann surface, of genus g. Suppose B ⊂ X is a finite set of r ≥ 0 points and x ∈ X − B is a point. Suppose G
is a finite group.

2.1 The fundamental group π1(X − B, x). The complex curve X is homeomorphic to the quotient of a
polygon with 4g sides, where the quotient is determined by identifying the sides with the consecutive labels αi, βi,
α−1
i , β−1

i for 1 ≤ i ≤ g. Also the point x can be identified with a corner of the polygon. Let γi be a loop in X ,
starting at x, that circles around the ith point of B. The topological fundamental group π1(X−B, x) is generated by
the homotopy classes of the loops α1, β1, . . . , αg, βg, γ1, . . . , γr with the sole relation

∏g
i=1[αi, βi]

∏r
j=1 γj = 1.

This statement about the fundamental group implies the following facts:

(i) If r > 0, then π1(X − B, x) is a free group on 2g + r − 1 generators.
(ii) The structure of π1(X − B, x) depends only on the genus of X and the cardinality of B.

Because there is a bijection between finite quotients of π1(X −B, x) and finite Galois covers of X with branch
locus in B, one immediately deduces the following:

(iii) A finite groupG is the Galois group of a cover ofX with branch locus in B if and only ifG can be generated
by 2g + r − 1 elements.

(iv) In particular, there are no nontrivial Galois covers of the complex affine line A1
C (i.e., the complex plane is

simply connected).
(v) Given X , B, and G, the number of isomorphism classes of Galois covers of X with branch locus in B and

with Galois group G is finite.

2.2 Ramification of complex covers. Suppose ϕ : Y → X is a Galois cover of complex curves with branch
locus in B and Galois group G. Consider a point Q ∈ ϕ−1(B). The decomposition group DQ consists of the
automorphisms σ ∈ Gal(Y/X ) such that σ(Q) = Q. The image under ϕ of a loop in Y around Q will be a
loop in X around ϕ(Q) traversed |DQ| times. By triangulating X and Y appropriately and computing their Euler
characteristics, one can determine the genus of Y . This yields some more facts:

(vi) The decomposition groups of a Galois cover ϕ : Y → X of complex curves are cyclic.
(vii) If gX is the genus of X , the genus gY of Y is given by the Riemann-Hurwitz formula to be

2gY − 2 = |G|(2gX − 2) +
∑

Q∈ϕ−1(B)

(|DQ| − 1).

Thus, gY is determined by gX , |G|, |B| and the orders of the decomposition groups.

2.3 Jacobians and torsion points. The definition of the Jacobian JX of a complex curve X can be found
in [21, VIII]. Recall that Ω1 is the vector space of holomorphic 1-forms ω on X . If γ is a loop in X , there is a
linear functional

∫
γ

: Ω1 → C. The value of the integral
∫
γ
ω depends only on the equivalence class [γ] of γ in

the homology group H1(X ,Z), which is the abelianization of the fundamental group. The dual space (Ω1)∗ is
the vector space of linear functionals λ : Ω1 → C. A period is a linear functional which equals

∫
[γ]

for some
equivalence class [γ] in H1(X ,Z). The set Λ of periods is a subgroup of (Ω1)∗.

The Jacobian of X is JX := (Ω1)∗/Λ. If X has genus g, then dim(Ω1) = g. Also H1(X ,Z) is a Z-module
of rank 2g. Thus JX ' Cg/Λ is a complex torus of dimension g. In fact, it is an abelian variety of dimension g
[11, Chapter 6].

If ` is a prime, consider the multiplication-by-` map m` on JX . The kernel JX [`] of m` is the subgroup of
`-torsion points of the Jacobian. As an abelian group, JX [`] ' (1/`)Λ/Λ, thus:

(viii) The subgroup of `-torsion points of the Jacobian satisfies JX [`] ' (Z/`)2g . In particular, there are `2g

points of the Jacobian that are `-torsion points.
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2.4 Transition to characteristic p > 0. We will consider covers of curves defined over an algebraically
closed field k of characteristic p > 0. The topological tools used above, such as loops, are meaningless for
k-curves. For this reason, new algebraic definitions are needed for objects such as the fundamental group or
Jacobian of a k-curve. Surprisingly, many attributes of fundamental groups and covers will remain the same in
characteristic p. Most importantly, Grothendieck proved that fact (iii) holds for finite groups G that are prime-to-p
(see Section 5.1). However, there are some substantial differences between the characteristic p and characteristic 0
settings. In particular, we will see that statements (i)-(viii) are each false for covers of k-curves. In each case, the
statement must be revised in characteristic p to cope with the appearance of new ramified p-group covers and the
disappearance of unramified p-group covers.

3 Examples of covers of curves in characteristic p > 0

Let k be an algebraically closed field of characteristic p > 0, e.g., k = F̄p. Before developing the theory,
we provide some examples of Galois extensions of k(x). While the constructions are simple, these examples are
crucial for understanding the fundamental group in characteristic p > 0.

For a field extension L/K, let Gal(L/K) be the set of automorphisms of L fixing every element ofK. A field
extension is Galois if and only if |Gal(L/K)| = [L : K].

3.1 Kummer extensions. Let ` be a prime. As long as ` is distinct from p, Kummer extensions still yield
Galois extensions of k(x) with Galois group Z/`:

k(x) ↪→ k(x)[y]/(y` − x) ∼= k(y). (1)

This is an extension of degree `. Since pα ≡ 1 mod ` for some positive integer α, there is an `th root of unity
ζ` ∈ Fpα − {1} ⊂ k. Then σ : y 7→ ζ`y is an automorphism of degree `. Thus Gal(k(y)/k(x)) = 〈σ〉 ' Z/` and
the extension is Galois.

The only places of k(x) over which k(y) is ramified are x and 1/x. To see that x is the only affine place over
which the extension is ramified, note that 0 = ∂(y` − x)/∂y = `y`−1 if and only if y = 0. For more information
about this example, see [41, III.7.3].

If ` = p, then the polynomial tp − 1 ≡ (t− 1)p mod p has only one root in k. So extension (1) has degree p,
but Gal(k(y)/k(x)) is trivial, and thus extension (1) is not Galois.

3.2 Artin-Schreier extensions. A new equation is needed in order to produce the group Z/p as the Galois
group of an extension of k(x). For f(x) ∈ k[x] with d = deg(f(x)) prime-to-p, consider the degree p extension:

k(x) ↪→ L := k(x)[y]/(yp − y − f(x)). (2)

Then τ : y 7→ y+ 1 is an automorphism of L of order p because (y+ 1)p ≡ yp + 1 mod p. Thus Gal(L/k(x)) =
〈τ〉 ' Z/p and the extension is Galois.

There is no affine place of k(x) over which L is ramified because

∂(yp − y − f(x))/∂y = pyp−1 − 1 ≡ −1 mod p 6= 0.

The only place of k(x) over which L is ramified is the infinite place. For more information about this example, see
[41, III.7.8].

3.3 New phenomena in characteristic p > 0. Artin-Schreier extensions can be used to give counterexam-
ples to some of the facts from Section 2 for covers of k-curves. First, consider the affine line A1

k = P1
k −∞, so

that 2g+r−1 = 0. The Artin-Schreier extension (2) with equation yp−y = f(x) yields a nontrivial Galois cover
φ : Y → P1

k branched only at ∞. The decomposition group above ∞ has order p. This shows that facts (iii) and
(iv) are false for k-curves. Moreover, by changing either the degree or the coefficients of f(x), one sees that these
covers occur in infinite families, and thus fact (v) is false for k-curves as well. It turns out that the genus of Y is
(p− 1)(d− 1)/2 (see Section 4.2). This depends on a new invariant d = deg(f(x)) which shows that fact (vii) is
false for k-curves.

To construct a counterexample to fact (vi) for k-curves, consider a tower of a Kummer and Artin-Schreier
extension with equations x`1 = x and yp − y = xd1 where ` | (p − 1), p - d, and ` - d. This yields an extension



4 Rachel Pries and Katherine Stevenson

M/k(x) of degree `p. Consider the following automorphisms in Gal(M/k(x)) where ζ` is a primitive `th root of
unity:

τ : x1 7→ x1, y 7→ y + 1, and σ : x1 7→ ζ`x1, y 7→ ζd` y.

Then στσ−1(y) = y + ζ−d` 6= τ(y). This shows that the extension is Galois with Galois group G a non-abelian
semi-direct product of the form Z/p o Z/`. The extension is totally ramified above ∞ and so the decomposition
group equals G which is not cyclic.

For a counterexample to fact (viii) for k-curves, suppose p = 2, and consider the k-curve E defined by the
Artin-Schreier equation y2 − y = x3, which is an elliptic curve. Then E is supersingular [40, V, # 5.7] and thus
the Jacobian of E has no 2-torsion points other than the identity [40, V, Thm. 3.1].

It is harder to show, but the same phenomena contradicting facts (iii)-(vii) hold for Galois covers of an arbitrary
affine k-curve X − B with Galois group G under the basic condition that p divides |G|. The same phenomenon
contradicting fact (viii) occurs for any smooth projective k-curve of positive genus. These will be major themes
of the next sections. More theory about Galois covers for curves defined over k is needed in order to define the
fundamental group of a k-curve. Having done so, we show that facts (i)-(ii) are also false for k-curves in Sections
4.7, 5.2, and 5.4.

4 Algebraic definitions

Here we provide the basic definitions required to make sense of covers in arithmetic geometry. This section is
meant to be a reference for the following sections. The reader may find it easier to skip this section and refer back
to it as necessary. The idea is to mimic the construction of covering spaces in topology and analysis, where U → C
is a covering if locally the inverse function theorem holds. In the algebraic context, the comparable concept is that
of an étale or unramified morphism.

LetK be an algebraically closed field; (the material in this section is valid in any characteristic). Unless stated
otherwise, all curves in this section are smooth connected K-curves. Let X be a projective K-curve. The genus of
X is the dimension of H0(X,Ω1). Let B ⊂ X be a finite (possibly empty) set of points and let C = X −B.

4.1 Terminology for Galois covers. An algebraic field extension L of F is a separable F -algebra if for
every element y ∈ L the minimal polynomial of y over F factors into distinct linear factors in its splitting field.
The extension is inseparable otherwise. For example, extension (1) is purely inseparable when ` = p. If R is an
integral domain and R ⊂ S is a ring extension, then S is generically separable as an R-algebra if frac(S) is a
separable frac(R)-algebra. A morphism of K-curves φ : Y → X is generically separable if X can be covered by
affine open subsets U = Spec(R) such that the ring extension R ⊂ O(φ−1(U)) is generically separable. A cover
is a morphism φ : Y → X which is finite and generically separable.

If φ : Y → X is a cover, then the Galois group Gal(Y/X) consists of the automorphisms σ of Y satisfying
φ ◦ σ = φ. If G is a finite group, then a G-Galois cover is a cover φ : Y → X together with an inclusion
ρ : G ↪→ Gal(Y/X) such that OGY = f∗(OX) (where the left side denotes the sheaf of G-invariants). If Y is
irreducible, this forces ρ to be an isomorphism. As X is a smooth curve, this condition is equivalent to saying that
G acts simply transitively on a generic geometric fibre of φ : Y → X , so that |Gal(Y/X)| = deg(f). Given an
abstract finite group G, there could be many inclusions ρ with this property. If the inclusion ρ is not fixed then
φ : Y → X is called a Galois cover with Galois group G.

For example, extension (2) is a Galois cover with group Z/p and extension (2) together with the choice of
automorphism τ : y 7→ y + 1 is a Z/p-Galois extension.

4.2 Ramification: Wild, tame and p-tame. Let φ : Y → X be a G-Galois cover. The cover φ is prime-to-p
if |G| is prime-to-p.

Let Q be a point of Y and let P = φ(Q) ∈ X . The decomposition group DQ at Q is the subgroup of G
consisting of automorphisms that fix the point Q. The number of points in the fibre φ−1(P ) equals |G|/|DQ|. The
inertia group IQ at Q is the subgroup of DQ that induces the identity automorphism on the residue field at Q.
Since K is algebraically closed, the inertia group equals the decomposition group. The cover is ramified at Q if
IQ is non-trivial, and it is totally ramified at Q if IQ = G. The branch locus of φ is the set of points P ∈ X for
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which there exists a ramified point Q ∈ φ−1(P ). The phrase with branch locus in B means that the branch locus
is contained in B.

When K has characteristic p > 0, the cover φ is wildly ramified at Q if p divides |IQ| and is tame otherwise.
The cover φ is tame if it is tame at all ramification points and is wild otherwise. When K has characteristic 0, a
ramified point Q is p-tame if p does not divide |IQ|.

For example, if ` 6= p, then equation (1) yields a cover φ : Y → P1
K with branch locus B = {0,∞}, which is

tame because the inertia group is Z/` above both branch points. Equation (2) yields a cover φ : Y → P1
K branched

only at ∞, which is wild because the inertia group is Z/p.

4.3 The fundamental group. If Z → X is a G-Galois cover with branch locus in B and π : G → H is a
surjection of finite groups, then Z → X must factor through an H-Galois cover Y → X with branch locus in B.
Consider the set of Galois groups of finite Galois covers of X with branch locus in B. Consider also the collection
of surjections π : G → H when a G-Galois cover Z → X with branch locus in B factors through an H-Galois
cover with branch locus inB. This set of groups and collection of surjections forms an inverse system. The inverse
limit of this system is the algebraic fundamental group π1(C) where C = X − B. The isomorphism class of
π1(C) does not depend on the choice of the base point so we eliminate the base point from the notation. A more
precise and complete definition of the fundamental group can be found in [19, Section 2].

By definition, the finite quotients of π1(C) correspond to finite Galois covers of C. Thus to understand π1(C)
one needs to understand:

1. What are the finite quotients of π1(C)?
2. How do the finite quotients fit together into an inverse system?

Answering the first question is called “the inverse Galois problem” for C. The second question is more subtle and
is related to embedding problems. Roughly speaking, question (2) asks: Given an H-Galois cover ψ : V → C and
a surjection G � H , what G-Galois covers of C exist which factor through ψ? (See Section 5.5.)

For an algebraically closed field K of characteristic 0, Grothendieck showed that the fundamental group of a
K-curve X − B of genus g with r = |B| punctures is isomorphic to the profinite completion of the topological
fundamental group of a Riemann surface of genus g with r punctures [1, XIII, Cor. 2.12]. Thus, π1(X − B) is
the group obtained by taking the profinite group on generators α1, β1, ..., αg, βg, γ1, ..., γr and imposing the sole
relation

∏g
i=1[αi, βi]

∏r
j=1 γj = 1. In particular, if r > 0, then π1(X −B) is a free profinite group on 2g+ r− 1

generators. This implies that every group generated by 2g+ r−1 elements is a quotient of π1(X−B). Moreover,
the freeness implies that: Given an H-Galois cover ψ : V → C, a group G generated by 2g+ r− 1 elements, and
a surjection G � H , there exists a G-Galois cover of C that factors through ψ.

For example, if char(K) = 0 and X = P1
K and B = {0,∞}, then π1(X − B) is the profinite group Ẑ

on one generator. This implies that, for each ` ∈ N, there is exactly one isomorphism class of Z/`-Galois cover
φ` : Y → P1

K branched at B = {0,∞}. The Kummer Equation (1) in Section 3.1 is an equation representing this
isomorphism class. If `1 | `2, then φ`2 factors through φ`1 .

In summary, for a curve defined over an algebraically closed field K of characteristic 0, the fundamental
group is finitely generated as a profinite group; in particular, this implies that the answer to question (2) above
is completely determined by the answer to question (1). This is because a finitely generated profinite group is
determined by its finite quotients [10, Prop. 15.4].

The fundamental group of a curve defined over an algebraically closed field k of characteristic p > 0 is known
in only two cases: (1) when X is the projective line P1

k and B = ∅ then π1(X) is trivial; and (2) when X is an
elliptic curve E and B = ∅ then π1(E) is a finitely generated abelian profinite group, (see subsection 4.7). Section
5 contains some of the major results obtained about the fundamental group and its finite quotients in characteristic
p > 0. In particular, when B 6= ∅, the fundamental group is not finitely generated as a profinite group and is not
determined by its finite quotients. Thus understanding how the groups fit together, as in question (2), is essential
to determining the profinite group structure of the fundamental group.
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4.4 Translation into field theory. The material in Section 4.3 can be reinterpreted in terms of field extensions
as follows. The function field K(C) of C is the same as that of X . A separable closure K(C)sep is an infinite
Galois extension of K(C) whose Galois group GalK(C) is called the absolute Galois group of C.

Given a G-Galois extension L/K(C), consider an open cover of C by affine opens Ui = Spec(Ri) and let Si
be the integral closure of Ri in L and let Vi = Spec(Ri). The affine opens Vi cover a curve V and there is a cover
V → C. There is a G-Galois cover φ : Y → X where Y is the projective closure of V . However, any point of X
could be a branch point of φ so this may not correspond to a surjection of π1(C) onto G.

To remedy this, one instead considers the maximal Galois extensionK(C)un,B ofK(C) unramified outside of
the set of places inK(C) for points inB. Then there is a bijection between surjections π : Gal(K(C)un,B/K(C) �
G and G-Galois covers φ : Y → X with branch locus in B. Furthermore, π factors through a surjection
π′ : Gal(K(C)un,B/K(C) � Γ if and only if the G-Galois cover φ can be dominated by a Γ-Galois cover
φ′ with branch locus in B. Thus, Gal(K(C)un,B/K(C) = π1(C).

Any finite extension Maximal Galois extension unramified outside B A separable closure

K(C) G

π1(C)

L K(C)un,B K(C)sep

4.5 Higher ramification groups. There is extra ramification information at a wildly ramified point Q, in-
cluding a filtration of IQ called the filtration of higher ramification groups, [36, IV]. If φ : Y → X is ramified at
Q, consider the complete local ring ÔQ of functions at Q and the valuation function νQ. For any integer i ≥ −1
the ith ramification group at Q is

Ii(Q) = {σ ∈ DQ|νQ(σ(z)− z) ≥ i+ 1,∀z ∈ ÔQ}.

The decomposition group at Q is I−1(Q) and the inertia group is I0(Q). The inertia at a wildly ramified point is
usually not cyclic though it is always cyclic-by-p, in that it has a normal Sylow p-subgroup I1(Q) and the quotient
IQ/I1(Q) is cyclic and prime-to-p.

The genus of Y now depends on the ramification filtration. The Riemann-Hurwitz formula states that 2gY −
2 = |G|(2gX − 2) + Ram where Ram is the sum of the degrees of the different at each ramified point Q. The
degree of the different at Q equals

∑∞
i=0(|Ii(Q)|−1). If char(K) = 0, then Ram =

∑
Q∈φ−1(B)(|IQ|−1) which

recovers the equation in part (vii) of Section 2.2. If char(K) > 0, then Ram ≥
∑

Q∈φ−1(B)(|IQ| − 1). From this,
one sees that the genus of Y can grow “more quickly” in positive characteristic than in characteristic zero.

For the Artin-Schreier extension yp − y = f(x) in Equation 2 where deg(f(x)) = d and p - d, if Q is the
point above∞ then Ii(Q) = Z/p if 0 ≤ i ≤ d and Ii(Q) = {0} if i > d, [41, III.7.8(c)]. By the Riemann-Hurwitz
formula, gY = (p− 1)(d− 1)/2.

4.6 The Jacobian and torsion points. Let X be a smooth projective K-curve of genus g. A divisor on X is
a formal sum

∑
P∈X nPP where nP ∈ Z and nP = 0 for all but finitely many P ∈ X . The degree of a divisor

D =
∑r
i=1 niPi is

∑r
i=1 ni and Div0(X) denotes the abelian group of all divisors of X of degree 0. Given a

non-zero element f in the function field K(X) of X , there is a divisor div(f) =
∑
P∈X ordP (f)P . A divisor D

is principal if D = div(f) for some function f ∈ K(X). Every principal divisor has degree zero. Let Prin(X)
be the set of all principal divisors of X . The sets Div0(X) and Prin(X) are abelian groups under addition and
Prin(X) ⊂ Div0(X). The algebraic definition of the Jacobian JX of X is JX := Div0(X)/Prin(X). This is an
abelian group which is naturally isomorphic to the K-points of an abelian variety of dimension g over K, which
we also denote JX .

For a prime `, consider the multiplication-by-` morphism m` on JX . The `-torsion JX [`] of the Jacobian is
the kernel of m`. The K-points of JX [`] can be identified with the set

{[D] ∈ JX | there exists f such that `D = div(f)}.
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If ` 6= p, then m` is separable of degree `2g . Thus JX [`] ' (Z/`)2g [23, pg. 64].
For example, suppose char(K) 6= 2 and Y is a hyperelliptic K-curve with equation y2 =

∏2g+1
i=1 (x − bi).

Let Q∞ be the point at infinity of Y and let Qi be the point (x, y) = (bi, 0) for 1 ≤ i ≤ 2g + 1. The divisors
Di = Qi −Q∞ are 2-torsion points of JY since 2Di = div(x− bi). There is a relation 0 = div(y) =

∑2g+1
i=1 Di

in JY . There is no nontrivial linear relation
∑2g
i=1 aiDi = 0 with ai ∈ {0, 1} because

∏2g
i=1(x − bi)ai is not a

square in k[x, y]/(y2 −
∏2g+1
i=1 (x− bi)). Thus the set {D1, . . . , D2g} is linearly independent and hence is a basis

for JY [2].
In contrast, if p = char(K), the multiplication-by-pmorphismmp factors as the composition of the Frobenius

morphism, which is inseparable of degree pg and the Verschiebung morphism which is separable of degree pg . This
implies that JX [p] is a group scheme of rank p2g . The number of points in JX [p](K) equals ps for some integer s
such that 0 ≤ s ≤ g. Here s is called the p-rank of X .

For example, an elliptic curve defined over an algebraically closed field of characteristic p can be either
ordinary (s = 1) or supersingular (s = 0). If f(x) = x(x−1)(x−λ), the elliptic curve y2 = f(x) is supersingular
if and only if λ is a root of the coefficient of xp−1 in f(x)(p−1)/2 [40, V, Thm. 4.1]. It can be computationally
difficult to determine the p-rank of a curve of higher genus. For Jacobians of hyperelliptic curves, an algorithm to
compute the p-rank can be found in [44]. Another situation where the p-rank can be computed is when φ : Y → X
is a Galois cover whose Galois group G is a p-group. If |G| = pa, then the Deuring-Shararevich formula [7, Cor.
1.8] states that

sY − 1 = pa(sX − 1) +
∑
Q∈Y

(|IQ| − 1).

4.7 Unramified covers and the Jacobian. In this section, we describe a connection between the `-torsion
points of the Jacobian of X and unramified Z/`-Galois covers of X .

For some intuition about this connection, consider the example of an elliptic curve E over K. If ` is prime-
to-p, then the multiplication-by-` morphism m` : E → E is a separable cover of degree `2 [40, III, Cor. 5.4].
Suppose Q ∈ E is an `-torsion point. If R ∈ E, then m`(R+Q) = m`(R). Thus there is an automorphism σQ of
E of order ` defined by σQ(R) = R+Q and m` ◦ σQ = m`. In other words, m` is a Galois cover, whose Galois
group can be identified with JE [`]. After choosing a basis for JE [`], then m` is a (Z/`)2-Galois cover.

Continuing this example, suppose Q′ is a point of order ` on the Jacobian of E. Then Q′ can be canonically
identified with a point Q of order ` on E, [40, X, Thm. 3.8]. Consider the subgroup HQ = 〈σQ〉 ⊂ JE [`]. Note
that JE [`]/HQ is a cyclic group of order `. Let EQ be the quotient of E by HQ. The quotient cover EQ → E is a
Z/`-Galois cover, which is unramified by the Riemann-Hurwitz theorem. To summarize, every `-torsion point on
the Jacobian of E yields an unramified Z/`-Galois cover of E. Using this, one can prove that

π1(E) ' Ẑsp ×
∏
` 6=p

(Ẑ` × Ẑ`)

where s = 1 if E is ordinary, and s = 0 if E is supersingular [17, IV, exercise 4.8]. This gives a counterexample to
fact (ii) from Section 2 for a projective curve defined over an algebraically closed field of characteristic p > 0.

For a projective K-curve X of higher genus, the bijection between `-torsion points of JX and unramified
Z/`-Galois covers of X is harder to construct. As in [20, III, Section 4], one defines π1(X,Z/`) to be the set
of isomorphism classes of unramified Z/`-Galois covers of X . By [20, Remarks following Section III, Prop
4.11], for ` prime to char(K), the group π1(X,Z/`) ∼= H1(X,Z/`) is isomorphic to JX [`](K). Similarly,
π1(X,Z/p) ∼= H1(X,Z/p) ∼= JX [p](K) for p = char(K) by [20, Remarks following Section III, Prop 4.13].
Thus the p-rank equals the maximum rank of a p-group which occurs as the Galois group of an unramified cover
of X [20, Cor. 4.18].

5 Major results

Let k be an algebraically closed field of characteristic p > 0. Let X be a smooth connected projective k-curve
of genus g. Let B ⊂ X be a finite subset of r points.
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5.1 The prime-to-p fundamental group. The main point of this section is Grothendieck’s result that the
prime-to-p groups that occur for Galois covers in characteristic p are exactly the same as those that occur in
characteristic 0, namely those generated by 2g + r − 1 elements. Recall the definitions of prime-to-p, tame, and
p-tame covers from Section 4.2. The prime-to-p fundamental group πp

′

1 (X −B) is the inverse limit of the Galois
groups of finite Galois prime-to-p covers of X with branch locus in B. The tame fundmental group πt1(X −B) is
the inverse limit of the Galois groups of finite Galois covers of X with branch locus in B and tamely ramified over
B. The result also shows that πt(X −B) and πp

′

1 (X −B) are finitely generated as profinite groups and, as such,
are determined by their finite quotients [10, Prop. 15.4].

The basic idea behind Grothendieck’s proof is that tame covers in characteristic p lift to p-tame covers in
characteristic 0. More precisely, let A be a complete local ring with residue field k. By [1, Exp. V, Cor. 7.4], there
exists a smooth projective A-curve XA such that the closed fibre is X . In particular, taking A to be a complete
discrete valuation ring of mixed characteristic with residue field k, then the generic fibre X of XA is a lift of X to
characteristic 0. Let BA be a set of horizontal sections specializing to B and let B be its generic fibre. The subset
B ⊂ X is a lift of B ⊂ X to characteristic 0. Given a tame G-Galois cover φ : Y → X with branch locus in B,
there exists a G-Galois cover ϕA : YA → XA with branch locus in BA whose special fibre is isomorphic to φ. The
generic fibre is a p-tame G-Galois cover ϕ : Y → X with branch locus in B in characteristic zero.

Let πp−tame
1 (X − B) be the inverse limit of the system of finite groups that occur as Galois groups of p-tame

covers of X with branch locus in B. Also, consider the prime-to-p fundamental group πp
′

1 (X − B). The previous
paragraph summarizes the main ideas of the proof of the following result.

Theorem 5.1 [1, XIII, Cor. 2.12] With notation as above,

πp−tame
1 (X − B) � πt1(X −B)

and

πp
′

1 (X − B) ' πp
′

1 (X −B).

In particular, taking B = ∅ in Theorem 5.1 yields a surjection π1(X ) � π1(X) and thus π1(X) is finitely
generated as a profinite group. The kernel of this homomorphism is not well-understood.

5.2 The pro-p fundamental group. Unlike the case for prime-to-p fundamental groups, the structure of the
pro-p fundamental group of a curve changes significantly in characteristic p, and depends crucially on whether the
curve is projective or affine. Let πp1(X − B) be the inverse limit of the system of finite p-groups that occur as
Galois groups of covers of X with branch locus in B.

Theorem 5.2 [38], [7, Thm. 1.9] If X is a projective k-curve with p-rank sX , then the pro-p fundamental
group πp1(X) is a free pro-p group on sX generators.

Proof (Outline following [7].) If π is a pro-p group then (1) the minimal number of generators of π is equal to
dimFpHom(G,Z/p); and (2) π is free if and only if H2(G,Z/p) = 0 ([39, Thm. 12 and Cor. 2 to Prop. 23]). Thus
it suffices to show that dimFpHom(π1(X),Z/p) = sX and H2(π1(X),Z/p) = 0. Item (1) is discussed in Section
4.7. Item (2) follows from the fact that the p-cohomological dimension of X is less than two [2, IX, 3.5].

Theorem 5.3 [38] If C is an affine k-curve, then the pro-p fundamental group πp1(C) is infinitely generated.

The proof of Theorem 5.3 relies on cohomological arguments and Artin-Schreier theory. Since the pro-p
fundamental group is a quotient of the fundamental group, Theorem 5.3 implies that the fundamental group π1(C)
is infinitely, not finitely, generated when C is an affine k-curve. Thus the fundamental group of an affine k-curve
is not determined by its finite quotients [10, Prop. 15.4]. Moreover, as the p and prime-to-p parts are respectively
infinitely and finitely generated as profinite groups, this shows π1(C) is not free and thus fact (i) is false.
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5.3 Abhyankar’s Conjecture. Remarkably, the finite quotients of the fundamental group of every affine k-
curve are known, even if it is not clear how they fit together. The next result shows that a finite group G occurs as
a Galois group of a cover of X with branch locus in B if and only if the maximal prime-to-p quotient of G occurs
as a Galois group of a cover of an arbitrary genus g curve with r branch points in characteristic 0.

Theorem 5.4 [3, 13, 31] Let X be a projective k-curve of genus g and let B ⊂ X be a finite set of cardinality
r > 0. A finite group G is a quotient of π1(X −B) if and only if every prime-to-p quotient of G can be generated
by 2g + r − 1 elements.

Theorem 5.4 was conjectured by Abhyankar in 1957, based on his experience working with covers of the
affine line. The proof was completed in 1993 by Raynaud and Harbater. It is worth noting that the collection of
groups which occur as Galois groups of affine k-curves is vast. Not only does every finite p-group occur as a
quotient of the fundamental group of every affine k-curve, but every finite simple group of order divisible by p
does as well. An immediate consequence of Theorem 5.4 is the following corollary.

Corollary 5.5 A finite group is a quotient of π1(A1
k) if and only if it has no nontrivial prime-to-p quotient.

A finite group with no nontrivial prime-to-p quotient is called quasi-p. Equivalently, a finite group is quasi-p
if it is generated by its elements of p-power order, or by its Sylow p-subgroups.

A first step in proving Theorem 5.4 is the following result of Serre. In particular, it shows that every finite
p-group occurs as a Galois group of a cover of the affine line.

Theorem 5.6 [37, Thm. 1] Suppose G̃ is a finite quasi-p group and N ⊂ G̃ is a normal subgroup which is
solvable. Let G = G̃/N . If G is a quotient of π1(A1

k) then so is G̃.

Proof (Outline following [37].) Let π denote π1(A1
k). By hypothesis, there exists a surjection ψ : π � G.

Since N is solvable, using representation theory, one can reduce to the case where N is an elementary abelian
group and the action of G on N is irreducible. Then G̃ is an extension of G by N , so this yields a cohomology
class e ∈ H2(G̃,N). There are two cases: (a) when e 6= 0 and (b) when e = 0.

In case (a) the theorem follows by using the fact that π has cohomological dimension at most 1. This allows
one to lift the surjection ψ to a homomorphism ψ̃ : π → G̃, and thus it suffices to show that ψ̃ is surjective.
The group H = Im(ψ̃) is a subgroup of G̃ such that N · H = G̃. Because e 6= 0, N ∩ H is a non-trivial
sub-G̃/H-module of N . By the irreducibility of N , then N ∩H = N and thus H = G̃ and ψ̃ is surjective.

In case (b) when e = 0, then G̃ is a semi-direct product. A surjection ψ : π → G induces a π-module
structure Nψ on N . Then ψ factors through a surjection ψ̃ : π → G̃ if and only if the étale cohomology group
H1(π,Nψ) is strictly larger than the cohomology group H1(G,N). When N is an elementary abelian p-group,
then H1(π,Nψ) has infinite dimension, which completes the proof. When N is an elementary abelian `-group for
a prime ` 6= p, Serre uses the Grothendieck-Ogg-Shafarevich formula to calculate the dimension H1(π,Nψ) in
terms of the filtration of higher ramification groups. It is possible that the dimension is not large enough, in which
case it is necessary to change ψ to complete the proof.

Proof (Outline of proof of Theorem 5.4 following [13, 31].) The forward direction of Abhyankar’s Conjecture
follows from Theorem 5.1. Here is a sketch of the converse in the case that X = P1

k and B = {∞}. Suppose G is
a finite quasi-p group. The proof proceeds by induction on the order of G. By Theorem 5.6, one can assume that
G has no normal p-group subgroup. Let S be a fixed Sylow p-subgroup of G.

Case A: G is generated by two proper quasi-p subgroups G1 and G2 satisfying the extra condition that Gi∩S
is a Sylow p-subgroup of Gi. Inductively, one can suppose that G1 and G2 are each a quotient of π1(A1

k). Then
there exists a Gi-Galois cover φi : Yi → P1

k branched only at ∞ for i = 1, 2. Harbater’s contribution to the proof
was to develop a theory of formal patching and use it to patch the two covers φ1 and φ2 together. In this way, a
G-Galois cover φ : Y → P1

k branched only at ∞ is produced. The basic idea is to build a k[[t]]-curve W whose
generic fibre is a projective line and whose special fibre is a chain of two projective linesW1 andW2 intersecting in
exactly one ordinary double point. One can construct a G-Galois cover of the special fibre such that its restriction
to Wi is IndGGi

(φi). The condition on the Sylow p-subgroups allows one to do this compatibly near the ordinary
double point. One shows that the cover can be deformed over k[[t]] near the ordinary double point. Using formal
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patching, one can deform the cover of projective curves over k[[t]]. (A similar technique with formal patching
allows one to reduce the proof of the converse direction of Abhyankar’s Conjecture for an arbitrary affine k-curve
to the case of the affine line.)

Case B: G is a finite quasi-p group, with no normal p-subgroup, not generated by proper quasi-p subgroups
satisfying the above condition on their Sylow p-subgroups. While the conditions seem awkward, this turns out to
be exactly the case that can be handled by Raynaud’s analysis of semi-stable reduction of covers. The idea is to
consider a G-Galois cover ϕ of the projective line over frac(W (k)) whose inertia groups are p-groups. The cover
ϕ exists by Riemann’s Existence Theorem since G is quasi-p and thus can be generated by elements of p-power
order. The special fibre φs of the semi-stable reduction of ϕ is a G-Galois cover of a tree of projective lines. The
cover φs is inseparable exactly over the interior components of the tree. Over each terminal component of the tree,
φs is ramified only over the node η at which the terminal component intersects the interior of the tree. This yields a
cover of a projective line branched only at one point η. The unusual group theoretic conditions insure that there is
at least one terminal component over which the restriction of φs is connected. Thus there exists a G-Galois cover
φ : Y → P1

k branched only at one point.

5.4 Anabelian results. Theorem 5.4 implies that the fundamental group of an affine k-curve is an infinitely
generated profinite group. An interesting consequence of this result is that, for an affine k-curve X − B, the
structure of π1(X − B) is not determined by its finite quotients. This is different than the situation for projective
k-curves or for curves defined over algebraically closed fields of characteristic 0.

Grothendieck’s anabelian conjecture predicts that the isomorphism class of a hyperbolic curve (a smooth curve
whose geometric fundamental group is nonabelian) defined over a number field is determined by the structure of
its arithmetic fundamental group. This conjecture has been settled in large part by Mochizuki [22]. Specifically,
let K be a field that can be embedded in a finitely generated field extension of Qp. Let X be a smooth K-variety
and let Y be a hyperbolic K-curve. Then there is a natural bijection between the set of dominant K-morphisms
X → Y and the set of (conjugacy classes of) open homomorphisms π1(X) → π1(Y ) compatible with the action
of the absolute Galois group GK . As an application, he proves a birational version of the anabelian conjecture for
function fields of arbitrary dimension over K. The result builds upon the work of others, especially Tamagawa
[42], who introduced a characteristic p version of the Grothendieck anabelian conjecture in characteristic p and
proved it for affine curves defined over finite fields.

Most anabelian theorems are too technical to include here, but as a very special case, consider the following
result.

Theorem 5.7 [43, Cor. 1.8, Thm. 1.9] Suppose X is a smooth projective k-curve and B ⊂ X is a finite set of
points. The fundamental group π1(X −B) determines the genus of X , the cardinality of B, and the p-rank of X .

Proof (Outline following [43].) The fundamental group π1(X −B) determines the pro-p and the prime-to-p
fundamental groups. By taking the quotient by the commutator, one can determine the abelianization πab

1 (X −B)
of π1(X −B). If H is an open subgroup of π1(X −B), let φH : UH → X −B denote the corresponding cover.
The degree of φH equals the index [π1(X − B) : H] and the Galois group of φH is abelian if and only if H
contains the commutator. Thus these attributes of φH are determined by the fundamental group.

Let gX be the genus of X , let rX = #B, and let sX be the p-rank of X . By Theorems 5.2 and 5.3, the
structure of πp1(X − B) determines whether rX = 0. If rX = 0, then the pro-p fundamental group determines
the p-rank sX by Theorem 5.2. Consider the rank of the maximal elementary abelian `-group quotient of the
abelianization πab

1 (X) for a prime ` 6= p. By Section 4.7, this is the rank of JX [`], which equals 2gX by Section
4.6.

Now suppose rX > 0. By Theorem 5.1, the fundamental group determines the quantity 2gX − 2 + rX .
Suppose H is an open subgroup of π1(X −B). The corresponding cover φH : UH → X −B has degree equal to
the index [π1(X − B) : H]. Note that H is the fundamental group of π1(UH) and that UH is an open subset of a
smooth projective k-curve YH of genus gH . Let rH = #(YH − UH). It follows that the quantity 2gH − 2 + rH
can be determined for any open subgroup H ⊂ π1(X − B). Applying the Riemann-Hurwitz formula, one can
determine whether φH is wildly ramified. Thus π1(X − B) determines the tame fundamental group. Now sX
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equals the rank of the maximal pro-p quotient of πt1(X − B). Similarly, one can determine the p-rank sH of YH
for any open subgroup H ⊂ π1(X −B).

Continuing in the case when rX > 0, the Deuring-Shafarevich formula states that sH −1+ rH = p(sX −1+
rX) for any open normal subgroup H ⊂ π1(X − B) of index p. Thus one can determine the quantity prX − rH
which is a multiple of p − 1. By the Riemann-Roch Theorem, there is a function f ∈ k(X) whose set of poles is
B and such that p - ordb(f) for each b ∈ B. The Artin-Schreier equation yp − y = f determines a Galois degree
p cover φ : Y → X which is totally ramified above each b ∈ B. If H ⊂ π1(X − B) is the corresponding open
normal subgroup, then rH = rX and prX − rH equals (p− 1)rX . Since no smaller value of prX − rH can occur
for any open normal subgroup H ⊂ π1(X −B) of index p, the fundamental group determines the value of rX and
thus of gX as well.

Theorem 5.7 finally provides a counterexample to fact (ii) for affine k-curves. An element b ∈ k − {0, 1} is
called supersingular if the elliptic curve E with equation y2 = x(x − 1)(x − b) is supersingular. By a result of
Igusa [40, V, Thm. 4.1(c)], there are (p− 1)/2 supersingular values of b if p is odd.

Proposition 5.8 Suppose p is an odd prime. Let X = P1
k and B = {0, 1, b,∞}. The structure of the

fundamental group π1(X −B) depends on whether b is a supersingular value.

Note that the finite quotients of π1(X − B) in Proposition 5.8 do not depend on whether b is a supersingular
value by Theorem 5.4.

Proof The branch locus of a degree 2 cover of P1
k has even cardinality, so there are 7 subgroups of π1(X−B)

of index two. Of these, exactly one corresponds to a degree two cover φ : Y → P1
k with branch locus inB such that

Y has positive genus, namely the cover with equation y2 = x(x− 1)(x− b). By Theorem 5.7, one can distinguish
the corresponding subgroup π′ ⊂ π1(X − B) of index two. Now π′ is the fundamental group of Y − φ−1(B).
Applying Theorem 5.7 again, one can determine the p-rank of Y , and in particular determine whether Y is ordinary
or supersingular. This determines whether b is a supersingular value.

For more results along the lines of Proposition 5.8, see [5], [43].

5.5 Freeness results and embedding problems. To understand the structure of the fundamental group of a
k-curve, it is crucial to understand how its finite quotients fit together. Harbater and Pop independently proved the
following result.

Theorem 5.9 [14, Thm. 3.5] [27, Thm. B] The absolute Galois group Gk(X) of the function field of a projec-
tive k-curve X is free of rank card(k).

Before describing the proof of Theorem 5.9, it is useful to introduce the terminology of embedding problems.
Suppose there exists a G-Galois cover φ : Y → X with branch locus in B corresponding to a surjection β :
π1(X −B) � G and a surjection α : Γ � G of finite groups. By Galois theory, a surjection λ : π1(X −B) � Γ
where α ◦ λ = β corresponds to a (connected) Γ-Galois cover Z → X with branch locus in B that dominates φ.

Given a group Π, a pair of surjections (β : Π � G,α : Γ � G) where G and Γ are finite groups is a finite
embedding problem for Π. In the case where α has a splitting s : G → Γ, the pair is a finite split embedding
problem. A weak solution to an embedding problem (β, α) is a group homomorphism λ : Π → Γ such that
α ◦ λ = β. A weak solution λ is a proper solution if it is a surjection. A group Π is projective if every finite
embedding problem for Π has a weak solution. Notice that any finite split embedding problem automatically has a
weak solution given by s ◦ β.

Solutions to embedding problems are tightly connected to the property of freeness. For example, given a
profinite group Π and an infinite cardinal m, by [33, Chapter 8], Π is free of rank m if and only if every finite
embedding problem has exactly m distinct proper solutions. Moreover, by [16, Thm. 2.1] this is equivalent to Π
being projective and satisfying the property that every non-trival finite split embedding problem for Π has exactly
m distinct solutions.

Proof (Outline following [14, 27].) Let (β : Gk(X) � G,α : Γ � G) be a finite embedding problem for
Gk(X) and let N be the kernel of α. It suffices to show that (β, α) has card(k) distinct proper solutions. The
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surjection β corresponds to a G-Galois cover φ : Y → X whose branch locus is contained in a non-empty set
B ⊂ X . Thus there is an induced embedding problem (β : π1(X − B) � G,α : Γ � G). As in Theorem
5.6, representation theory implies that obstructions for weak solutions lie in H2(π1(X − B,N). By [37, Prop. 1]
the fundamental group of an affine k-curve has cohomological dimension at most 1, and hence it is a projective
group [35, I.5.9, Prop. 45]. As a result, there exists a weak solution λ : π1(X −B) → Γ. This defines a (possibly
disconnected) Γ-Galois cover ψ′ : Z ′ → X with branch locus in B. The cover ψ′ can be patched with a branched
N -Galois cover Z ′′ → P1

k in such a way as to produce a proper solution. Specifically, the patched cover produces
a (connected) Γ-Galois cover ψ : Z → X dominating φ which is unramified away from a finite set B′ containing
B.

In the proof above, the additional branching of the Γ-Galois cover ψ at B′ − B is not a problem as ψ still
corresponds to a surjection λ : Gk(X) � Γ. It is useful to remark here that if the kernel N is a quasi-p group then
no additional ramification is required (i.e.,B′ = B) [15, Thm. 4.6] because the wild ramification can be enlarged at
one point. In general, the number of additional branch points depends on the number of generators of the maximal
prime-to-p quotient of N . Moreover, the location of the additional branching cannot be prescribed. As a result, the
freeness result Theorem 5.9 for Gk(X) does not translate into a freeness result for π1(X −B) because in the latter
case the covers cannot have additional ramification outside of B. It is still true that π1(X −B) has cohomological
dimension at most 1, and thus it is projective. However, as we saw at the end of Section 5.2, it is not free.

6 Open questions and results

Let k be an algebraically closed field of characteristic p > 0. At this time, the full structure of the funda-
mental group is not known for any affine k-curve or for any projective curve of genus g ≥ 2. The fundamental
group depends on towers of covers of k-curves and on the geometry of the k-curves in these towers. The goal of
understanding fundamental groups provides a strong motivation to answer new questions about these towers. Let
X be a smooth connected projective k-curve of genus g. Let B ⊂ X be a finite set of points.

6.1 Subgroups of fundamental groups of curves. It is interesting to measure the extent to which the funda-
mental group of a k-curve is not free. In this section, we study this topic in terms of subgroups of the fundamental
group and in the next section we will address this topic in terms of quotients of the fundamental group and embed-
ding problems.

Question 6.1 If X −B is an affine k-curve, which closed normal subgroups of π1(X −B) are free?

For example, the commutator subgroup of π1(X −B) is free [18, Thm. 6.12] for every affine k-curve X −B.
This is a natural subgroup to study for this question since the quotient of π1(X −B) by the commutator subgroup
is the maximal abelian quotient of π1(X − B). Additional examples of a similar type can be seen in [26, Thm.
1.1].

Here is an example of an affine k-curve X −B and a closed normal subgroup of π1(X −B) that is not free.

Example 6.2 Consider the affine line A1
k. Let N be the intersection of all open normal subgroups of π1(A1

k)
of index p such that, for the corresponding cover Y → P1

k branched only at ∞, the curve Y has genus zero. These
subgroups correspond to Artin-Schreier covers yp−y = cx with c ∈ k. A computation shows that two such covers
are linearly disjoint as long as c1 − c2 is not a (p− 1)st root of unity. Thus N has infinite index and it is a closed
normal subgroup of π1(A1

k).
Let k(x)∞ be the maximal Galois extension of the function field k(x) which is unramified outside {∞}. Then

Gal(k(x)∞/k(x)) = π1(A1
k). Let FN be the fixed field of N in k(x)∞.

Assume that N is free of (possibly infinite) rank r. Then, for any finite group G with at most r generators,
there would exist a surjection β : N � G. Such a surjection would correspond to a G-Galois field extension
Lβ/FN . Since G is finite, this extension and its Galois action would be defined by a finite set S of polynomials
with coefficients in FN . Thus S would be defined over some fieldEβ where k(x) ⊂ Eβ ⊂ FN and whereEβ/k(x)
has finite degree. The Galois group of k(x)∞ over Eβ is an open subgroup Nβ of π1(A1

k). Since Eβ ⊂ FN , one
sees thatN ⊂ Nβ . Moreover, there exists aG-Galois extension Lβ/Eβ such that Lβ ⊂ k(x)∞ and Lβ ·FN = Lβ .
This process is called “descending” the extension.
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Another computation shows that the fiber product of two linearly disjoint covers yp−y = c1x and yp−y = c2x
yields a cover Y → P1

k totally ramified over∞where Y again has genus 0. Thus, for any open normal subgroup of
π1(A1

k) containing N , the corresponding cover of P1
k has genus zero and is totally ramified over ∞. In particular,

consider the (not necessarily Galois) cover Uβ → P1
k corresponding to the subgroup Nβ . Then Uβ has genus 0

and the fibre of Uβ over ∞ consists of one point P∞. Since Eβ is the function field of Uβ , the existence of a
G-Galois extension Lβ/Eβ with Lβ ⊂ k(x)∞ implies that there exists a G-Galois cover V → Uβ branched only
at P∞. Choosing G to be prime-to-p and generated by r ≥ 1 elements, this leads to a contradiction with the fact
that πp

′

1 (A1
k) is trivial.

6.2 Quotients of fundamental groups of curves. Another approach to understanding the fundamental group
is to study how its finite quotients fit together by solving embedding problems. This topic is especially important
for the fundamental group of a k-curve X which is projective. The reason is that, when X is projective, then
π1(X) = πt1(X) and so Theorem 5.1 implies that π1(X) is finitely generated as a profinite group. As such, by
[10, Prop. 15.4], it is determined by its finite quotients (i.e., it is determined by the answer to question (1) from
Section 4.3). Unfortunately, Abhyankar’s Conjecture (Theorem 5.4) does not apply to projective curves and for
g ≥ 2, the finite quotients of π1(X) are unknown. However, by Theorems 5.1 and 5.2 the maximal prime-to-p and
pro-p quotients of the fundamental group of every projective k-curve are known. Thus the question becomes, how
do these prime-to-p and pro-p quotients fit together?

A first step is to determine which finite groups G having a normal p-Sylow subgroup P occur as a quotient
of π1(X). Such a quotient corresponds to an unramified G-Galois cover Z → X which factors as Z → Y → X
where Gal(Z/Y ) = P and Gal(Y/X) is the prime-to-p group H = G/P . In [25, Thm. 7.5], a necessary and
sufficient condition is given for such G-Galois covers of X to occur. The result essentially says that the H-module
structure of P must be compatible with the H-module structure of JY [p] for some H-Galois cover Y → X . The
compatibility is measured in terms of a generalization of the p-rank called the Hasse-Witt invariants [34, Section
2] of Y . Since H is prime-to-p and the prime-to-p quotients of π1(X) are known, this result gives insight into
the structure of π1(X). The result was extended by Borne [4, Thm. 1.1] to the case where |H| is not necessarily
prime-to-p. The proof in that case uses modular representation theory.

Nevertheless, the structure of π1(X) and its finite quotients are still unknown when g ≥ 2. A complete
analysis of this problem seems beyond reach for now. The results in [4] and [25] give conditions to solve the
embedding problems when the kernel is a p-group. Thus, there is a natural question to ask next.

Question 6.3 Given a projective curve X and an embedding problem (β : π1(X) � G,α : Γ � G) with
|ker(α)| prime-to-p, what conditions on Γ and X will ensure the existence of a proper solution?

6.3 Ramification of covers of curves. GivenX ,B, andG, only in special cases is it known what ramification
data can occur for G-Galois covers φ : Y → X with branch locus in B. Answering this question is necessary
to determine which values will occur for the genus of Y . This is important for the goal of understanding the
fundamental group π1(X), because the finite quotients of π1(Y ) will depend on invariants like the genus or the
p-rank of Y .

This topic is most interesting for the case of wildly ramified covers of affine k-curves because, in this case,
there is the extra structure of the filtration of higher ramification groups to consider. One result is that a cover
can always be deformed using formal patching to lengthen the filtration of higher ramification groups at a wildly
ramified point. Since the degree of the different depends on the ramification filtration, this leads to the following
result.

Theorem 6.4 [30, Cor. 3.4] Suppose X −B is an affine k-curve and G is a finite quotient of π1(X −B) such
that p divides |G|. Let N ∈ N. Then there exists a G-Galois cover φ : Y → X with branch locus in B such that
the genus of Y is greater than N .

An open problem is to determine the smallest genus that can occur for a G-Galois cover of X with branch
locus in B. Because of results like Proposition 5.8, the smallest genus will often depend on the subset B, not just
on its cardinality.
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Question 6.5 Given an affine k-curve X − B and a finite quotient G of π1(X − B), what is the smallest
positive integer g = g(X,B,G) which occurs as the genus of Y for a G-Galois cover φ : Y → X with branch
locus in B?

A crucial case is to understand Galois covers of the affine line. By Abhyankar’s Conjecture, there exists
a G-Galois cover of the affine line if and only if G is quasi-p, which means that G is generated by p-groups.
For the affine line, if G is an abelian p-group, then the answer to Question 6.5 can be determined by class field
theory. There are many other quasi-p groups, including all simple groups with order divisible by p. When G is the
projective special linear group PSL2(Fp), then the answer to Question 6.5 is (p− 1)2/4, [6]. Under certain group
theoretic conditions, an upper bound for the minimal genus can be found in [28, Thm. 3.5].

One example of a quasi-p group is a non-abelian semi-direct product G of the form (Z/`)a o Z/p where `
and p are distinct primes and a is the order of ` modulo p. In a group project supervised by the authors at the WIN
conference in Banff, November 2008, the group calculated the minimal genus that can occur for a Galois cover of
the affine line with this group G. Specifically, in [12, Thm. 4.1], the group proved that there is a (Z/`Z)a o Z/pZ-
Galois cover Z → P1

k branched only at ∞ with genus gZ = 1 + `a(p − 3)/2 if p is odd. In addition, the group
proved that this is the minimal genus and that there are only finitely many curves of this minimal genus which
are Galois covers of the affine line with this Galois group. For the proof, the group determined the action of an
automorphism of order p on JY [`] where Y is the Artin-Schreier curve yp − y = xd. This gave insight into the
unramified elementary abelian `-group covers of Y that are Galois over P1

k. We now extend this result to a more
general class of quasi-p groups.

For a finite group G, let Φ(G) denote the Frattini subgroup of G (the intersection of all proper maximal
subgroups ofG). This is the set of “non-generators” ofG. If ` is a prime and L is an `-group then Φ(L) = L`[L,L]
and L = L/Φ(L) is an elementary abelian `-group. We will need the following lemma.

Lemma 6.6 Let ` and p be distinct primes and let a be the order of ` modulo p. There is a unique non-abelian
semi-direct product of the form (Z/`)a o Z/p up to isomorphism.

Proof Let G be a non-abelian semi-direct product of the form (Z/`)a o Z/p. Then G is determined by a
non-trivial homomorphism γ : Z/p→ Aut((Z/`)a). The isomorphism type of G depends only on Im(γ) because
of the flexibility of choice of a generator for Z/p. Furthermore, it depends only on the conjugacy class of Im(γ)
because of the choice of basis for (Z/`)a. Thus, to show that G is unique up to isomorphism, it suffices to show
that all subgroups of order p in Aut((Z/`)a) ' GLa(Z/`) are conjugate. Let H ⊂ GLa(Z/`) be a subgroup of
order p and let h ∈ H be a generator. Up to conjugacy, h can be chosen in rational canonical form. Since a is the
order of ` modulo p, the vector space (Z/`)a is indecomposable under the semi-direct product action. The matrix
h consists of one block since the action is indecomposable. Thus h is determined by its characteristic polynomial
fh(x). Then fh(x) is an irreducible (degree a) factor of the cyclotomic polynomial Φp(x). After possibly changing
the generator h ∈ H , then fh(x) is the minimal polynomial for a fixed pth root of unity ζp. Thus the conjugacy
class of H is uniquely determined.

Here is the answer to Question 6.5 for groups of the form L o Z/p where L is an `-group whose maximal
elementary abelian quotient is (Z/`)a.

Proposition 6.7 Let ` and p be distinct primes with p odd. Suppose L is an `-group such that the quotient
L/Φ(L) is elementary abelian of rank a = ordp(`). Suppose Γ is a quasi-p group which is a semi-direct product
of the form L o Z/p. Then there exists a Γ-Galois cover W → P1

k branched only at ∞ such that the genus of W
is gW = 1 + |L|(p− 3)/2. This is the minimal genus that occurs for a Γ-Galois cover of P1

k branched only at ∞.

Before proving Proposition 6.7, we need some information about Frattini covers. A surjective group homo-
morphism φ : G � H is a Frattini cover if ker(φ) ⊂ Φ(G). For each finite (even profinite) group H , there exists
a cover φ̃ : H → H , unique up to isomorphism, such that φ̃ is the largest Frattini cover of H . The group H is the
universal Frattini cover of H (see [10, Chapter 20, sections 6 and 7] or [9, 22.11 and 22.12] for definitions and
details). A group N is a normal subgroup of H if and only if it is a Frattini cover of H .
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The universal Frattini cover of H is in fact the smallest cover of H that is projective. In other words, every
embedding problem (φ̃ : H � H,α : G � H) has a weak solution λ. When α is a Frattini cover, then λ is
automatically a proper solution (i.e., surjective).

Proof The group Γ has a quotient H which is a semi-direct product (Z/`)a o Z/p. Since Γ is quasi-p, the
group H is non-abelian. By Lemma 6.6, the structure of H is uniquely determined up to isomorphism.

Let L be the universal Frattini cover of (Z/`Z)a. This is a free pro-` group of rank a. Because L/Φ(L) =
(Z/`Z)a and Φ(L) is the set of non-generators of L, the infinite group L can be generated by a elements.

The semi-direct product H is determined by an action of Z/p on (Z/`Z)a. This induces an action of Z/p on
L [10, Prop. 22.12.2]. Let L o Z/p be the resulting semi-direct product. Then L o Z/p is the universal Frattini
`-cover of (Z/`Z)a o Z/pZ and Γ is a quotient of L o Z/p. That is, there exists a normal subgroup N of L that
is Z/p-invariant with (L/N) o Z/p = Γ.

By [12, Thm. 4.1], there is a (Z/`Z)a o Z/pZ-Galois cover Z → P1
k branched only at ∞. Furthermore,

it factors through the Artin-Schreier cover φ : Y2 → P1
k with equation yp − y = x2. Also the (Z/`Z)a-Galois

cover Z → Y2 is unramified. This yields a surjection ψ1 : π1(Y2) � (Z/`Z)a. Since ` is prime-to-p and
a = ordp(`) ≤ p − 1 = 2g(Y2), by [1, Cor. 2.12] there exists a surjection ψ2 : π1(Y2) � L that dominates ψ1.
This induces an infinite unramified L-Galois extension F of the function field k(Y2) of Y2.

As k(Y2) is a Z/p-Galois extension of k(x) = k(P1
k) branched only at ∞, the extension F/k(x) is algebraic

and branched only at ∞. Let F ′ be the Galois closure of F/k(x). Then F ′/k(Y2) is a Galois extension with pro-l
Galois group that surjects onto L and thus also onto (Z/`Z)a. But L is universal for all pro-l groups surjecting
onto (Z/`Z)a [9, Remark 22.11.19] so F ′ = F and the extension F/k(x) is Galois. By Schur-Zassenhaus the
Galois group is Lo Z/p. Thus there is a surjection ψ′2 : π1(A1

k) → Lo Z/p.
Taking the composition of ψ′2 with the natural surjection Lo Z/p→ Γ, this yields a surjection λ : π1(A1

k) →
Lo Z/p. This induces an unramified Γ-Galois cover W → P1

k branched only at ∞ and dominating φ. Moreover,
the cover W → Y2 is unramified.

By the Riemann-Hurwitz formula, the genus of W is 1 + |L|(p− 3)/2. The statement that this is the minimal
genus follows just as in [12, Thm. 4.1], since the minimal genus will be realized when the L-Galois subcover is
unramified and the genus of the Z/p-Galois quotient is the smallest positive number possible.

6.4 An open question on arithmetic invariants of Galois covers. As discussed in Section 4.7, there is a
connection between unramified Z/p-Galois covers of a projective curve and the p-torsion of its Jacobian. As a
result (see Theorem 5.7), the fundamental group π1(X − B) will depend on the p-rank sY when φ : Y → X is a
Galois cover with branch locus in B. For this reason, there is good motivation to understand the values that occur
for the p-rank associated with covers. Even for the case when G is cyclic and X = P1

k, there are many papers on
this subject, e.g., [5], [44].

There are arithmetic invariants of the Jacobian of a k-curve other than its p-rank, including the Newton polygon
and the p-torsion group scheme (see [8] and [24] respectively). As an example, recall that an elliptic k-curve E
can be either ordinary or supersingular. The two cases can be distinguished by the number of points in E[p](k),
which is either p or 1. If E is ordinary, then its Newton polygon has slopes 0 and 1. The p-torsion group scheme
of an ordinary elliptic curve is E[p] ' Z/p⊕µp where µp is the kernel of Frobenius on Gm. If E is supersingular,
then its Newton polygon has slopes 1/2. The p-torsion group scheme of a supersingular elliptic curve fits into a
(non-split) short exact sequence 1 → αp → E[p] → αp → 1 where αp is the kernel of Frobenius on Ga. Let
Ess[p] denote the (unique) isomorphism class of the p-torsion group scheme of a supersingular elliptic curve.

While the connection between these other invariants and the fundamental group is not clear, it still raises the
following question.

Question 6.8 Given a finite group G which is a quotient of π1(X − B), what are the possibilities for the
p-rank, Newton polygon, and p-torsion group scheme of JY for G-Galois covers φ : Y → X with branch locus in
B?
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Here is a new result about this question, building upon the group result in [12, Thm. 4.1]. We find a Galois
cover Z → P1

k branched only at ∞ with Galois group (Z/`Z)a o Z/pZ such that Z has small genus and large
p-rank.

Proposition 6.9 Let ` and p be distinct primes with p odd and ` ≥ −1 + (p − 1)2/2. Let a be the order of
` modulo p. Suppose G is the non-abelian semi-direct product (Z/`)a o Z/p. Then there exists a Galois cover
Z → P1 branched only at∞, with Galois groupG, genus gZ = 1+`a(p−3)/2 and p-rank sZ = (`a−1)(p−3)/2.
Furthermore, JZ [p] decomposes completely into sZ copies of Z/p ⊕ µp and (p − 1)/2 copies of Ess[p], the p-
torsion group scheme of a supersingular elliptic curve. In particular, the Newton polygon of JZ only has slopes 0,
1/2, and 1.

Proof Consider the cover φ : Y → P1
k with affine equation yp − y = x2. Then Y has genus gY = (p− 1)/2

and p-rank 0. By [29, Cor. 3.3], JY is superspecial, i.e., JY [p] decomposes into gY copies of Ess[p]. In particular,
JY is supersingular, i.e., the slopes of its Newton polygon all equal 1/2.

If Z1 → Y is an unramified Z/`-Galois cover, then Z1 has genus gZ1 = 1 + `(p − 3)/2 by the Riemann-
Hurwitz formula. Suppose ` 6= p is prime such that `+ 1 ≥ (p− 1)2/2. By [32, 4.3.1], there exists an unramified
Z/`-Galois cover Z1 → Y such that the new part of JZ1 is ordinary. Thus Z1 has p-rank sZ1 = (`− 1)(p− 3)/2
and JZ1 [p] contains a factor isomorphic to (Z/p⊕ µp)sZ1 .

Also JY is isogenous to a factor of JZ1 . Since the cover Z1 → Y has degree `, the degree of the isogeny is
prime-to-p. As a result, JZ1 [p] contains a factor isomorphic to JY [p]. Thus JZ1 [p] decomposes into sZ1 copies of
(Z/p⊕ µp) and (p− 1)/2 copies of Ess[p]. In particular, the Newton polygon of JZ1 has slopes 0, 1/2, and 1.

Consider the action of an automorphism σ of Y of order p on the set of unramified cyclic Z/`-Galois covers
of Y . If Z2 is in the orbit of Z1 under the action of σ, then Z2 and Z1 are isomorphic, and so every invariant of
the curves is the same. Consider the Galois closure ψ : Z → Y → P1 of Z1 → Y → P1. The Galois group
of ψ is isomorphic to G since it is a semi-direct product of the form (Z/`)a o Z/p, by Lemma 6.6. The genus is
gZ = 1 + `a(p− 3)/2 by the Riemann-Hurwitz formula.

Relative to the cover Z → Y , the new part of JZ [p] is ordinary and the old part of JZ [p] is isomorphic to
Y [p]. Thus the curve Z has p-rank sZ = (`a − 1)(p − 3)/2 and JZ [p] decomposes completely into sZ copies of
Z/p⊕ µp and (p− 1)/2 copies of Ess[p]. In particular, the Newton polygon of JZ has slopes 0, 1/2, and 1.

References
[1] Revêtements étales et groupe fondamental. Springer-Verlag, Berlin, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961
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