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Abstract

Suppose G is a semi-direct product of the form Z/p™ x Z/m where p is prime
and m is relatively prime to p. Suppose K is a complete discrete valuation
field of characteristic p > 0 with algebraically closed residue field. The main
result states necessary and sufficient conditions on the ramification filtrations
that occur for wildly ramified G-Galois extensions of K. In addition, we prove
that there exists a parameter space for G-Galois extensions of K with given
ramification filtration, and we calculate its dimension in terms of the ramifica-
tion filtration. We provide explicit equations for wild cyclic extensions of K of
degree p3.
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1. Introduction

This paper is about wildly ramified Galois extensions of a complete discrete
valuation field k((t)) where k is an algebraically closed field of characteristic
p > 0. We prove that the lower jumps of the ramification filtration of a Galois
extension of k((t)) with group Z/p™ x Z/m are all congruent modulo m, Propo-
sition[£:2] We also prove that one can dominate a given Galois extension having
group Z/p" "1 xZ/m by a Galois extension having group Z/p™ x Z/m, with con-
trol over the last jump in the ramification filtration, Proposition [5.1] Together
with well-known results about ramification filtrations of Galois extensions with
group Z/p™ [I1], this yields (see Theorem :
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Theorem 1.1. Let G be a semi-direct product of the form Z/p™ x Z/m where
p 1 m. Let 0 € G have order p™ and let m' = |Centg(o)|/p™. A sequence
uy < -+ < uy, of rational numbers occurs as the set of positive breaks in the
upper numbering of the ramification filtration of a G-Galois extension of k((t))
if and only if:

(a)uiE%Nforlgign;
(b) ged(m, muy) =m/;

(c) pt muy and, for 1 < i < n, either u; = pu;—1 or both u; > pu;—1 and
P mu;

(d) and mu; = muy mod m for 1 <i<n.

In the first author’s doctoral thesis, Theorem yields restrictions on the
stable reduction of certain branched covers of the projective line.

Our other main result, Theorem states that, given a group G and a
ramification filtration n satisfying conditions (a)-(d) as in Theorem there
exists a parameter space M, whose k-points are in natural bijection with iso-
morphism classes of G-Galois extensions of k((¢)) having ramification filtration
n. We calculate the dimension of M,, in terms of the upper jumps of 7.

Here is the paper’s outline: in Section[2] we introduce the framework of study,
including ramification filtrations and field theory; Section [3| contains several
structural descriptions of cyclic p-group extensions; in Section[d] we prove results
about tame actions on cyclic extensions; and the main results on ramification
filtrations and parameter spaces for G-Galois extensions appear in Section

Our original motivation for this topic was to find explicit equations for Z/p?-
Galois extensions of k((t)), see Section[6] Such equations are useful and are dif-
ficult to find in the literature. For example, in [, II, Lemma 5.1], the authors
use equations for Z/p?-Galois extensions in order to prove a case of Oort’s Con-
jecture, namely, that every Z/p3-Galois extension of k((t)) lifts to characteristic
0 [B, Thm. 2].

Similar results for elementary abelian p-group extensions are in [2].

We thank D. Harbater and an anonymous reader for help with Proposition
2] and J. Achter, S. Corry, G. Elder, M. Matignon, and the referee for useful
comments.

2. Framework of study

This section contains background on extensions of complete discrete val-
uation fields and ramification filtrations and introduces the situation studied
in this paper, in which the Galois group is a semi-direct product of the form
Z/p™ xZ/m.



2.1. Extensions of complete discrete valuation fields

Let k& be an algebraically closed field of characteristic p > 0. We fix a
compatible system of roots of unity of k. In particular, this fixes a primitive
mth root of unity ¢ in k. Let R be an equal characteristic complete discrete
valuation ring with residue field k and fraction field K. Then R ~ k[[t]] and
K ~ k((t)) for some uniformizing parameter ¢.

Suppose L/K is a separable Galois field extension with group G. Let S be
the integral closure of R in L. Then S/R is a Galois extension of rings with
group G which is totally ramified over the prime ideal (¢).

This type of field extension arises in the following context. Suppose ¢ : ¥ —
X is a Galois cover of smooth k-curves. Suppose y € Y is a ramified point with
inertia group G. Consider the complete local rings S = @yyy and R = @X@(y).
Then S/R is a Galois extension of rings with group G which is totally ramified
over the unique valuation of R as described in the preceding paragraph.

For a Galois extension L/K as above, the group G is a semi-direct product of
the form P x Z/m where P is a p-group and p{ m [12 IV, Cor. 4]. Throughout
the paper, we assume that the subgroup P is cyclic.

2.2. Subgroups of a semi-direct product

Suppose G is a semi-direct product of the form P x Z/m where P ~ Z/p"
and p t m. Let o be a chosen generator of P. Let ¢ be a chosen element of
order m in G and let M = (¢). Let m' = |Centg(0)|/p™. In other words,
m' =#{ge M | gog~' =0}.

For 0 < i < n, the element o; := o' has order p"~* and H; := (0;) is the
unique subgroup of order p"~* in G. Then {id} = H,, C H,,_1 C -+- C Hy = P.

The semi-direct product is determined by the conjugation action of M on P.
Since coc™! also generates P, then coc™! = o for some integer o/ such that
1<a’ <p™andpta'. The action of ¢ stabilizes H;. Let J; := (H;—1/H;) x M.

Lemma 2.1. (i) The value of o’ does not depend on the choice of generator
of P;

(ii) The value of o depends on the choice of generator of M as follows; if
co = P for some integer 3, then afy = (o/)? mod p™.

Proof. (i) If 7 = 07, then ere™! = (coc™ )7 = (6®)Y = 7%,

.. . . i i _ :
(ii) By induction, c'oc™* = o(®)". Thus coocy ' = o%.

Lemma 2.2. The groups J; are canonically isomorphic for 1 < i <n.

Proof. The groups J; are semi-direct products of the form Z/p x Z/m. Thus it
suffices to show that the action of ¢ on the equivalence class of o;_1 modulo {(o;)
is the same for 1 <i < n. Note that coPc™t = (¢P)*. Thus co;ct =0®. O

The residue of ' modulo p can be canonically identified with an element
a € Fy. Also m/m' is the order of a in Fy.



2.8. Towers of fields

Suppose L/K is a separable Galois extension whose group G is of the form
Z/p™ x Z/m with p + m. We fix an identification of Aut(L/K) with G and
indicate this by writing that L/K is a G-Galois extension.

Consider the fixed fields L; = L and K; = L¥*M for 0 < § < n. So,
L, = L and Ky = K. Let v; be the natural valuation on L;. Let ©; be the
integral closure of R in L;. Then L/L; is an H;-Galois extension and L;/Lg is
a P/H;-Galois extension. Also L;/K,_1 is a J;-Galois extension. This yields a
tower of fields:

Z Z z z
LoC /P L, /P Z/p L, /p I
K© K C .. K, {“——K,

By Kummer theory, there exists € Ly such that Ly ~ K[z]/(z™ — 1/t).
After choosing ¢ € G such that ¢(z) = (x, one can determine the values of o/
and « for the extension L/K.

2.4. Ramification filtrations

Here is a brief review of the theory of ramification filtrations from [12] TV].
Consider the natural valuation v = v, on L and a uniformizing parameter 7= € L.
For r € N, let I,. be the rth ramification group in the lower numbering for the
extension L/K. In other words, I, is the normal subgroup of all g € G such
that v(g(m) —7) > r + 1.

The ramification filtration is important because it determines the degree §
of the different of S/R. Namely, by [12, IV, Prop. 4], 6 = > o,(|1] —1). If
¢ 'Y — X is a cover of smooth projective connected k-curves, the genus of
Y can by found using the Riemann-Hurwitz formula [6, TV, Cor. 2.4] and this
formula relies on the degree of the different at each ramification point of ¢.

Let g € G with g # 1. The lower jump for g is the non-negative integer j
so that v(g(m) —7) = j+ 1. Then g € I; and g & I;41. By [12, IV, Prop. 11],
p 1 j for any positive lower jump j. If | P| = p™, then there are n positive indices
j1 < +-+ < jn at which there is a break in the ramification filtration in the lower
numbering, which are called the lower jumps of L/K.

There is also a ramification filtration I’ in the upper numbering. The upper
Jjumps of L/K are the positive breaks u; < --- < u, in the ramification filtration
in the upper numbering. The lower numbering is stable for subextensions [12]
IV, Prop. 2] and the upper numbering is stable for quotients [12] IV, Prop.
14]. Using Herbrand’s formula [12, TV, §3], one can translate between the two
ramification filtrations: letting jo = ug = 0, then u; —u;—1 = (j; — ji—1)/p*~'m
for1<i<n.



3. Wild cyclic extensions

In this section, we describe the equations and ramification filtration of the
Z/p"-Galois subextension L/Lg. The material in this section is mostly known,
but it is all necessary for later results in the paper.

3.1. Cyclic towers of Artin-Schreier extensions

Lemma 3.1. The ith lower jump j; of L/K equals the lower jump of L;/L;_1.

Proof. The ith lower jump j; of L/K is the lower jump of the automorphism
0;—1. This is the same as the lower jump of o;_; for the extension L/L;_; by
[12, IV, Prop. 2]. Since this is the smallest lower jump for the extension L/L;_1,
it also equals the upper jump of o;_; for L/L;_y. By [12] IV, Prop. 14], this is
then the same as the upper jump, and thus the lower jump, of L;/L;_;. O

8.2. Witt Vectors and p-power cyclic extensions

We recall some Witt vector theory. Let o be the operation Fr — Id on Witt
vectors, where Fr denotes Frobenius. An element a of a field F' of characteristic
p is a pth power in F' if the polynomial 2P — z — a has a root in F'.

By [T, p. 331, Ex. 50], every Galois extension of Ly = k((z~!)) with group
Z/p™ has Witt vector equations

(yfavyﬁ):(ylvvyn) +/ ($1,...,In). (1)
where x; € Ly for 1 < i < n such that x; is not a pth power in Ly and where
+’ denotes addition of Witt vectors: Moreover, there is a generator 7 of Z/p™
such that the action of 7 on Witt vectors is

T(Y1, -y Un) = (Y155 yn) + (1,0,...,0). (2)

Modifying (x1,...,2z,) by an element w € W™(Lg), where W™ is the nth
truncation of the Witt vectors, changes the isomorphism class of the extension
precisely when w ¢ p(W™(Lg)). Thus, since k is algebraically closed, one can
choose (z1,...,x,) to be in standard form, i.e., x; € k[z] and either x; = 0 or
x; has no exponent divisible by p.

To make (/1)) more explicit, for 0 <i<n-—1,let W; =", deg:ld be the
ith Witt polynomial, [I2] II, §6]. Define S; € Z[Xq,..., X;+1,Y1,...,Yit1] to
be the unique formal polynomial such that

Wi(X1,..., Xig1) + Wi(Ya,... Vi) =
Wi(So(X1, Y1), S1(X1, Xo, Y1, Y2), ..., Si( X1, ..o, Xig1, Y1, .. Yiga)).
The indexing of these variables is shifted by one from that of [12] IT, §6] in order

to be more consistent with notation in this paper. By [12, II, Thm. 6], the S;
are well defined and have integer coeflicients.



Lemma 3.2. In Z[Xy,..., X;,Y1,..., Y]],

i—1
1 i— i—
Sic1( X1y, Xy Y1, Y) = X +Y+Zp Xp d+de d*SS—f)
=1

and the degree of every monomial of S;_1 is congruent to one modulo p — 1.

ifl i—1—d

Proof. The equation follows from Zd OpdSp - Zd oD (X5, —|—de+1 )
(see [I1l Footnote 4]) and the statement about degrees from induction. O
For 1 <i<m,let S;_1 € Fy[X1,...,X;,Y1,...,Y;] be the reduction of S;_;
modulo p and let fi(Y17 . 7}/i—1aX17 .. Xz) = 7,'_1 — Y; Then fz = XZ + gi
where g; € Fp[Xq,...,X;-1,Y1,...,Yi_1] is a polynomial whose terms each
have degree congruent to one modulo p— 1. The meaning of is that a Galois
extension with group Z/p™ has equations y¥ — y; = fi(y1, ..., Yi—1, 1, ... 2;).

Lemma 3.3. Let L/Lg be a Z/p™-Galois extension and o a generator of Z/p™.
There exist x; € Ly and y; € L for 1 < i <n such that L/Lq is isomorphic to
the (o)-Galois extension with Witt vector equations and Galois action

(W yh) = (1, un) + (@1, 2p)

U(ylv"',yn) = (yl,“'?yn) +/ (1307"'30)'

Furthermore, there is a unique choice for (z1,...,xy) in standard form.

Proof. There exist z; € Ly and y; € L and a generator 7 of Z/p™ such that
L/Ly has Witt vector equations and Galois action . Now ¢ = 7 for
some b € (Z/p™)*. Then o(y1,---,Yn) = (Y1,---,Yn) + b(1,0,...,0). Since b
is invertible in Z/p™ = W™(Z/p) C W™(Lg), one can replace (yi,...,y,) and
(z1,...,2y) with the Witt vectors %(yl, .oy Yn) and %(xl, ...y Ty). Since Fris a
ring homomorphism [7, p. 331, Ex. 48], the extension L/Lg still has Witt vector
equations and now o(y1,...,Yn) = (Y1,---,yn) + (1,0,...,0).

By a generalization of [§, Lemma 2.1.5], there is a unique choice of (z1, ..., x,)
in standard form compatible with the restriction on the Galois action. O

3.8. Ramification filtrations for cyclic p-group extensions

The ramification filtration of a Z/p™-Galois extension is completely deter-
mined by either its lower or upper jumps, which in turn can be determined by
the Witt vector equation.

Lemma 3.4. Let L/Lg be a Z/p™-Galois extension with Witt vector (21, ..., Zy)
in equation (1)) in standard form. Let u = max{—p" ‘vo(z;)},. Then u is the
last upper jump of L/Lg.

Proof. This follows from [4, Thm. 1.1]; see also [I3 Prop. 4.2(1)]. O

We retrieve the following classical result.



Lemma 3.5. A sequence of positive integers wy < --- < w, occurs as the set
of upper jumps of a Z/p™-Galois extension of Lo if and only if p 1wy and, for
1 < i <n, either w; = pw;—1 or both w; > pw;_1 and p{ w;.

Proof. The result, originally found in [11], follows from Lemma [3.4} see also [9
Lemma 19]. O

The following lemma will be used to compare the upper jumps of the G-
Galois extension L/K and the Z/p"-Galois extension L/Ly.

Lemma 3.6. Suppose L/K has upper jumps u; < -+- < u,. Then L/Lqy has
upper jumps wy < --- < w, where w; = mu; for 1 <i<n.

Proof. By [12, TV, Prop. 2|, the lower jumps of L/Lg equal the lower jumps
Jj1 <+ < jpof L/K. Herbrand’s formula [12], IV, §3] implies that u; — u;—1 =
(4i — ji—1)/p""tm and that w; — w;_1 = (j; — ji—1)/p"~* for 1 <i < n. O

4. Tame-by-cyclic extensions

Suppose L/K is a separable G-Galois field extension as in Sections [2.2
In this section, we find necessary conditions on the ramification filtrations and
equations arising from the Z/m-Galois action on L.

4.1. The case of Galois extensions with group Z/p x Z/m

Lemma 4.1. Consider the J,-Galois extension L1 /K with equations ™ = 1/t
and y¥ —y1 = x1 and Galois action c(x) = (x and o(y1) = y1 + 1.

(i) The lower jump j of L1/Lq satisfies m' = ged(m, 7).
(ii) Also m|j(p — 1). In particular, j = jp” mod m for any r € N.
(iii) Also c(y1) = o=ty = Iy
Proof. (i) This follows from [12] IV, Prop. 9], see also [8, Lemma 1.4.1(iv)].

(ii) The conjugation action of Z/m on Z/p gives a homomorphism v : Z/m —
Aut(Z/p). By definition, Im(v) has order m/m’ and Ker(v) = (c™/™).
Thus m|m/(p — 1). By part (i), m’ = ged(m, j), so m|j(p — 1).

iii) [8, Lemma 1.4.1(ii)-(iii)].

4.2. A congruence condition on the ramification filtration

Proposition 4.2. (i) The lower jumps in the ramification filtration of the P-
Galois extension L/Ly are all congruent modulo m.

(i) The upper jumps in the ramification filtration of the P-Galois extension
L/Lgy are all congruent modulo m.



Proof. (i) The ith lower jump of L/Lg is j; by [12) IV, Prop. 2]. Let 7 be a
uniformizer of ©,, and let u = ¢(7)/7 € ©F. In the notation of [I2, IV,
Prop. 7], recall that 6y is a map from Iy/I; to k* and 6; is a map from
I;/Ij41 to k for j > 1. Then u equals 6y(c) € k*. The order of u is m
by [12, IV, Prop. 7]. By the proof of Lemma E coi1c7t = o for
1 < ¢ < n. Since o;_1 generates H;_1/H; = I,,/1;,+1, 12, IV, Prop. 9]
shows that 8, (0% ) = u/i0j,(0;_1) for 1 <i < n. Thus v/ = a € k* for
1<i<nandsoj == j, modm.

(ii) Let wy < .-+ < w,, be the upper jumps of the P-Galois extension L/Ly.
Since P is abelian, the Hasse-Arf Theorem implies that w; € N. By
Herbrand’s formula, w; — w;—1 = (ji — ji—1)/p""%. Thus w; — w;_; =
0 mod m by part (i).

O

Class field theory approach: If k is instead a finite field, here is a different
proof of Proposition [£:2] which uses class field theory.

Second proof of Proposition[]-9 The G-Galois extension L/K dominates the
{¢)-Galois extension Lg/K where Lo ~ k((x™1)), 2™ = 1/t, and c(z) = (z. Let
L/Ly be the P-Galois subextension, which has upper jumps w; < -+ < w,
where w; = mu; by Lemma Thus the upper ramification group I* of L/Ly
equals H; if w; < £ < wjyq.

Let Q = (x7!) be the maximal ideal of k[[z7!]]. Consider the unit groups
U? =1+Q4 of k[[z~1]] [1Z, IV.2]. By [1Z, IV, Prop. 6], U¢/U*! is canonically
isomorphic to Q?/Q%*!. Now, Q% carries a natural {c)-module structure where
c((z=1H)?) = ¢4 z~19. Thus U?/U%! carries a natural structure as a (c)-
module, and this structure depends on the congruence class of d modulo m.

By [12, XV.2, Cor. 3 & pg. 229], there is a reciprocity isomorphism w :
Li/NL* — P and thus there are isomorphisms w, : U?/(UNUFP) —
I?/I1%+1, Here N : L — Lg is the norm map and 1 is Herbrand’s function. In
particular, taking d = w;, then U“’i/(U“’i“NUg(wi)) =H;,_1/H,.

Now H;_1/H; has a {(c)-module structure and this (c¢)-module structure is
independent of ¢ by Lemma After pulling back by w, this implies that the
(¢)-module structure of U™ /(U NUY ™) and thus of U® is independent
of ¢. Thus (,,"* is independent of i and so w; = w; mod m.

The lower jumps are also congruent modulo m by Herbrand’s formula. [

At this point, one can prove that the conditions in Theorem|[I.T]are necessary;
we will postpone this until Section [5.2

4.8. Actions and isomorphisms
This section contains two results that will be needed in Section [B

Proposition 4.3. Suppose Ly ~ Klx]/(z™ — 1/t) and c(x) = (x. Suppose
L/Lg is a P-Galois extension with Witt vector equations , Galois action (@,



and first lower jump j such that ( = a~'. Then L/K is a G-Galois extension
if and only if c(x;) = (Ja; and c(y;) = (Ty; for 1 <i < n.

Proof. Suppose L/K is a G-Galois extension. Then L, /K is a J;-Galois exten-
sion. By Lemma iii), e(y1)/y1 = o=t = (7. Since y} — y; = z1, this implies
that c(z1) = ¢(‘r1. As an inductive hypothesis, suppose that c(x;) = (/2; and
c(y;) = (Py; for 1 <i<mn—1.

Now L, /K,_1 is a J,-Galois extension of discrete valuation fields and J,
and J; are canonically isomorphic by Lemma [2:2] In other words, the value of
a for Aut(L,,/K,_1) is the same as for Aut(L;/K). By Kummer Theory, there
exists a uniformizer m,_1 of L, 1 such that ¢ acts on m,_1 via multiplication
by some v in fi,. Then L, /K, _; satisfies the hypotheses of Lemma with
1/Tn—1, Yn, jn, and vy~ ! replacing x, y1, 7, and ¢ respectively. Applying Lemma
iii) to L, /K,_1 implies that c(y,)/yn =7 = a~t = (7.

The equation for L, /L,—1 is y© — y, = @, + gn where the terms of the
polynomial g, € Fp[x1,...,2Zn-1,Y1,...,Yn—1] each have degree congruent to
one modulo p — 1. By the inductive hypothesis and Lemma (ii), c scales g,
by ¢?. Thus ¢ scales both y? —y,, —z,, and y,, by ¢?, which implies ¢(z,,) = (‘.

Conversely, suppose c(z;) = (‘x; and c(y;) = (Jy; for 1 < i < n. The
proof that L/K is G-Galois proceeds by induction on n; the case n = 1 can
be computed explicitly, see e.g. [8, Lemma 1.4.1]. As an inductive hypothesis,
suppose that L,_1/K is a G/H,_1-Galois extension. To finish, it suffices to
show that the action of ¢ extends to an automorphism of L, i.e., that ¢ stabilizes
the equation y? —y, = fp, for L, /L,—1. By Lemmas and ii), the action
of ¢ scales every term of this equation by (7. O

Lemma 4.4. Suppose L/K is a G-Galois extension as in Section .

(i) There is a Witt vector (z1,...,2,) in standard form for the subextension
L/Lo and it is uniquely determined up to multiplication by fim, /m: .

(ii) There are p(m)/p(m/m') different non-isomorphic G-Galois structures on
the field extension L/K such that the action of o on L is as in (@

Proof. For part (i), by Lemma for fixed x, there is a uniquely determined
Witt vector (x1,...,2,) in standard form for the subextension L/Ly. Now z
is determined up to multiplication by (¢, for d € Z. By Proposition every
monomial in x; has degree congruent to j mod m. Replacing = with (%z scales
x; by (Y. The values of (¥ range over Mo jme by Lemma i).

For part (ii), a G-Galois structure on L/ K satisfying the requirement for o is
determined by an isomorphism ¢ : G — Aut(L/K) such that ¢(o)(y1,- .., yn) =
(Y1,---yyn) + (1,0,...,0). If h € Aut(L/K), then the map h : L — L yields
an isomorphism of G-Galois extensions L/K — L/K, the first with structure
morphism ¢ and the second with structure morphism hth~!. Thus, modifying ¢
by an inner automorphism yields an isomorphic G-Galois structure on L/K. So
the number of isomorphism classes of G-Galois structures with this requirement
on o is given by the number of elements of Aut(G) fixing o, divided by the
number of Inn(G) fixing o.



An automorphism « of G which fixes o is determined by y(c). Also y(c) must
have order m and have the same conjugation action as ¢ on o, as determined by
Lemma [2.1fii). When G is abelian, then o’ = 1 and there are ¢(m) choices for
~(c). This yields the count ¢(m)/¢o(m/m’) since m’ = m and since Inn(G) is
trivial. If G is non-abelian, then the image of y(c) in M must have order m and
be congruent to ¢ modulo (¢™/™") = ker(v). There are p"o(m)/o(m/m’) choices
for /(c). This yields the desired count, since there are p™ inner automorphisms
of G which fix o, namely conjugation by powers of o. O

5. Main results

Let G be a semi-direct product of the form Z/p™ xZ/m. This section contains
three results: first we prove that one can dominate a given Galois extension
having group Z/p"~! x Z/m by a Galois extension having group Z/p" x Z/m,
with control over the last upper jump; second, we give necessary and sufficient
conditions for the ramification filtration of a G-Galois extension; third, we define
a parameter space for G-Galois extensions of K with given ramification filtration
1 and calculate its dimension in terms of the upper jumps.

5.1. A wild embedding problem

We prove that one can embed a given Galois extension having group Z/p" ! x
Z/m by a Galois extension having group Z/p"™ x Z/m, with control over the last
upper jump. See [3 24.42] for an earlier version of this result, in which m =1
and there is no control over the upper jump. Recall that G/H,,_; is a semi-direct
product of the form Z/p™"~1 x Z/m.

Proposition 5.1. Suppose L, _1/K is a G/H,_1-Galois extension with upper

Jumps g < - < up_1. Let u, € %N be such that either w, = pu,_1 or
both u,, > pu,—1 and p { mu,. Suppose also that mu, = mu; mod m. Then
there exists a G-Galois extension L, /K with upper jumps uy < --- < u, that

dominates L,_1 /K.

Proof. Without loss of generality, one can suppose Ly ~ K|x]/(z™ — 1/t) and
c(x) = (x. The Z/p™ !-Galois extension L,_1/Lo has upper jumps mu; <
<o < muy,_1 by Lemma By Section L,,—1/Lg is given by a Witt vector
equation (y7,...,v" 1) = (y1,..,Yn—1)+ (21,...,25—1) for some z; € Ly, such
that x; is not a pth power in Lg. Furthermore, one can choose (z1,...,Zn_1)
to be in standard form. In particular, if x; # 0, then p { vo(z;).

By Proposition if 1 <i <n—1, then c(z;) = (Pz; and c(y;) = Ty
where 7 = mu;. By Lemma My, 1 = max{—p" ‘vg(x;) ?2—11'

If u, # pup—1, let , = ™. In this case, —vo(z,) = mu,. If u, =
PUn—1, let z, = 0. In this case, —vo(z,) = —0c0 < pmu,—1. In both cases,
(21,...,xy) is a Witt vector in standard form. Then the Witt vector equation
(W, o yk) = (Y1, yn) + (21,...,2,) yields a P-Galois extension L, /Ly
dominating L,,_1 /Lo, with upper jumps mu; < --- < mu, by Lemma (i.e.,
4, Thm. 1.1]).
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By the definition of x,,, then ¢(z,) = (?z,. Let c(y,) = (/y,. By Proposi-
tion L, /K is a G-Galois extension dominating L, _;/K, and it has upper
jumps uy < - -+ < u, by Lemma [3.6] O

5.2. Conditions on the ramification filtration

The ramification filtration of a Galois extension with group G of the form
Z/p™ x Z/m is completely determined by either its lower or upper jumps. Here
are the statement and proof of Theorem (1.1} giving necessary and sufficient
conditions on the ramification filtrations of G-Galois extensions of K.

Theorem 5.2. Let G be a semi-direct product of the form Z/p™ x Z/m where
p 1 m. Let 0 € G have order p™ and let m' = |Centg(o)|/p™. A sequence
uy < -+ < uy, of rational numbers occurs as the set of positive breaks in the
upper numbering of the ramification filtration of a G-Galois extension of k((t))
if and only if:

(a)uiG%Nforlgign;

(b) ged(m, muy) = m';
(c) pt muy and, for 1 < i < n, either u; = pu;—1 or both u; > pu;—1 and
P mu;

(d) and mu; = muy mod m for 1 <i<n.

Proof. Conditions (a)-(d) are necessary: let uy < --- < u, be the set of up-
per jumps of a G-Galois extension of k((t)). The upper jumps of the Z/p"-
subextension L/Lg are wy < --+ < w, where w; = mu; by Lemma Condi-
tion (a) follows since w; € N by the Hasse-Arf Theorem. Condition (b) follows
from Lemma [1.1]i). Condition (c) is due to [11], see Lemma[3.5] Condition (d)
follows from Proposition ii).

Conditions (a)-(d) are sufficient: recall that G has generators o (of order p™)
and ¢ (of order m) and coc™! = ¢ for some integer o such that 1 < o/ < p”
and p{a'. Let a € Fy >~ (Z/p)* be such that a = o/ mod p. Let j = mu;. By
condition (b), ¢ has order m/m’ in k*. Likewise, a~! has order m/m’ in k*.
Thus there exists an integer 3 such that (%7 = a1,

Consider the (c)-Galois extension Lo/K with equation 2™ = 1/t and Galois
action ¢(x) = (Px. Let z; € 27k[[z~™]]*. Consider the Z/p-Galois extension
L, /L with equation y§ —y; = z; and Galois action o(y;1) = y1+1. By [8, Lemma
1.4.1], L1 /K is a J;-Galois extension. It has lower jump j and thus upper jump
ui. By conditions (a), (c), (d), and Proposition there exists a G-Galois
extension L/K dominating L;/K with upper jumps u3 < - < uy,. O

Corollary 5.3. Let G be a semi-direct product of the form Z/p™ x Z/m where
ptm. Suppose n is a ramification filtration of G satisfying conditions (a)-(d).
Let f be the order of p modulo m/m' and let ¢ = pf. Then there exists a
G-Galois extension LK with ramification filtration n which is defined over F,.

11



Proof. Tt suffices to produce a G-Galois extension L/K whose equations and
Galois action have coefficients in F,. Note that ¢/t has order m/m’ in k*. By
the definition of f, the field F,; contains the (m/m')th roots of unity, and thus
contains (/1. The case n = 1 follows by direct computation with the equation
y! —y1 = 2", see [8, Lemma 1.4.1]. The result then proceeds by induction on
n. For the inductive step, one produces an equation for the extension L/L,_1
using Proposition In the proof of that result, recall that x, € Fp[z] by
definition. Thus the equation has coefficients in F, by Lemma The Galois

action is defined over F, by and Proposition O
5.8. Parameter space for G-Galois extensions

Given a sequence u; < --- < u, satisfying conditions (a)-(d), let n be the
ramification filtration of G having upper jumps u; < --- < u,. By Theorem

there exists a G-Galois extension of k((t)) with ramification filtration 7.
We prove there is a scheme M, such that there is a natural bijection between
the k-points of M, and isomorphism classes of G-Galois extensions of k((t))
with ramification filtration . We calculate the dimension of M,, in terms of
the sequence u; < -+ < uy,.

Notation 5.4. Given positive integers w and m, let
ep(w,m)=#{e€Z|1<e<w, e=wmodm, pfe}.

Lemma 5.5. Let 6,(w,m) =1 if w = ap mod m for some 1 < a < r, where
T is the remainder when |w/p| is divided by m, and o,(w, m) = 0 otherwise.
Then €,(w,m) = [w/m] — [w/mp] — d,(w, m).

Proof. The number of integers e such that 1 < e < w and e = w mod m is
[w/m]. To count the number of these which are divisible by p, consider the
set A ={p,2p,...,|w/p|p}. Then A contains at least ||w/p|/m| = |w/mp]
elements e such that e = w mod m. Let r be the remainder when |w/p]| is
divided by m. Then A contains one additional element e = w mod m if and
only if an element of {p,2p,...,rp} is congruent to w modulo m. The formula
holds since ¢,(w, m) = 1 precisely in this case. O

Given a positive integer N, the root of unity (,,/n, acts on the affine variety
AN via multiplication on each coordinate. Let AN /pu,, /ms denote the quotient.

Theorem 5.6. Let G be a semi-direct product of the form Z/p™ x Z/m where
ptm. Let uy < -+ < uy, be a sequence satisfying conditions (a)-(d) and
n be the ramification filtration of G with upper jumps w1 < -+ < uy,. Let
N, = Y1 ep(mu;,m). Then there is an open subscheme U, C AN /jiy, /0
and a finite étale map w™ : M, — U, of degree ¢(m)/p(m/m') such that the
k-points of M, are in natural bijection with isomorphism classes of G-Galois
extensions of k((t)) with ramification filtration 7.

It is clear that dim(M,,) = N,, depends only on p,m,u1, ..., Up.

12



Proof. By Lemma [£4] it suffices to show that the collection of Witt vectors
(z1,...,zy) in standard form, which, as in Proposition yield G-Galois ex-
tensions L/K with ramification invariants u; < --- < u,, is in natural bijection
with the k-points of an open subscheme of AN».

The proof is by induction on n. For the case n = 1, Lemma [3.4] shows that
x1 € k[z] must have degree mu;. By Proposition the extension Ly /K is J;-
Galois if and only if ¢(x1) = (™“1z1, in other words, if and only if all exponents
of x1 are congruent to mu; modulo m. Since z; is in standard form, it has no
exponents with degree divisible by p. Thus the number of possible exponents is
€ = ep(mui, m). Since the leading coefficient of x; is nonzero, the choice of z,,
is equivalent to the choice of a k-point in an open subscheme of A¢. (See also
[8, Proposition 2.2.6]).

Now, suppose that (x1,...,2,-1) is a Witt vector in standard form, which
yields a G/H,,_1-Galois extension L,_1/K with upper jumps u; < -+ < uy_1.
Let € = €,(muy,, m). It suffices to show that Witt vectors (z1,...,x,) in stan-
dard form which yield an extension L/K dominating L,,_1/K with upper jumps
uy < -+- < uy, are in natural bijection with the k-points of an open subscheme
U, C A°.

The Witt vector (z1,...,z,) for the extension L/K is determined by the
choice of x,, € k[z] in standard form. By Proposition the extension L/K
is G-Galois if and only if ¢(x,) = ("™*'z,, in other words, if and only if all
exponents of x,, are congruent to mu; modulo m. Recall that mu; = mu,, mod
m by Proposition

By Lemmal3.4] the extension L/K has upper jump uy, if and only if deg(x,,) =
—vgo(xn) < muy,, where equality must hold if w,, > pu,_1. Thus, an exponent
e appearing in x,, satisfies 0 < e < mu,, and e = mu,, mod m, and p { e. The
number of these exponents is € = €,(muy,, m). The leading coefficient of
must be non-zero when wu,, > pu,_1. The choice of z,, is thus equivalent to the
choice of a k-point in an open subscheme of A€. O

Remark 5.7. Consider the contravariant functor F; from the category of
schemes to sets, which associates to a scheme B the set of G-Galois extensions
of Op((t)) whose geometric fibres have ramification filtration n. The scheme
M, does not represent F}, on the category of k-schemes because there are non-
constant G-Galois covers defined over a base scheme B, which become constant
after pullback by a finite morphism B’ — B. The scheme M,, is a fine moduli
space for F; on a category where such morphisms are trivialized; see [8, Thm.
2.2.10] for the case n = 1.

Remark 5.8. In [I Prop. 4.1.1], the authors calculate the dimension of the
tangent space of the versal deformation space of a Z/p"-Galois extension in
terms of its ramification filtration. Theorem [5.6] is less technical than their
result and it is not clear how to compare them directly.
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6. Equations for Z/p3-Galois extensions

It is well-known that the methods of Section[3:2]can be used to find equations
for Z/p™-extensions [I0], but the equations themselves are difficult to find in the
literature. Here are formulae for the general Z/p3-Galois extension of K.

Example 6.1. Suppose L/K is a Z/p3-Galois extension of K = k((t)). Then
there exist x1, z9, x5 € K so that L/K is isomorphic to the following extension:

y]f—yl = T1;
xp+ p_ 1+ P
By = Yyl — (x1 + 1) oo
b
Py D_ p
, byl = (o )7 T YR~ (g 4 TRy
Ys —Ys = p2 + D + x3.

A generator o of the Galois group can be chosen so that its action is given by:

o(y1) = yi+1L
D
+1— (4 1)P
olys) = o+ p(yl r.
p? 2 P yrH1—(y1i+1)P\p
y +1—(yp +1)P vy — (y2 + F—7p—")
o(ys) = ys+ = pgl i " L

The integral coefficients in Example can be considered to be in F), C k.

Proof. For the equations, it suffices to recursively compute f; = S;_1 — y; for
1 <4 < 3, starting with Sp(z1,y1) = 1 + y1 and S1(x1, 22, y1,y2) = T2 + Y2 +
(«? 4+ 4P — (x1 4 y1)P)/p. The Galois action is given by o(y;) = y; + fi, where
fi = fityt, .. 9i-1,1,0,...,0). To see this, note that y! = y;+ f; and (1)) imply
that (y1+f1,.. ., yn+fu) = (Y1, Yn)+ (z1,. .., 2,). Substituting (1,0,...,0)
for (z1,...,2,) yields (y1 4+ f1,-- s Un+ fn) = (1, -, yn) + (1,0,...,0), which
equals o (y1, . ..,yn) by Lemma [3.3] O

Example 6.2. When p = 2 and 2 = t~/, here are equations for a Z/8-Galois
extension of k((¢)), which is defined over Fy and has upper jumps j, 27, and 4;:

Y —y=ua; 2 —z=uzy; v —w=2y+y’r +ayz.

The Galois action is given by y — y + 1, 2 — 2z + 5y, and w — w + 3> + y + yz2.

References

[1] J. Bertin and A. Mézard. Déformations formelles des revétements sauvage-
ment ramifiés de courbes algébriques. Invent. Math., 141(1):195-238, 2000.

[2] V. Deolalikar. Determining irreducibility and ramification groups for an ad-
ditive extension of the rational function field. J. Number Theory, 97(2):269—
286, 2002.

14



[3]
[4]

[12]
[13]

M. Fried and M. Jarden. Field arithmetic. Springer-Verlag, Berlin, 1986.

M. Garuti. Linear systems attached to cyclic inertia. In Arithmetic fun-
damental groups and noncommutative algebra (Berkeley, CA, 1999), vol-
ume 70 of Proc. Sympos. Pure Math., pages 377-386. Amer. Math. Soc.,
Providence, RI, 2002.

B. Green and M. Matignon. Liftings of Galois covers of smooth curves.
Compositio Math., 113:237-272, 1998.

R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977.
Graduate Texts in Mathematics, No. 52.

S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-
Verlag, New York, third edition, 2002.

R. Pries. Families of wildly ramified covers of curves. Amer. J. Math.,
124(4):737-768, 2002.

R. Pries. Wildly ramified covers with large genus. J. Number Theory,
119(2):194-209, 2006.

H. Schmid. Zyklische algebraische Funktionenkorper vom Grade p™ iiber
endlichem Konstantenkorper der Charakteristik p. J. Reine Angew. Math.,
175:108-123, 1936.

H. Schmid. Zur Arithmetik der zyklischen p-Kérper. J. Reine Angew.
Math., 176:161-167, 1937.

J.-P. Serre. Corps Locaux. Hermann, 1968.

L. Thomas. Ramification groups in Artin-Schreier-Witt extensions. J.
Théor. Nombres Bordeaux, 17:689-720, 2005.

15



	Introduction
	Framework of study
	Extensions of complete discrete valuation fields
	Subgroups of a semi-direct product
	Towers of fields
	Ramification filtrations

	Wild cyclic extensions
	Cyclic towers of Artin-Schreier extensions
	Witt Vectors and p-power cyclic extensions
	Ramification filtrations for cyclic p-group extensions

	Tame-by-cyclic extensions
	The case of Galois extensions with group Z/p Z/m
	A congruence condition on the ramification filtration
	Actions and isomorphisms

	Main results
	A wild embedding problem
	Conditions on the ramification filtration
	Parameter space for G-Galois extensions

	Equations for Z/p3-Galois extensions

