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1. Introduction

Consider the moduli space Ag of principally polarized abelian varieties of dimension
g which are defined over an algebraically closed field k of characteristic p. There are
several important stratifications of Ag which characterize the p-torsion of the corre-
sponding abelian varieties. Very little is known about how these strata intersect the
Torelli locus of Jacobians of curves. It is an open question whether the Torelli locus
intersects these strata and, if so, the extent to which the intersection is transversal.
In particular, one can ask which group schemes occur as the p-torsion JX [p] of the
Jacobian JX of a curve X of genus g.

The p-rank fX is the one invariant of JX [p] for which this question is moderately
well-understood. Recall that fX = dimFp

Hom(µp, JX [p]) where the group scheme
µp is the kernel of Frobenius on Gm. One can often compute the p-rank of a fixed
curve X for a fixed prime p, e.g., [27] when X is hyperelliptic. It was recently proven
that there exist smooth curves of genus g with every possible p-rank [8, Thm. 2.3].
Likewise, there exist smooth hyperelliptic curves of genus g with every possible

1



August 28, 2009 10:8 WSPC/INSTRUCTION FILE ijntLargeprank809

2

p-rank, [10, Thm. 1] for p ≥ 3 and [28, Thm. 3] for p = 2.
It is now natural to try to classify the group schemes which occur as the p-torsion

for a smooth k-curve of genus g and p-rank f . These are of the form (Z/p⊕µp)f⊕G
where there are 2g−f−1 possibilities for G if f ≤ g − 1 [13,19]. One can sometimes
distinguish these by the a-number aX = dimkHom(αp, JX [p]) where αp is the kernel
of Frobenius on Ga. Among these, there is a unique choice of G with a-number 1,
which we denote Ig−f . Precisely, Ig−f is the unique symmetric BT1 group scheme
of rank p2(g−f), p-rank 0, and a-number 1. For example, I1 is the p-torsion of
a supersingular elliptic curve. The group scheme I2 occurs as the p-torsion of a
supersingular non-superspecial abelian surface.

In this paper, we conjecture that the curve corresponding to the generic point
of any component of the locus in Mg of smooth curves of genus g with p-rank f

has group scheme JX [p] ∼= (Z/p⊕ µp)f ⊕ Ig−f and thus a-number 1 for f ≤ g − 1.
It is easy to see that this conjecture is true when f = g − 1. When f = g − 2 and
f = g − 3, we prove the conjecture along with some other results. The results are
stated more precisely in the paper in terms of the dimension of the intersection of
loci of Mg and Hg but they imply the following. Suppose g ≥ 3.

Theorem 4.1: There is a family (with dimension 3g − 5) of smooth curves of
genus g with p-rank g − 2 and a-number 1.

Theorem 4.2: If p ≥ 3, there is a family (with dimension 2g − 3) of smooth
hyperelliptic curves of genus g with p-rank g − 2 and a-number 1.

Theorem 4.3: There is a family (with dimension 3g − 6) of smooth curves of
genus g with p-rank g − 3 and a-number 1.

Corollary 4.5: If p ≥ 5, there is a family (with dimension 3g − 6) of smooth
curves of genus g with p-rank g − 2 and a-number two.

Proposition 4.9: For p ≥ 3 and g odd, g 6≡ 1 mod p, and g > 6(p − 1) all four
possibilities of group scheme occur as JX [p] for a smooth curve X of genus
g and p-rank g − 3.

The proofs are by induction on g with the quantity r = g−f fixed. The induction
result works for any value of r. It involves the computation of the dimension of
certain components of the boundary of Mg. For the initial case of the induction
process, one needs results about the locus of curves of genus r with p-rank 0. At
the moment such results are known only when r ≤ 3. For example, we could prove
the conjecture when f = g − 4 with more information about smooth curves with
genus r = 4 and p-rank 0.

Here is an outline of the paper. Section 2 contains background. The inductive
result is in Section 3. The results for large p-rank are in Section 4. In Section 5, we
explain the limitations of the inductive approach used in this paper and show that
some of the hypotheses of the results are necessary.
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One can interpret the results of this paper as evidence that the Torelli locus
is in general position relative to the stratification of Ag by p-torsion type. This
positioning should not be taken for granted, e.g., [25]. The theory of tautological
classes may play a fundamental role in investigating these questions further, [24].
Finally, we note that not all group schemes occur for small p, e.g., [22,23], or for
curves with nontrivial automorphism group, e.g., [3,6].

2. Background

2.1. Moduli spaces

Let k be an algebraically closed field of characteristic p > 0. Let Mg (resp. Hg)
denote the moduli stack of smooth projective irreducible (resp. and hyperelliptic)
k-curves of genus g. Let Ag denote the moduli stack of principally polarized abelian
varieties of dimension g over k. We assume g ≥ 2 to avoid trivial cases. Recall that
Mg has dimension 3g − 3 and Hg has dimension 2g − 1.

These moduli stacks have natural compactifications Mg (resp. Hg) whose points
parametrize stable (resp. and hyperelliptic) curves of genus g. Consider also the
toroidal compactification Ag of Ag [9]. Then Mg, Hg, and Ag are smooth proper
algebraic stacks. By [26], a smooth stack has the same intersection-theoretic prop-
erties as a smooth scheme. In particular, since k is algebraically closed, we have
the following intersection property: if two closed substacks of Mg (or Hg, or Ag)
intersect then the codimension of their intersection is at most the sum of their
codimensions.

Without further comment, a (generic) point means a (generic) geometric point.
We identify a curve with the point of Mg corresponding to its isomorphism class
(and likewise for Hg and Ag).

2.2. The p-rank and a-number

Let X be a k-curve of genus g. The Jacobian JX of X corresponds to a k-point
of Ag. The p-torsion JX [p] is a group scheme of rank p2g. Recall that the group
scheme µp is the kernel of Frobenius on Gm and the group scheme αp is the kernel
of Frobenius on Ga.

Two invariants of the p-torsion of an abelian variety are the p-rank and a-
number. Let fX = dimFpHom(µp, JX [p]) be the p-rank of X. Then 0 ≤ fX ≤ g.
Let aX = dimkHom(αp, JX [p]) be the a-number of X. Then 0 ≤ aX ≤ g − fX .
The p-rank can only decrease under specialization, while the a-number can only
increase.

Given g and f such that 0 ≤ f ≤ g, let Vg,f denote the closed substack of Mg

consisting of curves X of genus g with fX ≤ f . The locus Vg,f is pure of dimension
2g − 3 + f by [8, Thm. 2.3]. Also Vg,f ∩ Hg is pure of dimension g − 1 + f by [10,
Thm. 1] when p ≥ 3 and by [28, Thm. 3] when p = 2. In other words, Vg,f has
codimension g − f in Mg and in Hg.
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In particular, the generic point X of Mg or of Hg has fX = g, and thus aX = 0
and JX [p] ∼= (Z/p⊕µp)g; a curve with these attributes is ordinary. The non-ordinary
locus Vg,g−1 has codimension one in Mg and in Hg. The generic point X of each
component of Vg,g−1 and Vg,g−1 ∩ Hg has fX = g − 1, and thus aX = 1 and
JX [p] ∼= (Z/p⊕ µp)g−1 ⊕ I1; a curve with these attributes is almost ordinary. Here
I1 is the p-torsion of a supersingular elliptic curve (see Example 3.2).

Let Tg,a denote the closed substack of Mg consisting of curves X of genus g with
aX ≥ a. The results above show that Tg,0 has codimension 0 in Mg (resp. Hg) and
Tg,1 has codimension 1 in Mg (resp. Hg). There are not many other results about
the intersection of Tg,a with Mg or Hg. This paper includes a result for a = 2.

Finally, let V ′
g,f (resp. T ′

g,2) denote the closed substack ofAg consisting of abelian
varieties with p-rank at most f (resp. a-number at least two).

2.3. Group schemes

The results in this paper can be expressed in terms of the p-rank and a-number, or
in terms of the isomorphism class of the p-torsion, which is a group scheme. These
group schemes were classified by Kraft (unpublished) [13] and independently by
Oort [19]. Together with Ekedahl, Oort used this classification to stratify Ag. Here
is a brief explanation of this topic. A more complete historical and mathematical
description can be found in [15,19,20].

The group schemes G which occur as the p-torsion of a principally polarized
abelian variety defined over k are symmetric BT1 group schemes (short for truncated
Barsotti-Tate group of level 1). A BT1 is a finite commutative k-group scheme anni-
hilated by p having actions by semi-linear operators Frobenius F and Verschiebung
V that satisfy certain properties, see [19, 2.1].

The isomorphism type of a symmetric BT1 group scheme G can be encapsulated
into combinatorial data. If G has rank p2g, then there is a final filtration N1 ⊂ N2 ⊂
. . . ⊂ N2g of the covariant Dieudonné module of G which is stable under V and
F−1 with rank(Ni) = pi [19, 2.2]. The Ekedahl-Oort type of G is [ν1, . . . , νg] where
pνi = rank(V (Ni)). There are some conditions on the filtration: e.g., νi+1 ≤ νi + 1
[19, Lemma 2.4]. The p-rank is max{i | νi = i} and the a-number is g − νg.

Using this combinatorial data, one can see that there are 2g isomorphism types
of symmetric BT1 group schemes of rank p2g and that 2g−f−1 of these have p-rank f .
There is a stratification of Ag by Ekedahl-Oort type. The dimension of the stratum
of Ag whose points have Ekedahl-Oort type [ν1, . . . , νg] is

∑g
i=1 νi [19, Thm. 1.2].

2.4. The boundary of Mg and Hg

The boundaryMg−Mg consists of components ∆0 and ∆i for integers 1 ≤ i ≤ g/2.
Each boundary component has codimension 1 in Mg. The boundary components
∆0 and ∆1 will be useful in the next section.

The generic point of ∆0 corresponds to the isomorphism class of an irreducible
curve X ′

0 with one ordinary double point P ′. The normalization of X ′
0 is a smooth
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curve X0 of genus g− 1, and the inverse image of P ′ consists of two distinct points
P1, P2 of X0. Recall that JX′

0
is a semi-abelian variety which is an extension of JX0

by a torus, [2, pg. 246]. This torus contains a copy of µp. It follows that fX′
0

= fX0+1.
Also aX′

0
= aX0 .

The generic point of ∆1 corresponds to the isomorphism class of a reducible
curve X which is a chain of two smooth irreducible curves Y1 and Y2, of genera 1
and g− 1, intersecting in one ordinary double point P . Recall that JX ' JY1 ×JY2 ,
[2, pg. 246]. Thus fX = fY1 + fY2 and aX = aY1 + aY2 .

A complete substack of M̃g = Mg −∆0 has codimension at least g [5, pg 80]
[14]. In other words, if L is a closed substack of codimension less than g in Mg,
then L intersects ∆0.

If p ≥ 3 and 1 ≤ i ≤ g/2, then ∆i∩Hg is a component of the boundary Hg−Hg,
but ∆0 ∩Hg is reducible, see [4, Sec. 4(b)].

3. Conjecture and Inductive Result

3.1. Description of some group schemes

The group scheme Ir found in the next lemma plays an important role in this paper.

Lemma 3.1. For r ∈ N+, there is a unique symmetric BT1 group scheme with
rank p2r, p-rank 0, and a-number 1. It has Ekedahl-Oort type [0, 1, . . . , r − 1]. We
denote this group scheme by Ir.

Proof. This is proved in [20, Lemma 3.1]. For the convenience of the reader, here
are a few details of the proof. Let Ir be a symmetric BT1 group scheme with rank
p2r, p-rank 0, and a-number 1. It is sufficient to show that the Ekedahl-Oort type
of Ir is uniquely determined.

The p-rank 0 condition implies that V acts nilpotently on Ir, so ν1 = 0. The
a-number 1 condition implies that r − 1 is the dimension of V 2Ir, so νr = r − 1.
The numerical conditions νi+1 ≤ νi + 1 from [19, Lemma 2.4] imply that there is a
unique possibility for the Ekedahl-Oort type of Ir, namely [0, 1, . . . , r − 1].

Example 3.2. The group scheme I1 occurs as the p-torsion of a supersingular
elliptic curve. By [11, Ex. A.3.14], I1 fits into a non-split exact sequence of the form
0 → αp → I1 → αp → 0. The image of the embedded αp is unique and is the kernel
of both Frobenius and Verschiebung.

Example 3.3. The group scheme I2 occurs as the p-torsion of a supersingular non-
superspecial abelian surface. By [11, Ex. A.3.15], there is a filtration H1 ⊂ H2 ⊂ I2

where H1
∼= αp, H2/H1

∼= αp ⊕ αp, and I2/H2
∼= αp. There is an exact sequence

0 → H1 → G1 ⊕ G2 → H2 → 0 where G1 (resp. G2) is the kernel of Frobenius
(resp. Verschiebung). Also G1 ⊂ H2 and G2 ⊂ H2. The p-rank of I2 is zero since
Hom(µp, I2) = 0. The a-number of I2 is one since ker(V 2) = G1 ⊕G2 has rank p3.
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Remark 3.4. One can also describe group schemes using the theory of covariant
Dieudonné modules. Briefly, let σ denote the Frobenius automorphism of k. Consider
the non-commutative ring E = k[F, V ] with the relations FV = V F = p and Fλ =
λσF and λV = V λσ for all λ ∈ k. There is an equivalence of categories between
BT1 group schemes G and finite left E-modules D(G) The covariant Dieudonné
module for the group scheme Ir is E/E(F r − V r) [20, Lemma 3.1].

Here are a few facts about the Ekedahl-Oort strata of A3. First, there are four
possibilities for the isomorphism class of a symmetric BT1 group scheme G′ with
rank p6 and p-rank 0: (i) G′ = I3; (ii) G′ = I3,2; (iii) G′ = I2 ⊕ I1; and (iv)
G′ = (I1)3. Here I3,2 is the symmetric BT1 group scheme of rank p6, p-rank 0, and
a-number 2 which is not I2 ⊕ I1. One can show that I3,2 has Ekedahl-Oort type
[0, 1, 1] and covariant Dieudonné module E/E(F −V 2)⊕E/E(V −F 2) [20, Lemma
3.4]. The group scheme I3 is the only one of the four with a-number 1.

Secondly, here is a useful lemma about the a-number 2 locus of A3.

Lemma 3.5. In A3, every component of T ′
3,2 has dimension 3 and every component

of V ′
3,0 ∩ T ′

3,2 has dimension 2.

Proof. Consider the Ekedahl-Oort types occuring in dimension three with a-
number at least 2, namely ν1 = [1, 1, 1], ν2 = [0, 1, 1], ν3 = [0, 0, 1], and ν4 = [0, 0, 0].
For each of these types ν, let Lν be the locus of A3 of abelian threefolds with
Ekedahl-Oort type ν. By [19, Thm. 1.2], each of these loci Lν is non-empty and
quasi-affine; all components of Lν have the same dimension, which is respectively
3, 2, 1, and 0. The only types that occur under the additional restriction of having
p-rank 0 are ν2, ν3, ν4.

By [19, Prop. 11.1], if 1 ≤ i ≤ 3, then Lνi+1 is in the closure of Lνi in A3. Thus
the generic point of every component of T ′

3,2 is contained in Lν1 and the generic
point of every component of V ′

3,0 ∩ T ′
3,2 is contained in Lν2 . Thus every component

of T ′
3,2 has dimension 3 and every component of V ′

3,0 ∩ T ′
3,2 has dimension 2.

3.2. Conjecture

Conjecture 3.6. Let 0 ≤ f < g. Let X be the generic point of any component
of Vg,f ∩ Mg (resp. Vg,f ∩ Hg for p ≥ 3). Then JX [p] ∼= (Z/p ⊕ µp)f ⊕ Ig−f .
Equivalently, a generic smooth (resp. and, for p ≥ 3, hyperelliptic) curve of genus
g and p-rank f has a-number 1.

The motivation for Conjecture 3.6 is that a generic point of V ′
g,f has a-number

1 by [19]. If Conjecture 3.6 is true for Vg,f ∩ Hg then it is true for at least one
component of Vg,f ∩Mg. The hypothesis p ≥ 3 is necessary for the hyperelliptic
case, see Section 5.3.
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3.3. Inductive result

Proposition 3.7. Suppose g ≥ 3 and 1 ≤ f < g. Suppose g′ is an integer such
that g − f ≤ g′ < g. Let f ′ = g′ − (g − f).

(1) If Conjecture 3.6 is true for Vg′,f ′ ∩Mg′ then it is true for Vg,f ∩Mg.
(2) If p ≥ 3 and if Conjecture 3.6 is true for Vg′,f ′∩Hg′ then it is true for Vg,f∩Hg.

Proof. The proof is by induction on g with the quantity r = g−f fixed. Note that
g − f = g′ − f ′. Without loss of generality, one can take the inductive hypothesis
to be that Conjecture 3.6 is true when g′ = g − 1 and f ′ = f − 1.

(1) Let X be the generic point of a component Γ of Vg,f ∩Mg. Now, dim(Γ) =
2g−3+f and dim(Vg,f−1∩Mg) = 2g−4+f by [8, Thm 2.3]. Thus fX = f .

If aX ≥ 2, then Γ ⊂ Tg,2. Let Γ be the closure of Γ in Mg. Then
codim(Γ,Mg) < g since f ≥ 1. By [5, pg 80] and [14], Γ intersects ∆0.
Since ∆0 has codimension 1 in Mg, by Section 2.1,

dim(Γ) ≤ dim(Vg,f ∩ Tg,2 ∩∆0) + 1.

A generic point of Vg,f∩Tg,2∩∆0 corresponds to a smooth curve X0 of genus
g−1 with 2 points identified in an ordinary double point. Also fX0 = f −1
and aX0 ≥ 2. Thus,

dim(Vg,f ∩ Tg,2 ∩∆0) = dim(Vg−1,f−1 ∩ Tg−1,2 ∩Mg−1) + 2.

By the inductive hypothesis, the generic point of each component of
Vg−1,f−1 ∩Mg−1 has a-number 1. It follows that

dim(Vg−1,f−1 ∩ Tg−1,2 ∩Mg−1) < 2(g − 1)− 3 + (f − 1).

Then dim(Γ) < 2g + f − 3 which is a contradiction. Thus aX = 1 and
JX [p] ∼= (Z/p⊕ µp)f ⊕ Ig−f by Lemma 3.1.

(2) Let X be the generic point of a component Γ of Vg,f ∩ Hg. Then dim(Γ) =
g − 1 + f and fX = f by [10, Thm. 1].

Then Γ intersects ∆1 ∩Hg as follows. Let Ṽg,f denote the moduli space
of stable hyperelliptic curves of genus g and p-rank f , along with the data of
a labeling of the ramification points. By [4, Sec. 4(b)], see also [1, Section
2.4.1], there is a clutching morphism κ1,g−1 : Ṽ1,1 × Ṽg−1,f−1 → Ṽg,f . If
Y1 is an ordinary elliptic curve and Y2 is a hyperelliptic curve of genus
g − 1 and p-rank f − 1, whose ramification points are both labeled, then
κ1,g−1(Y1, Y2) is a labeled hyperelliptic curve Y which is a chain of Y1 and
Y2, and where the last ramification point of Y1 and the first ramification
point of Y2 are identified. By [1, Corollary 3.13], Γ contains κ1,g−1(η1, η2)
for some generic point η1 of Ṽ1,1 and some generic point η2 of Ṽg−1,f−1.
The elliptic curve Y1 corresponding to η1 is ordinary and aY1 = 0. By the
inductive hypothesis, the hyperelliptic curve Y2 corresponding to η2 has
a-number 1. Thus aY = 1, which implies aX = 1 by semi-continuity.
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4. Results for the Case of Large p-Rank

This section includes results about the group schemes which occur as the p-torsion
of Jacobians of smooth curves of genus g and p-rank f when f is large relative to
g. For p-rank f = g, the only group scheme possible is (Z/p⊕ µp)g and this occurs
for the generic point of Mg and Hg. For p-rank f = g − 1, the only group scheme
possible is (Z/p⊕µp)g−1⊕ I1 and this occurs with codimension one in Mg and Hg.

If r = g − f ≥ 1, there are 2r−1 possibilities for the group scheme JX [p] of a
smooth curve with p-rank f . By the inductive process in Section 3, the existence
of curves of genus r and p-rank 0 can yield results about curves of genus g with
p-rank g − r. The situation when r ≤ 3 is well understood due to the fact that
dim(Mr) = dim(Ar) in these cases. We amalgamate these ideas to deduce results
when f = g − 2 and f = g − 3.

As f decreases relative to g, the situation becomes more difficult to study. This is
true first because there are an increased number of possibilities for JX [p] and second
because of the increase in codimension of the relevant loci in Mg, see Section 5.1.

4.1. The conjecture is true for Mg and Hg when f = g − 2

Suppose g ≥ 2 and f = g−2. Then JX [p] is isomorphic to either (Z/p⊕µp)g−2⊕I2

or (Z/p⊕µp)g−2⊕(I1)2, which have a-number 1 and 2 respectively. The next results
imply that the locus of curves with p-rank g− 2 and a-number 1 is non-empty with
codimension 2 in Mg and in Hg.

Theorem 4.1. The group scheme (Z/p⊕µp)g−2⊕I2 occurs as the p-torsion of the
generic point of every component of Vg,g−2∩Mg. So, there is a family of dimension
3g − 5 consisting of smooth curves of genus g with p-rank g − 2 and a-number 1.

Proof. Every component of V2,0 ∩ M2 has dimension 1. There are only finitely
many points of A2 with a-number 2 [12, Thm. 2.10]. Thus the generic point of each
component of V2,0 ∩M2 has a-number 1, and group scheme I2 by Lemma 3.1. This
means that Conjecture 3.6 is true for V2,0 ∩M2. The result for Vg,g−2 ∩Mg then
follows from Proposition 3.7(1).

Theorem 4.2. Let p ≥ 3. The group scheme (Z/p ⊕ µp)g−2 ⊕ I2 occurs as the
p-torsion of the generic point of every component of Vg,g−2 ∩ Hg. So, there is a
family of dimension 2g−3 consisting of smooth hyperelliptic curves of genus g with
p-rank g − 2 and a-number 1.

Proof. The proof is the same as for Theorem 4.1 and uses Proposition 3.7(2).

4.2. The conjecture is true for Mg when f = g − 3

Suppose g ≥ 3 and f = g−3. The next result is that the locus of curves with p-rank
g − 3 and a-number 1 is non-empty with codimension 3 in Mg.
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Theorem 4.3. The group scheme (Z/p⊕µp)g−3⊕I3 occurs as the p-torsion of the
generic point of every component of Vg,g−3∩Mg. So, there is a family of dimension
3g − 6 consisting of smooth curves of genus g with p-rank g − 3 and a-number 1.

Proof. Every component of V3,0 ∩Mg has dimension 3 and its image in A3 under
the Torelli map also has dimension 3. On the other hand, dim(V ′

3,0 ∩ T ′
3,2) = 2 by

Lemma 3.5. Thus the generic point of each component of V3,0 ∩Mg has a-number
1, and group scheme I3 by Lemma 3.1. Thus Conjecture 3.6 is true for V3,0 ∩M3.
The result follows from Proposition 3.7(1).

Remark 4.4. In [16, Cor. 3.2], for any finite field k of characteristic 2, the authors
calculate the number of k-isomorphism classes of curves of genus 3 with a given
Newton polygon. From the data one sees that V3,0 ∩M3 is irreducible when p = 2.

4.3. The case of p-rank g − 2 and a-number 2

Suppose g ≥ 3 and f = g − 2. In this section, we consider the group scheme
(Z/p ⊕ µp)g−2 ⊕ (I1)2. The next result shows that the locus of curves with this
group scheme has codimension 3 in Mg for g ≥ 3.

Corollary 4.5. Let g ≥ 3.

(1) The group scheme (Z/p⊕µp)g−2⊕ (I1)2 occurs as the p-torsion of the generic
point of every component of Tg,2 ∩Mg.

(2) If p ≥ 5, there is a family of dimension 3g − 6 consisting of smooth curves of
genus g with p-rank g − 2 and a-number 2.

Proof.

(1) Let Γ be a component of Tg,2. The generic point X of Γ has 2 ≤ aX ≤ g− fX .
Since (Z/p⊕ µp)g−2 ⊕ (I1)2 is the unique symmetric BT1 group scheme of
rank p2g, p-rank g− 2, and a-number 2, it suffices to show that fX = g− 2.

The result is true when g = 3. To see this, recall from Lemma 3.5 that
every component of T ′

3,2 has dimension 3 with generic point having p-rank
1 and a-number 2. The same is true for Γ since its image under the Torelli
morphism is a component of T ′

g,2.
The proof is now by induction on g. Let g ≥ 4. Now codim(T ′

g,2,Ag) = 3.
Consider the intersection of T ′

g,2 with the Torelli locus τ in Ag. By Section
2.1, codim(T ′

g,2∩τ,Ag) ≤ codim(τ,Ag)+3 which yields codim(Γ,Mg) ≤ 3.
Then codim(Γ,Mg) = 3 by Theorem 4.1.

Since 3 < g, [8, Lemma 2.6] implies Γ intersects ∆0. If JX [p] 6∼= (Z/p⊕
µp)g−2 ⊕ (I1)2 then fX ≤ g − 3 and X ∈ Vg,g−3 ∩ Tg,2. One checks that:

dim(Vg,g−3 ∩ Γ) ≤ dim(Vg,g−3 ∩ Tg,2 ∩∆0) + 1 and

dim(Vg,g−3 ∩ Tg,2 ∩∆0) = dim(Vg−1,g−4 ∩ Tg−1,2 ∩Mg−1) + 2.



August 28, 2009 10:8 WSPC/INSTRUCTION FILE ijntLargeprank809

10

By Theorem 4.3, the generic point of every component of Vg−1,g−4 ∩Mg−1

has a-number 1. Thus

dim(Vg−1,g−4 ∩ Tg−1,2 ∩Mg−1) < dim(Vg−1,g−4 ∩Mg−1) = 3g − 9.

Then dim(Vg,g−3 ∩ Γ) < 3g − 6 which is too small to be generic in Γ. Thus
X must have group scheme (Z/p⊕ µp)g−2 ⊕ (I1)2.

(2) If p ≥ 5, there exists a smooth curve X of genus g with p-rank g − 2 and
a-number 2 by [10, Cor. 4]. The result follows since there is at least one
component of Tg,2 which is not contained in the boundary of Mg.

Remark 4.6. There is an explicit formula for the number of smooth curves X of
genus 2 with fX = 0 and aX = 2; these curves exist for all p ≥ 5 [12, Section 3.3].

Remark 4.7. For each i such that 1 ≤ i ≤ g/2, there is a component of Tg,2,
having dimension 3g−6, which is contained in the boundary component ∆i of Mg.

4.4. The case of p-rank g − 3 and a-number at least 2

Suppose g ≥ 3 and f = g − 3. Recall that if X ∈ Vg,g−3, then JX [p] ∼= (Z/p ⊕
µp)g−3⊕G′ where there are four possibilities for G′: (i) G′ = I3; (ii) G′ = I3,2; (iii)
G′ = I2 ⊕ I1; and (iv) G′ = (I1)3. By Section 4.2, case (i) occurs for the generic
point of every component of Vg,g−3 ∩Mg. This section includes partial results on
the other three cases.

Lemma 4.8.

(ii) For p ≥ 2, there exists Y ∈M3 with JY [p] = I3,2;
(iii) For p ≥ 3, there exists Y ∈M3 with JY [p] = I2 ⊕ I1;
(iv) For p ≥ 3, there exists Y ∈M3 with JY [p] = (I1)3.

Proof.

(ii) The locus of points of A3 with p-torsion I3,2 has dimension two. Let A be an
abelian threefold with A[p] = I3,2. By the Torelli theorem, A = JY for some
curve Y of genus 3 with p-rank 0. Now Y 6∈ ∆0 since JY is an abelian variety
with no toric part. Since I3,2 is indecomposable as a symmetric BT1 group
scheme [20, Lemma 3.4], JY cannot be the product of abelian varieties of
smaller dimension. Thus Y 6∈ ∆1 by [2, pg. 246]. Thus Y is smooth and so
Y ∈M3.

(iii) By part (iv), there exists Y ′ ∈ M3 with JY ′ [p] = (I1)3. The Torelli locus is
open in A3 and contains JY ′ by definition. By [19, Prop. 7.3], there exists
an irreducible dimension one sublocus L ⊂ A3 such that JY ′ ∈ L and
such that the generic point η of L has group scheme I2 ⊕ I1. It follows
that η is contained in the Torelli locus. Thus there exists Y ∈ M3 with
JY [p] = I2 ⊕ I1.
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(iv) This is proved in [18, Theorem 5.12(1)].

Proposition 4.9. Let p ≥ 3. Suppose g is odd, g 6≡ 1 mod p, and g > 6(p − 1).
Then there exists a curve X ∈ Vg,g−3 ∩Mg so that JX [p] ∼= (Z/p⊕ µp)g−3 ⊕G′ in
each of the three cases: (ii) G′ = I3,2; (iii) G′ = I2 ⊕ I1; and (iv) G′ = (I1)3.

Proof. By Lemma 4.8, there exists a curve Y ∈ M3 with JY [p] = G′ if (ii) G′ =
I3,2; (iii) G′ = I2 ⊕ I1; or (iv) G′ = (I1)3. In each case, fY = 0.

Let ` = (g − 1)/2. By hypothesis, p - ` and ` ≥ 3(p − 1). By [21, Thm. 4.3.1],
under these two conditions on `, there exists an étale cyclic Z/`-cover X → Y so
that fX − fY = gX − gY . By the Riemann-Hurwitz formula, gX = 1 + 2` = g. Thus
fX = gX − 3. Finally, X dominates Y so JY [p] ⊂ JX [p], completing the proof.

Proposition 4.10. Let p = 2. Suppose g ≡ 1 mod 4 and g ≥ 7. Then there exists
a curve X ∈ Vg,g−3 ∩Mg so that JX [p] ∼= (Z/p⊕ µp)g−3 ⊕ I3,2.

Proof. The proof is almost identical to that of Proposition 4.9.

5. Questions and related results

5.1. Limitations of the boundary approach

The inductive process of Section 3.3 allows one to deduce results about Vg,f ∩Mg

from results about Vr,0 ∩Mr where r = g − f . This produced results when r ≤ 3.
Unfortunately, not much is known about Vr,0∩Mr if r ≥ 4. One might ask whether
the boundary of Vr,0 ∩ Mr could be used to deduce more information. Here are
some reasons why this is not straightforward.

First, Vr,0 does not intersect ∆0. This is because the Jacobian of every curve in
∆0 has a toric part and so has p-rank at least 1.

Second, the intersection of Vr,0 with the boundary component ∆i is not useful
for 1 ≤ i ≤ g/2. The generic point of ∆i corresponds to the isomorphism class of
a singular curve X with two irreducible components Xi and Xg−i, of genus i and
g − i, intersecting in an ordinary double point. Then JX [p] ∼= JXi [p]⊕ JXg−i [p] [2,
pg. 246]. If X ∈ Vr,0 ∩∆i, then fX1 = fx2 = 0 and aX = aX1 + aX2 ≥ 2. In other
words, there are no singular curves with p-rank 0 and a-number 1, which makes it
difficult to determine whether a component of Vr,0 has a-number 1.

One might also ask whether boundary methods could be used to deduce results
about strata ofMg other than the p-rank strata. For example, Corollary 4.5 is about
the strata Tg,2 ∩Mg. This becomes progressively more difficult for group schemes
of rank p2g and p-rank f as g − f increases. The first reason is that the number of
possibilities for these group schemes increases exponentially in the quantity g − f .

The true difficulty, however, is geometric; for some of these group schemes G,
the locus LG of curves X with JX [p] ∼= G is expected to have large codimension in
Mg. However, to guarantee that the closure of this locus intersects the boundary
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component ∆0 of Mg, one requires that the codimension be less than g. The base
cases of the induction process thus involve curves of genus even larger than r = g−f .

For example, consider the group scheme G = (Z/p⊕µp)g−3⊕(I1)3. The locus LG
is expected to have codimension 6 in Mg. Thus, to produce curves with f = g − 3
having group scheme (I1)3, one would need to start with results for curves of genus
6. This was avoided in Section 4.4 by using [21].

5.2. Hyperelliptic curves of genus three

In this section, let p ≥ 3 and consider the moduli space V3,0 ∩ H3 of hyperelliptic
curves of genus g and p-rank 0. By [18, Thm. 5.12(4)], there exists Y ∈ H3 which
is supersingular with aY = 1 (and fY = 0). Then JY [p] ∼= I3 by Lemma 3.1. This
implies that the generic point of at least one component of V3,0 ∩ Hg has group
scheme I3. However, the inductive argument in this paper requires information
about every component.

Here are some open questions whose solution would yield further progress.

Question 5.1. Is V3,0 ∩H3 irreducible?

If p = 3, then V3,0 ∩ H3 is irreducible by [7, Prop. 3.5]. Using this, the authors
prove Conjecture 3.6 for Vg,g−3 ∩Hg when g ≥ 3 and p = 3. There do not seem to
be any results about the number of components of V3,0 ∩H3 when p ≥ 5.

Question 5.2. How does T3,2 ∩H3 intersect the supersingular locus of H3?

This relates to Conjecture 3.6 because every component of V3,0∩H3 has Newton
polygon G1,2 + G2,1 (three slopes of 1/3 and three slopes of 2/3) [18, Thm. 1.12].
However, this Newton polygon cannot distinguish between the group schemes I3

and I3,2, which have a-numbers 1 and 2 respectively. Here is some further evidence
of the difficulty in comparing Newton polygons with p-torsion group schemes: if
JX [p] ∼= I3, then the Newton polygon of X is typically G1,2 +G2,1 but by [18, Thm.
5.12 (2,4)] it can also be 3G1,1 (supersingular).

Question 5.3. If p ≥ 5, is the p-rank of the generic point of each two-dimensional
component of H3 ∩ T3,2 equal to 1?

The condition p ≥ 5 is included here since H3∩T3,2 is empty when p = 3. When
p = 5, the authors of [7] show that H3 ∩ T3,2 has a unique irreducible component
of dimension 2, and that the generic point of this component has p-rank 1. Thus,
no component of V3,0 ∩H3 can be contained in Tg,2. As a result, the authors prove
Conjecture 3.6 for Vg,g−3 ∩Hg when g ≥ 3 and p = 5.

5.3. Hyperelliptic curves when p = 2

The next results show that the hypothesis p ≥ 3 in necessary for the hyperelliptic
case of Conjecture 3.6. A version of Lemma 5.4 is stated without proof in [24, 3.2].
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Lemma 5.4. Let p = 2. Let X ∈ Vg,0 ∩Hg. Then aX = b(g + 1)/2c.

Proof. If X ∈ Vg,0 ∩Hg, then X has an Artin-Schreier equation y2 − y = f(x) for
some f(x) ∈ k[x] with deg(f) = 2g + 1. A basis for H0(Ω1) is {xbdx | 0 ≤ b < g}.
The action of V on JX [p] is the same as the action of the Cartier operator C on
H0(Ω1). By definition (see, for example, [27, Prop. 2.1]) the Cartier operator acts by
C(xbdx) = 0 if b is even and C(xbdx) = x(b−1)/2dx if b is odd. So νg = dim(CH0

Ω1
) =

#{b ≡ 1 mod 2 | 0 ≤ b < g} = d(g − 1)/2e. Then aX = g − νg = b(g + 1)/2c.

The next example shows that Conjecture 3.6 is false for H3 ∩ V3,1 when p = 2.

Example 5.5. Let p = 2, g = 3, and f = 1. Then H3∩V3,1 has two components Γ1

and Γ2, each of dimension 3. Each curve X in Γ1 has an Artin-Schreier equation of
the form y2− y = x5 + c1x

3 + c2x+ c3/x. A basis for H0(Ω1, X) is {dx/x, dx, xdx}.
The Cartier operator acts by C(dx/x) = dx/x, C(dx) = 0 and C(xdx) = dx. Thus
aX = 1 if X ∈ Γ1. Each curve X in Γ2 has an Artin-Schreier equation of the form
y2 − y = x3 + c1x + c2/x + c3/x3. A basis for H0(Ω1, X) is {dx/x2, dx/x, dx}. The
Cartier operator acts by C(dx/x2) = 0, C(dx/x) = dx/x and C(dx) = 0. Thus
aX = 2 if X ∈ Γ2. So Conjecture 3.6 is false for the component Γ2.

Remark 5.6. In [17], for k = F2a , the authors calculate the number of k-
isomorphism classes of hyperelliptic curves of genus 3 with a given Newton polygon.
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