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1. Introduction

Consider the moduli space A of principally polarized abelian varieties of dimension
g which are defined over an algebraically closed field k of characteristic p. There are
several important stratifications of A, which characterize the p-torsion of the corre-
sponding abelian varieties. Very little is known about how these strata intersect the
Torelli locus of Jacobians of curves. It is an open question whether the Torelli locus
intersects these strata and, if so, the extent to which the intersection is transversal.
In particular, one can ask which group schemes occur as the p-torsion Jx[p| of the
Jacobian Jx of a curve X of genus g.

The p-rank fx is the one invariant of Jx [p] for which this question is moderately
well-understood. Recall that fx = dimp, Hom(p,, Jx[p]) where the group scheme
p is the kernel of Frobenius on G,,. One can often compute the p-rank of a fixed
curve X for a fixed prime p, e.g., [27] when X is hyperelliptic. It was recently proven
that there exist smooth curves of genus g with every possible p-rank [8, Thm. 2.3].
Likewise, there exist smooth hyperelliptic curves of genus g with every possible
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p-rank, [10, Thm. 1] for p > 3 and [28, Thm. 3] for p = 2.

It is now natural to try to classify the group schemes which occur as the p-torsion
for a smooth k-curve of genus g and p-rank f. These are of the form (Z/p®pu,)’ ®G
where there are 297/~1 possibilities for G if f < g — 1 [13,19]. One can sometimes
distinguish these by the a-number ax = dim;Hom(cy,, Jx [p]) where a, is the kernel
of Frobenius on G,. Among these, there is a unique choice of G with a-number 1,
which we denote I,_y. Precisely, I,_; is the unique symmetric BT; group scheme
of rank p?@=/) prank 0, and a-number 1. For example, I; is the p-torsion of
a supersingular elliptic curve. The group scheme I occurs as the p-torsion of a
supersingular non-superspecial abelian surface.

In this paper, we conjecture that the curve corresponding to the generic point
of any component of the locus in M, of smooth curves of genus g with p-rank f
has group scheme Jx[p| = (Z/p @ pp)? @ I,—; and thus a-number 1 for f < g — 1.
It is easy to see that this conjecture is true when f = g — 1. When f =g — 2 and
f = g — 3, we prove the conjecture along with some other results. The results are
stated more precisely in the paper in terms of the dimension of the intersection of
loci of M, and H, but they imply the following. Suppose g > 3.

Theorem 4.1: There is a family (with dimension 3g — 5) of smooth curves of
genus g with p-rank g — 2 and a-number 1.

Theorem 4.2: If p > 3, there is a family (with dimension 2g — 3) of smooth
hyperelliptic curves of genus ¢ with p-rank g — 2 and a-number 1.

Theorem 4.3: There is a family (with dimension 3g — 6) of smooth curves of
genus g with p-rank g — 3 and a-number 1.

Corollary 4.5: If p > 5, there is a family (with dimension 3g — 6) of smooth
curves of genus g with p-rank g — 2 and a-number two.

Proposition 4.9: For p > 3 and g odd, g Z 1 mod p, and g > 6(p — 1) all four
possibilities of group scheme occur as Jx [p] for a smooth curve X of genus
g and p-rank g — 3.

The proofs are by induction on g with the quantity r = g— f fixed. The induction
result works for any value of r. It involves the computation of the dimension of
certain components of the boundary of M. For the initial case of the induction
process, one needs results about the locus of curves of genus r with p-rank 0. At
the moment such results are known only when r < 3. For example, we could prove
the conjecture when f = g — 4 with more information about smooth curves with
genus r = 4 and p-rank 0.

Here is an outline of the paper. Section 2 contains background. The inductive
result is in Section 3. The results for large p-rank are in Section 4. In Section 5, we
explain the limitations of the inductive approach used in this paper and show that
some of the hypotheses of the results are necessary.
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One can interpret the results of this paper as evidence that the Torelli locus
is in general position relative to the stratification of A4, by p-torsion type. This
positioning should not be taken for granted, e.g., [25]. The theory of tautological
classes may play a fundamental role in investigating these questions further, [24].
Finally, we note that not all group schemes occur for small p, e.g., [22,23], or for
curves with nontrivial automorphism group, e.g., [3,6].

2. Background
2.1. Moduli spaces

Let k be an algebraically closed field of characteristic p > 0. Let M, (resp. Hy)
denote the moduli stack of smooth projective irreducible (resp. and hyperelliptic)
k-curves of genus g. Let A, denote the moduli stack of principally polarized abelian
varieties of dimension g over k. We assume g > 2 to avoid trivial cases. Recall that
M, has dimension 3g — 3 and H, has dimension 2g — 1.

These moduli stacks have natural compactifications Mg (resp. ﬂg) whose points
parametrize stable (resp. and hyperelliptic) curves of genus g. Consider also the
toroidal compactification 719 of Ay [9]. Then ﬂg, ﬁg, and Zg are smooth proper
algebraic stacks. By [26], a smooth stack has the same intersection-theoretic prop-
erties as a smooth scheme. In particular, since k is algebraically closed, we have
the following intersection property: if two closed substacks of ﬂg (or ﬂg, or jg)
intersect then the codimension of their intersection is at most the sum of their
codimensions.

Without further comment, a (generic) point means a (generic) geometric point.
We identify a curve with the point of M, corresponding to its isomorphism class
(and likewise for H, and Ay).

2.2. The p-rank and a-number

Let X be a k-curve of genus g. The Jacobian Jx of X corresponds to a k-point
of A,. The p-torsion Jx|[p] is a group scheme of rank p?9. Recall that the group
scheme i, is the kernel of Frobenius on G, and the group scheme «,, is the kernel
of Frobenius on G,.

Two invariants of the p-torsion of an abelian variety are the p-rank and a-
number. Let fx = dimp,Hom(pu,, Jx[p]) be the p-rank of X. Then 0 < fx < g.
Let ax = dimpHom(ay,, Jx[p]) be the a-number of X. Then 0 < ax < g — fx.
The p-rank can only decrease under specialization, while the a-number can only
increase.

Given g and f such that 0 < f < g, let V, ; denote the closed substack of M,
consisting of curves X of genus g with fx < f. The locus Vs is pure of dimension
2g — 3+ f by [8, Thm. 2.3]. Also V, s N'H, is pure of dimension g — 1+ f by [10,
Thm. 1] when p > 3 and by [28, Thm. 3] when p = 2. In other words, V, s has
codimension g — f in My and in H,.
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In particular, the generic point X of M, or of H, has fx = g, and thus ax =0
and Jx[p] = (Z/p®u,)?; a curve with these attributes is ordinary. The non-ordinary
locus Vj 4—1 has codimension one in M, and in H,. The generic point X of each
component of Vy 1 and V.1 N'Hy has fx = g — 1, and thus ax = 1 and
Jx[p] = (Z/p & pp)?~ @ I1; a curve with these attributes is almost ordinary. Here
I; is the p-torsion of a supersingular elliptic curve (see Example 3.2).

Let Ty, denote the closed substack of M, consisting of curves X of genus g with
ax > a. The results above show that T}, (o has codimension 0 in M, (resp. H,) and
T, 1 has codimension 1 in M, (resp. Hy). There are not many other results about
the intersection of Ty , with M, or H,. This paper includes a result for a = 2.

Finally, let Vg” 7 (resp. Tj 5) denote the closed substack of A, consisting of abelian
varieties with p-rank at most f (resp. a-number at least two).

2.3. Group schemes

The results in this paper can be expressed in terms of the p-rank and a-number, or
in terms of the isomorphism class of the p-torsion, which is a group scheme. These
group schemes were classified by Kraft (unpublished) [13] and independently by
Oort [19]. Together with Ekedahl, Oort used this classification to stratify .A,. Here
is a brief explanation of this topic. A more complete historical and mathematical
description can be found in [15,19,20].

The group schemes G which occur as the p-torsion of a principally polarized
abelian variety defined over k are symmetric BT group schemes (short for truncated
Barsotti-Tate group of level 1). A BT} is a finite commutative k-group scheme anni-
hilated by p having actions by semi-linear operators Frobenius F' and Verschiebung
V that satisfy certain properties, see [19, 2.1].

The isomorphism type of a symmetric BT; group scheme G can be encapsulated
into combinatorial data. If G has rank p29, then there is a final filtration Ny C No C
... C Ny4 of the covariant Dieudonné module of G which is stable under V' and
F~! with rank(N;) = p’ [19, 2.2]. The Ekedahl-Oort type of G is [v1,...,v,] where
p¥i = rank(V(N;)). There are some conditions on the filtration: e.g., v;41 < wv; +1
[19, Lemma 2.4]. The p-rank is max{¢ | v; = ¢} and the a-number is g — v,.

Using this combinatorial data, one can see that there are 29 isomorphism types
of symmetric BT group schemes of rank p?¢ and that 29~/ =1 of these have p-rank f.
There is a stratification of A, by Ekedahl-Oort type. The dimension of the stratum
of A, whose points have Ekedahl-Oort type [v1,...,v4] is > 7_; v; [19, Thm. 1.2].

2.4. The boundary of My and H,

The boundary M, — M, consists of components Ay and A; for integers 1 < i < g/2.
Each boundary component has codimension 1 in Mg. The boundary components
A and A; will be useful in the next section.

The generic point of Ag corresponds to the isomorphism class of an irreducible
curve X/, with one ordinary double point P’. The normalization of X is a smooth
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curve Xy of genus g — 1, and the inverse image of P’ consists of two distinct points
Py, Py of Xg. Recall that Jx; is a semi-abelian variety which is an extension of Jx,
by a torus, [2, pg. 246]. This torus contains a copy of p,,. It follows that Ix; = fx,+1
Also ax; = ax,.

The generic point of A; corresponds to the isomorphism class of a reducible
curve X which is a chain of two smooth irreducible curves Y; and Y5, of genera 1
and g — 1, intersecting in one ordinary double point P. Recall that Jx ~ Jy, x Jy,,
[2, pg. 246]. Thus fx = fyl —|—~fy2 agi ax = ay, + ay,.

A complete substack of M, = M, — A¢ has codimension at least g [5, pg 80]
[14]. In other words, if L is a closed substack of codimension less than g in M,
then L intersects Ag.

Ifp>3and1<i<g/2 then A;NH, is a component of the boundary H, —H,,
but Ag NH,, is reducible, see [4, Sec. 4(b)].

3. Conjecture and Inductive Result
3.1. Description of some group schemes

The group scheme I,. found in the next lemma plays an important role in this paper.

Lemma 3.1. For r € N7, there is a unique symmetric BT group scheme with
rank p*", p-rank 0, and a-number 1. It has Ekedahl-Oort type [0,1,...,7 —1]. We
denote this group scheme by I,..

Proof. This is proved in [20, Lemma 3.1]. For the convenience of the reader, here
are a few details of the proof. Let I,. be a symmetric BT; group scheme with rank
p?", p-rank 0, and a-number 1. It is sufficient to show that the Ekedahl-Oort type
of I,. is uniquely determined.

The p-rank 0 condition implies that V' acts nilpotently on I, so v; = 0. The
a-number 1 condition implies that » — 1 is the dimension of V2I,, so v, = r — 1.
The numerical conditions v;11 < v; + 1 from [19, Lemma 2.4] imply that there is a
unique possibility for the Ekedahl-Oort type of I,., namely [0,1,...,r — 1]. |

Example 3.2. The group scheme I; occurs as the p-torsion of a supersingular
elliptic curve. By [11, Ex. A.3.14], I; fits into a non-split exact sequence of the form
0 — ap — I1 = o — 0. The image of the embedded «, is unique and is the kernel
of both Frobenius and Verschiebung.

Example 3.3. The group scheme I occurs as the p-torsion of a supersingular non-
superspecial abelian surface. By [11, Ex. A.3.15], there is a filtration H; C Hy C I
where Hy = oy, Ho/H1 = ap ® o, and Io/Hy = . There is an exact sequence
0 — H — Gy ® Gy — Hy — 0 where G; (resp. G2) is the kernel of Frobenius
(resp. Verschiebung). Also G1 C Hy and Go C Hs. The p-rank of I is zero since
Hom(pyp, I2) = 0. The a-number of I is one since ker(V?) = G; & G has rank p3.
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Remark 3.4. One can also describe group schemes using the theory of covariant
Dieudonné modules. Briefly, let o denote the Frobenius automorphism of k. Consider
the non-commutative ring E = k[F, V] with the relations FV = VF = p and FA =
A°F and AV = VA7 for all A € k. There is an equivalence of categories between
BT; group schemes G and finite left E-modules D(G) The covariant Dieudonné
module for the group scheme I,. is E/E(F" — V") [20, Lemma 3.1].

Here are a few facts about the Ekedahl-Oort strata of As. First, there are four
possibilities for the isomorphism class of a symmetric BT, group scheme G’ with
rank pb and prank 0: (i) G = I3; (i) G' = I39; (i) G = L @ I1; and (iv)
G’ = (I1)3. Here I35 is the symmetric BT; group scheme of rank p®, p-rank 0, and
a-number 2 which is not Iy & I;. One can show that I3 has Ekedahl-Oort type
[0,1,1] and covariant Dieudonné module E/E(F —V?)® E/E(V — F?) |20, Lemma
3.4]. The group scheme I3 is the only one of the four with a-number 1.

Secondly, here is a useful lemma about the a-number 2 locus of As.

Lemma 3.5. In As, every component ofTé’2 has dimension 3 and every component
of V30N T35 has dimension 2.

Proof. Consider the Ekedahl-Oort types occuring in dimension three with a-
number at least 2, namely vy = [1,1,1], v, = [0,1,1], »3 = [0,0,1], and v4 = [0, 0, 0].
For each of these types v, let L, be the locus of A3 of abelian threefolds with
Ekedahl-Oort type v. By [19, Thm. 1.2], each of these loci L, is non-empty and
quasi-affine; all components of L, have the same dimension, which is respectively
3, 2, 1, and 0. The only types that occur under the additional restriction of having
p-rank 0 are vy, V3, 4.

By [19, Prop. 11.1], if 1 <4 < 3, then L, ,
the generic point of every component of T?',)Q is contained in L,, and the generic

is in the closure of L,, in Asz. Thus

point of every component of V3 o NT} , is contained in L,,. Thus every component
of T3 , has dimension 3 and every component of V3 ;N T3 , has dimension 2. O

3.2. Conjecture

Conjecture 3.6. Let 0 < f < g. Let X be the generic point of any component
of Vo g N My (resp. Vy; N'Hy for p > 3). Then Jx[p] = (Z/p ® pp) @ I,—.
Equivalently, a generic smooth (resp. and, for p > 3, hyperelliptic) curve of genus
g and p-rank f has a-number 1.

The motivation for Conjecture 3.6 is that a generic point of Vg'7 ¢ has a-number
1 by [19]. If Conjecture 3.6 is true for V, ; N H, then it is true for at least one
component of V, y N M. The hypothesis p > 3 is necessary for the hyperelliptic
case, see Section 5.3.
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3.3. Inductive result

Proposition 3.7. Suppose g > 3 and 1 < f < g. Suppose g’ is an integer such
thatg— f < g <g. Let f'=¢g —(g—f).

(1) If Congecture 3.6 is true for Vg ;o N Mg then it is true for Vy § N M,.
(2) If p > 3 and if Conjecture 3.6 is true for Vi pNHy then it is true for Vg sNH,.

Proof. The proof is by induction on g with the quantity » = g — f fixed. Note that
g— f =g — f'. Without loss of generality, one can take the inductive hypothesis
to be that Conjecture 3.6 is true when ¢’ =g —1 and f' = f — 1.

(1) Let X be the generic point of a component I' of V, y N M,. Now, dim(T") =
29—3+ f and dim(Vy 1 NM,) = 29g—4+ f by [8, Thm 2.3]. Thus fx = f.
If ax > 2, then I' C Tyo. Let T be the closure of T in Mg. Then
codim(T, M,) < g since f > 1. By [5, pg 80] and [14], T intersects A.

Since A has codimension 1 in M,, by Section 2.1,

dlm(I‘) S dlm(ngf N ng n Ao) + ].

A generic point of V; N1, 2NAg corresponds to a smooth curve X of genus
g — 1 with 2 points identified in an ordinary double point. Also fx, = f—1
and ax, > 2. Thus,

dim(Vng n Tg72 n Ao) = dim(Vg71’f71 n Tg,LQ ﬂmg,l) + 2.

By the inductive hypothesis, the generic point of each component of
Vy—1,f—1 N My_1 has a-number 1. It follows that

dim(Vy—1 p-1 NTyo12NMy_1) <2(g—1) =3+ (f —1).

Then dim(T') < 2g + f — 3 which is a contradiction. Thus ax = 1 and
Jx[p) = (Z/p & pp)’ ® I,—f by Lemma 3.1.

(2) Let X be the generic point of a component I' of V, s N H,. Then dim(I') =
g—1+ fand fx = f by [10, Thm. 1].

Then T intersects A ﬂﬁg as follows. Let ‘N/g, t denote the moduli space
of stable hyperelliptic curves of genus g and p-rank f, along with the data of
a labeling of the ramification points. By [4, Sec. 4(b)], see also [1, Section
2.4.1], there is a clutching morphism k1 4_1 : \7171 X ‘79—1,f_1 — f/g,f. If
Y1 is an ordinary elliptic curve and Y5 is a hyperelliptic curve of genus
g — 1 and p-rank f — 1, whose ramification points are both labeled, then
k1,9—1(Y1,Y2) is a labeled hyperelliptic curve Y which is a chain of Y7 and
Y5, and where the last ramification point of Y; and the first ramification
point of Y5 are identified. By [1, Corollary 3.13], T contains 1,41 (71, 72)
for some generic point 7 of ‘7171 and some generic point 7 of ‘79_17 f1-
The elliptic curve Y; corresponding to 7; is ordinary and ay, = 0. By the
inductive hypothesis, the hyperelliptic curve Y5 corresponding to 7o has
a-number 1. Thus ay = 1, which implies ax = 1 by semi-continuity. O
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4. Results for the Case of Large p-Rank

This section includes results about the group schemes which occur as the p-torsion
of Jacobians of smooth curves of genus g and p-rank f when f is large relative to
g. For p-rank f = g, the only group scheme possible is (Z/p & )¢ and this occurs
for the generic point of M, and H,. For p-rank f = g — 1, the only group scheme
possible is (Z/p® pp)9~ " @ I; and this occurs with codimension one in M, and H,.

If r = g— f > 1, there are 2"~! possibilities for the group scheme Jx[p] of a
smooth curve with p-rank f. By the inductive process in Section 3, the existence
of curves of genus r and p-rank 0 can yield results about curves of genus g with
p-rank g — r. The situation when r < 3 is well understood due to the fact that
dim(M,) = dim(A,) in these cases. We amalgamate these ideas to deduce results
when f=g—2and f=g—3.

As f decreases relative to g, the situation becomes more difficult to study. This is
true first because there are an increased number of possibilities for Jx [p] and second
because of the increase in codimension of the relevant loci in Mg, see Section 5.1.

4.1. The conjecture is true for My and Hy; when f =g — 2

Suppose g > 2 and f = g—2. Then Jx[p] is isomorphic to either (Z/p& u,)? 2 & I
or (Z/p® )9~ 2@ (I1)?, which have a-number 1 and 2 respectively. The next results
imply that the locus of curves with p-rank g — 2 and a-number 1 is non-empty with
codimension 2 in M, and in H,.

Theorem 4.1. The group scheme (Z/p® u,)9~2 @ Iz occurs as the p-torsion of the
generic point of every component of Vy 4_oNMyg. So, there is a family of dimension
3g — 5 consisting of smooth curves of genus g with p-rank g — 2 and a-number 1.

Proof. Every component of V59 N My has dimension 1. There are only finitely
many points of Ay with a-number 2 [12, Thm. 2.10]. Thus the generic point of each
component of V5 o MMy has a-number 1, and group scheme /I by Lemma 3.1. This
means that Conjecture 3.6 is true for V5o N Mjy. The result for V; ,_o N M, then
follows from Proposition 3.7(1). O

Theorem 4.2. Let p > 3. The group scheme (Z/p & p,)972 & I occurs as the
p-torsion of the generic point of every component of Vyg—o NHy. So, there is a
family of dimension 2g — 3 consisting of smooth hyperelliptic curves of genus g with
p-rank g — 2 and a-number 1.

Proof. The proof is the same as for Theorem 4.1 and uses Proposition 3.7(2). O

4.2. The conjecture is true for My when f =g — 3

Suppose g > 3 and f = g—3. The next result is that the locus of curves with p-rank
g — 3 and a-number 1 is non-empty with codimension 3 in M,.
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Theorem 4.3. The group scheme (Z/p& u,)? =3 @ I3 occurs as the p-torsion of the
generic point of every component of Vg g_3NMyg. So, there is a family of dimension
3g — 6 consisting of smooth curves of genus g with p-rank g — 3 and a-number 1.

Proof. Every component of V3N .M, has dimension 3 and its image in .A3 under
the Torelli map also has dimension 3. On the other hand, dim(V3,NT3,) = 2 by
Lemma 3.5. Thus the generic point of each component of V3 g N M, has a-number
1, and group scheme I3 by Lemma 3.1. Thus Conjecture 3.6 is true for V59N Ms.
The result follows from Proposition 3.7(1). |

Remark 4.4. In [16, Cor. 3.2], for any finite field k of characteristic 2, the authors
calculate the number of k-isomorphism classes of curves of genus 3 with a given
Newton polygon. From the data one sees that V5 oM Ms is irreducible when p = 2.

4.3. The case of p-rank g — 2 and a-number 2

Suppose ¢ > 3 and f = g — 2. In this section, we consider the group scheme
(Z]p & pp)?=2 & (I1)?. The next result shows that the locus of curves with this
group scheme has codimension 3 in M, for g > 3.

Corollary 4.5. Let g > 3.

(1) The group scheme (Z/p & pp)9~2 @ (I1)? occurs as the p-torsion of the generic
point of every component of Ty 2N ﬂg.

(2) If p > 5, there is a family of dimension 3g — 6 consisting of smooth curves of
genus g with p-rank g — 2 and a-number 2.

Proof.

(1) Let T be a component of T, ». The generic point X of I has 2 < ax < g— fx.
Since (Z/p & p1,)972 & (I1)? is the unique symmetric BTy group scheme of
rank p29, p-rank g — 2, and a-number 2, it suffices to show that fx = g —2.

The result is true when g = 3. To see this, recall from Lemma 3.5 that
every component of Téy2 has dimension 3 with generic point having p-rank
1 and a-number 2. The same is true for I since its image under the Torelli
morphism is a component of Tg”Q

The proof is now by induction on g. Let g > 4. Now codim(7} 5, A,) = 3.
Consider the intersection of T, , with the Torelli locus 7 in A,. By Section
2.1, codim(7Ty N7, Ay) < codim(7,.Ay)+3 which yields codim(T", M,) < 3.
Then codim(I', M) = 3 by Theorem 4.1.

Since 3 < g, [8, Lemma 2.6] implies T intersects Ag. If Jx[p] % (Z/p ®
tp)? 2 @ (I1)* then fx < g—3and X € V, ;5N Ty 2. One checks that:

dim(‘/gg_g n f) S dim(‘/g’g_g n Tg,g N Ao) +1 and
dim(Vg7g,3 N Tg’g NAg) = dim(‘/;,l’g,4 N Tg,1,2 N mg,l) + 2.
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By Theorem 4.3, the generic point of every component of V,_; 44 ﬂﬂg_l
has a-number 1. Thus

dim(ngLg,z; NTy_12N ﬂgfﬂ < dim(nglyg,4 N ﬂg,l) =39 —9.

Then dim (V43 NT) < 3g — 6 which is too small to be generic in T'. Thus
X must have group scheme (Z/p & p1,)972 & (11)2.

(2) If p > 5, there exists a smooth curve X of genus g with p-rank g — 2 and
a-number 2 by [10, Cor. 4]. The result follows since there is at least one
component of T, » which is not contained in the boundary of M,. DO

Remark 4.6. There is an explicit formula for the number of smooth curves X of
genus 2 with fx =0 and ax = 2; these curves exist for all p > 5 [12, Section 3.3].

Remark 4.7. For each i such that 1 < ¢ < g¢/2, there is a component of T o,
having dimension 3g — 6, which is contained in the boundary component A; of M,.

4.4. The case of p-rank g — 3 and a-number at least 2

Suppose g > 3 and f = g — 3. Recall that if X € V43, then Jx[p] = (Z/p &
)92 & G’ where there are four possibilities for G': (i) G’ = I3; (ii) G’ = I3 9; (iii)
G' = Iy ® I1; and (iv) G’ = (I1)3. By Section 4.2, case (i) occurs for the generic
point of every component of V, ,_3 N M,. This section includes partial results on
the other three cases.

Lemma 4.8.

(i1) For p > 2, there exists Y € Mg with Jy[p] = I3 2;
(#ii) For p > 3, there exists Y € Mg with Jy[p| = Io ® I1;
(iv) For p > 3, there exists Y € Mgz with Jy [p] = (I1)3.

Proof.

(ii) The locus of points of Az with p-torsion I3 » has dimension two. Let A be an
abelian threefold with A[p] = I3 5. By the Torelli theorem, A = Jy for some
curve Y of genus 3 with p-rank 0. Now Y ¢ Ag since Jy is an abelian variety
with no toric part. Since I3 » is indecomposable as a symmetric BT; group
scheme [20, Lemma 3.4], Jy cannot be the product of abelian varieties of
smaller dimension. Thus Y ¢ A; by [2, pg. 246]. Thus Y is smooth and so
Y € Ms.

(iii) By part (iv), there exists Y’/ € M3 with Jy/[p] = (I1)3. The Torelli locus is
open in Az and contains Jy by definition. By [19, Prop. 7.3], there exists
an irreducible dimension one sublocus L C Ajs such that Jy» € L and
such that the generic point 1 of L has group scheme I, ® I. It follows
that 7 is contained in the Torelli locus. Thus there exists Y € M3 with
Jy [p] =1, & 1.
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(iv) This is proved in [18, Theorem 5.12(1)]. |

Proposition 4.9. Let p > 3. Suppose g is odd, g Z 1 mod p, and g > 6(p — 1).
Then there exists a curve X € V4 5N M, so that Jx[p) = (Z/p & pp)? 2 &G’ in
each of the three cases: (ii) G' = I3q; (i) G' = I, ® I ; and (iv) G' = (I1)3.

Proof. By Lemma 4.8, there exists a curve Y € M3 with Jy[p] = G’ if (ii) G' =
I39; (iii) G’ = Iy ® I; or (iv) G' = (I1)3. In each case, fy = 0.

Let ¢ = (¢ — 1)/2. By hypothesis, p { £ and ¢ > 3(p — 1). By [21, Thm. 4.3.1],
under these two conditions on ¢, there exists an étale cyclic Z/¢-cover X — Y so
that fx — fy = gx — gy . By the Riemann-Hurwitz formula, gx = 1+ 2¢ = g. Thus
fx = gx — 3. Finally, X dominates Y so Jy[p] C Jx[p], completing the proof. 0O

Proposition 4.10. Let p = 2. Suppose g =1 mod 4 and g > 7. Then there exists
a curve X € Vy g 5N M, so that Jx[p) = (Z/p & up)? 3 & I3 5.

Proof. The proof is almost identical to that of Proposition 4.9. O

5. Questions and related results
5.1. Limitations of the boundary approach

The inductive process of Section 3.3 allows one to deduce results about V, r N M,
from results about V;.o N M, where r = g — f. This produced results when r < 3.
Unfortunately, not much is known about V. o N M, if » > 4. One might ask whether
the boundary of V;.o N M, could be used to deduce more information. Here are
some reasons why this is not straightforward.

First, V; o does not intersect Ag. This is because the Jacobian of every curve in
Ag has a toric part and so has p-rank at least 1.

Second, the intersection of V;. o with the boundary component A; is not useful
for 1 < i < g/2. The generic point of A; corresponds to the isomorphism class of
a singular curve X with two irreducible components X; and X,_;, of genus ¢ and
g — i, intersecting in an ordinary double point. Then Jx[p] = Jx,[p] © Jx,_,[p] [2,
pg. 246]. If X € V.o N A, then fx, = fz, = 0 and ax = ax, + ax, > 2. In other
words, there are no singular curves with p-rank 0 and a-number 1, which makes it
difficult to determine whether a component of V. o has a-number 1.

One might also ask whether boundary methods could be used to deduce results
about strata of M, other than the p-rank strata. For example, Corollary 4.5 is about
the strata T, 2 N M. This becomes progressively more difficult for group schemes
of rank p?9 and p-rank f as g — f increases. The first reason is that the number of
possibilities for these group schemes increases exponentially in the quantity g — f.

The true difficulty, however, is geometric; for some of these group schemes G,
the locus Lg of curves X with Jx[p] = G is expected to have large codimension in
ﬂg. However, to guarantee that the closure of this locus intersects the boundary
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component Ag of M, one requires that the codimension be less than g. The base
cases of the induction process thus involve curves of genus even larger than r = g— f.

For example, consider the group scheme G = (Z/p®pu,)9 3@ (I11)3. The locus Lg
is expected to have codimension 6 in M,. Thus, to produce curves with f =g —3
having group scheme (I1)3, one would need to start with results for curves of genus
6. This was avoided in Section 4.4 by using [21].

5.2. Huyperelliptic curves of genus three

In this section, let p > 3 and consider the moduli space V3 N H3 of hyperelliptic
curves of genus g and p-rank 0. By [18, Thm. 5.12(4)], there exists Y € H3 which
is supersingular with ay = 1 (and fy = 0). Then Jy[p] = I3 by Lemma 3.1. This
implies that the generic point of at least one component of V5o N H, has group
scheme I3. However, the inductive argument in this paper requires information
about every component.

Here are some open questions whose solution would yield further progress.

Question 5.1. Is V5 o N H3 irreducible?

If p = 3, then V3o N Hs is irreducible by [7, Prop. 3.5]. Using this, the authors
prove Conjecture 3.6 for V, ;3 N'Hy when g > 3 and p = 3. There do not seem to
be any results about the number of components of V3o N H3 when p > 5.

Question 5.2. How does T3 2 N H3 intersect the supersingular locus of Hs3?

This relates to Conjecture 3.6 because every component of V3 oNH3 has Newton
polygon Gi 2 + Go1 (three slopes of 1/3 and three slopes of 2/3) [18, Thm. 1.12].
However, this Newton polygon cannot distinguish between the group schemes I3
and I3 9, which have a-numbers 1 and 2 respectively. Here is some further evidence
of the difficulty in comparing Newton polygons with p-torsion group schemes: if
Jx [p] = Is, then the Newton polygon of X is typically G1 2+ G2, but by [18, Thm.
5.12 (2,4)] it can also be 3G1,1 (supersingular).

Question 5.3. If p > 5, is the p-rank of the generic point of each two-dimensional
component of H3 N 7132 equal to 17

The condition p > 5 is included here since H3NT5 2 is empty when p = 3. When
p = 5, the authors of [7] show that H3 N 752 has a unique irreducible component
of dimension 2, and that the generic point of this component has p-rank 1. Thus,
no component of V3 9N Hs can be contained in T} 2. As a result, the authors prove
Conjecture 3.6 for Vj 43 NH, when g > 3 and p = 5.

5.3. Hyperelliptic curves when p = 2

The next results show that the hypothesis p > 3 in necessary for the hyperelliptic
case of Conjecture 3.6. A version of Lemma 5.4 is stated without proof in [24, 3.2].
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Lemma 5.4. Let p=2. Let X € Voo N'Hy. Then ax = [(g+1)/2].

Proof. If X € V, 0N 'Hy, then X has an Artin-Schreier equation y* —y = f(z) for
some f(z) € k[z] with deg(f) = 2g + 1. A basis for H°(Q) is {zbdz | 0 < b < g}.
The action of V on Jx|[p| is the same as the action of the Cartier operator C' on
HO(€1). By definition (see, for example, [27, Prop. 2.1]) the Cartier operator acts by
C(2bdx) = 0if bis even and C(adx) = 2~ V/2dz if bis odd. So vy = dim(CHY ) =
#{b=1mod2|0<b<g}=[(g—1)/2]. Thenax =g —v, = [(9+1)/2]. |

The next example shows that Conjecture 3.6 is false for H3 N V3 ; when p = 2.

Example 5.5. Let p =2, g = 3, and f = 1. Then H3N V3 ; has two components I'y
and T'y, each of dimension 3. Each curve X in I'; has an Artin-Schreier equation of
the form y% —y = 2° + c;23 + cow + c3/2. A basis for H(Qy, X) is {dz/z, dx, xdz}.
The Cartier operator acts by C(dz/x) = dx/x, C(dx) = 0 and C(zdz) = dz. Thus
ax = 1if X € I';. Each curve X in I'; has an Artin-Schreier equation of the form
y? —y=a3+c1x +co/x + c3/x3. A basis for HY(Qy, X) is {dx /2%, dx/x,dz}. The
Cartier operator acts by C(dz/z?) = 0, C(dz/z) = dz/z and C(dxr) = 0. Thus
ax =2 if X € I';. So Conjecture 3.6 is false for the component I's.

Remark 5.6. In [17], for k¥ = TFae, the authors calculate the number of k-
isomorphism classes of hyperelliptic curves of genus 3 with a given Newton polygon.
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