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Abstract: We determine the Z/¢-monodromy and Z,-monodromy of every irreducible component of the stratum Mg
of curves of genus g and p-rank f in characteristic p. In particular, we prove that the Z/¢-monodromy of every
component of Mg is the symplectic group Spy,(Z/¢) if g > 3 and if £ is a prime distinct from p. The method involves
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1 Introduction

Suppose C' is a smooth connected projective curve of genus g > 1 over an algebraically closed field k of
characteristic p > 0. The Jacobian Pic’(C) is a principally polarized abelian variety of dimension g. The number
of p-torsion points of Pic’(C) is pf for some integer f, called the p-rank of C, with 0 < f < g.

Let M, be the moduli space over k of smooth connected projective curves of genus g; it is a smooth Deligne-
Mumford stack over k. The p-rank induces a stratification My = U./\/lg; by locally closed reduced substacks ./\/lg;,
whose geometric points correspond to curves of genus g and p-rank f.

Let ¢ be a prime number distinct from p. In this paper, we compute the f-adic monodromy of every
irreducible component of ./\/lg;. The main result implies that there is no restriction on the monodromy group
other than that it preserve the symplectic pairing coming from the principal polarization. Heuristically, this
means that p-rank constraints alone do not force the existence of extra automorphisms (or other algebraic
cycles) on a family of curves.

To describe this result more precisely, let S be a connected stack over k, and let s be a geometric point of
S. Let C' — S be a relative smooth proper curve of genus g over S. Then Pic’(C)[(] is an étale cover of S with
geometric fiber isomorphic to (Z/f£)%9. The fundamental group (S, s) acts linearly on the fiber Pic’(C)[(]s,
and the monodromy group M,(C' — S, s) is the image of 71(S,s) in Aut(Pic’(C)[¢],). For the main result we
determine My (S) := My(C — S, s), where S is an irreducible component of Mg and C' — S is the tautological
curve. This also determines the ¢-adic monodromy group Mg, (:S).

Theorem Let £ be a prime distinct from p and suppose g > 1. Suppose 0 < f <g, and f#0 if g <2.
Let S be an irreducible component of ./\/lg, the p-rank f stratum in M,. Then My(S) = Spy,(Z/¢) and

Mz, (5) = Spay(Z).

We also prove an analogous result about p-adic monodromy (Proposition .

We give four applications of Theorem [£.5] in Section [f] The first two do not use the full strength of the
theorem, in that they can be deduced solely from knowledge of the Qg-monodromy. Application (i) complements
[26] Thm. 1] (and recovers [2, Thm. 1.1(i)]), while application (ii) complements results in [I4, Thm. 1].
Applications (iii) and (iv) build upon [16} 9.7.13] and [I9, 6.1] respectively.

Applications: Let F be a finite field of characteristic p. Under the hypotheses of Theorem
(i) there is an F-curve C' of genus g and p-rank f with Autz(C) = {id} (5.4);
(ii) there is an F-curve C of genus g and p-rank f whose Jacobian is absolutely simple (5.7);

(iii) if |F| = 1 mod ¢, about £/(£?> — 1) of the F-curves of genus g and p-rank f have a point of order £ on their

Jacobian (5.9));
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2 J. ACHTER AND R. PRIES

(iv) for most F-curves C of genus g and p-rank f, the splitting field of the numerator of the zeta function of C
has degree 29g! over Q (5.11)).

At its heart, this paper relies on fundamental work of Chai and Oort. The proof of Theorem appears
in Section It proceeds by degeneration (as in [7]) and induction on the genus. Consider the moduli space
A,y of principally polarized abelian varieties of dimension g and its p-rank strata .A{; . Recent work in [5] gives
information about the integral monodromy of Ag . In particular, an irreducible subspace of A, which is stable
under all Hecke correspondences and whose generic point is not supersingular has monodromy group Sp,,(Z/¢).
The base cases of Theorem rely on the fact that the dimensions of Mg and Ag are equal if g < 3.

We note that [5] is not directly applicable to the strata /\/lg when g > 4. When g > 4, the Torelli locus is
very far from being Hecke-stable. Another method for computing monodromy groups is found in [I3], where the
author shows that certain group-theoretic conditions on the local inertia structure of a Z/¢-sheaf guarantee that
its global monodromy group is the full symplectic group. The method of [I3] applies only to families of curves
in which the Jacobian of at least one degenerate fiber has a nontrivial toric part, and thus does not apply to
M.

The inductive step of Theorern uses results about the boundary of /\/lg found in Section In particular,
it employs a new result that the closure of every component S of J\/lgc in Mg contains moduli points of chains
of curves of specified genera and p-rank (Proposition , and in particular intersects the boundary component
Ay, in a certain way (Corollary . As in [3], this implies that the monodromy group of S contains two
non-identical copies of Spy,_5(Z/¢), and is thus isomorphic to Spy,(Z/f).

A result of independent interest in Section [3]is the following.

Corollary Suppose g > 2 and 0 < f<g. Let QC {1,...,g} be a subset of cardinality f. Let S be an
irreducible component of Mg. Then S contains the moduli point of a chain of elliptic curves B, ..., E,, where
E; is ordinary if and only if j € Q.

In Section we include some open questions about the geometry of the p-rank strata of curves. For
example, the number of irreducible components of Mg is known only in special cases. Finally, we anticipate
that the techniques of this paper can be used to compute the f-adic monodromy of components of the p-rank
strata H; of the moduli space H, of hyperelliptic curves of genus g as well.

We thank the referee for helpful comments.

2 Background

Let k be an algebraically closed field of characteristic p > 0. In Sections and [ all objects are defined on the
category of k-schemes, and T' is an arbitrary k-scheme. Let ¢ be a prime distinct from p. We fix an isomorphism

w,~=7/L.

2.1 Moduli spaces

For each g > 1 consider the following well-known categories, each of which is fibered in groupoids over the
category of k-schemes in its étale topology:

A, principally polarized abelian schemes of dimension g;
M, smooth connected proper relative curves of genus g;

M, stable relative curves of genus g.
For each positive integer r, there is also (see [I8], Def. 1.1,1.2]) the category
My, r-labeled stable relative curves (C; Py, ..., P,) of genus g.

These are all smooth Deligne-Mumford stacks, and M, and My, are proper [I8, Thm. 2.7]. There is a forgetful
functor ¢g.. 1 My, — M,. Let My o= M,. Let My, = M., XM, M, be the moduli stack of r-labeled
smooth curves of genus g. The boundaries of ﬂg and Mg;r are 8ﬂg = ﬂg — M, and 5‘ﬂg;r = ﬂg;r - Mg,
respectively. If S C M,, let S be the closure of S in M,.

For a k-scheme T', M (T') = Mor (T, M) is the category of smooth proper relative curves of genus g over
T. There is a tautological curve C,4 over the moduli stack M, [6, Sec. 5]. If s € M, (k), let Cy s denote the fiber
of C4 over s, which is the curve corresponding to the point s : Spec k — M. Similar conventions are employed
for the tautological marked curve Cgy., over Mg.,.

Let C/k be a stable curve. The Picard variety Pic’(C) is an abelian variety if each irreducible component
of C' is smooth and if the intersection graph of the irreducible components of C' is a tree. Such a curve is said
to be of compact type. Curves which are not of compact type correspond to points of a component Ag (defined

in Section of aﬂg.



MONODROMY OF p-RANK STRATA 3

2.2 The p-rank

Let X be a principally polarized abelian variety of dimension g over an algebraically closed field k' of
characteristic p. The p-rank of X is the integer f such that X[p](k’) = (Z/p)?. It may be computed as
f(X) = dimg, Hom(g,,, X), where p,, is the kernel of Frobenius on the multiplicative group G,. It is well-known
that 0 < f < g. This definition extends to semiabelian varieties; if X/k’ is a semiabelian variety, its p-rank is
dimp, Hom(p,,, X). If X is an extension of an abelian variety Y by a torus W, then f(X) = f(Y) + dim(W).
If X/ko is a semiabelian variety over an arbitrary field of characteristic p, its p-rank is that of X, for any
algebraically closed field k" containing ko. If C'/k’ is a stable curve, then its p-rank f(C) is that of Pic(C).

Lemma 2.1. Let X — S be a semiabelian scheme of relative dimension g over a Deligne-Mumford stack, and
suppose 0 < f < g. There is a locally closed reduced substack S¥ of S such that for each field k' O k and point
s € S(k'), then s € ST (k') if and only if the p-rank of X, is f.

Proof. A substack of S is reduced and locally closed if it is locally representable by reduced locally closed
subschemes [6, p. 100] [20}, 3.9 and 3.14]. Therefore, it suffices to consider the case that S is an affine scheme.
Write X as an extension 0 = W — X — Y — 0, where Y is an abelian scheme and W is a torus. Since dim(W)
is an upper semicontinuous function on the base [I0 p. 8], there is a finite stratification of S by locally closed
subschemes on which dim (W) is constant. Since a finite union of locally closed subschemes is again locally closed,
one may assume that dim(W) is constant. Finally, since f(Y) = f(X) + dim(W), it suffices to prove the result
for the abelian scheme Y. The existence of S/ then follows immediately from [I5, Thm. 3.2.1]. O

In particular, Ag; and Mi; denote the locally closed reduced substacks of A, and M, respectively, whose
geometric points correspond to objects with p-rank f. Similary, ﬂg = (M,)’ and ﬂir := (M,.)/. Note that
ﬂg may be strictly contained in ./\/lg since the latter may contain points s such that f(Cq ) < f.

Every component of Mg has dimension 29 — 3 + f [9, Thm. 2.3]. Since M!J;T is the fibre of ¢, over ﬂggr,
it is pure of dimension 2g — 3 + f + 7.

2.3 Clutching maps
If g1, g2, 71,72 are positive integers, there is a clutching map
Kgiir1,92;r2 :mgl;n X mgz;rz mgl‘i’gz;’fl‘i”"z*Q'

Suppose s1 € Mg, ., (T) is the moduli point of the labeled curve (Cy; Py, ..., P.), and suppose sz € Mg,.,, (T)
is the moduli point of (Co;Q1,...,Qr,). Then Ky, .ry g, (51,52) is the moduli point of the labeled T-curve
(D; Py,...,Pr—1,Q2,...Qy,), where the underlying curve D has components Cy and Cs, the sections P, and
(@1 are identified in an ordinary double point, and this nodal section is dropped from the labeling. The clutching
map is a closed immersion if g1 # g2 or if 71 + 79 > 3, and is always a finite, unramified map [I8, Cor. 3.9].

By [, Ex. 9.2.8],

Pic’(D) = Pic’(C}) x Pic®(Cy). (2.3.1)

Then the p-rank of F is

J(D) = [(C1) + J(Ca). (23.2)
Similarly, if g is a positive integer and if » > 2, there is a map
Kgr * Mg;r - Mgﬂ;rﬂ'
If s € Mg, (T) is the moduli point of the labeled curve (C; Py, ..., P,) then kg..(s) is the moduli point of the
labeled curve (E;Pi,...,P._3) where E is obtained by identifying the sections P._; and P, in an ordinary
double point, and these sections are subsequently dropped from the labeling. Again, the morphism kg, is finite

and unramified [I8] Cor. 3.9].
By [, Ex. 9.2.8], Pic’(E) is an extension

0 — W — Pic’(E) — Pic’(C) —=0, (2.3.3)
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where W is a one-dimensional torus. In particular, the toric rank of Pic’(E) is one greater than that of Pic’(C),
and their maximal projective quotients are isomorphic, so that

f(E)=f(C)+1. (2.34)
For 1 <i<g-—1,let A; = A;[M,] be the image of k;1,—i 1. Note that A; and A,_; are the same substack
of ﬂg. Let Ag = Ao[ﬂg} be the image of ﬂg_l;g under xg—1,2. Bach A; is an irreducible divisor in ﬂg, and
OM,, is the union of the A; for 0 < i < |g/2| (e.g., [I8, p.190]). If S is a stack equipped with a map S — My,
let A;[S] denote S x5z A;[Mg]. Also define A;[M,]/ = (A;[M,])/.
If g > 3, then there exists a commutative diagram of clutching maps

ﬂ1,1 X ﬂg_zz X ﬂl,l Hﬂg_l,l X ﬂl,l (2.3.5)

e

M171 X ./\/lg_171 Mg.

Let A1 = A;1[M,] denote the image in M, of the upper left-hand object; it is the (reduced) self-
intersection locus of A;. There is an open, dense substack Uy 1 C A1 such that if s € Uy 1(k), then C, 5 is
a chain of three irreducible smooth curves Yy, Y, Y3 with gy, = gy, = 1 and gy, = g — 2. Also, for i € {1, 3},
the curves Y; and Y5 intersect in a point P; which is an ordinary double point.

3 The p-rank strata of curves

3.1 Boundary of the p-rank strata of curves

The p-rank strata of the boundary of M, are easy to describe using the clutching maps. First, if f > 1, then
Ag[M,)f is the image of Mﬁ:iz under kg_1,2 by (2.3.4)). Second, if 1 <i<g—1and 0 < f <g, then (2.3.2)

implies that A;[Mg])/ is the union of the images of M{jl X Mﬁii;l under k1,441 as (f1, f2) ranges over all
pairs such that
0<fi<i, 0<fo<g—iand fi+ fo=f (3.1.1)

Lemma 3.1. Suppose g >2 and 0< f<g. If 0<i<g—1 and (f,i)# (0,0), then every component of
A[My)! has dimension 2g + f — 4.

Proof. Suppose 1 < f < g. Then ﬂg:llﬂ is pure of dimension dim(ﬂg:ll) +2=2g+ f —4. Since k41,2
is finite, Ag[M,]/ is pure of dimension 2g + f — 4 as well.

Similarly, suppose 0 < f < gand 1 <i<g—1. Let (f1, f2) be any pair of integers satisfying (3.1.1]). Then
ﬂ{;ll X ﬂf_i;l is pure of dimension dim(ﬂ{;l) + dim(mf_i;l) =29+ f — 4. Since ki1 441 is finite, A;[M,]f
is pure of dimension 2g + f — 4 as well. O

The first part of the next lemma shows that if 7 is a generic point of ﬂg, then the curve C4,, is smooth.
Thus no component of ﬂg is contained in the boundary aﬂg. The last part shows that one can adjust the
labeling of an r-labeled curve of genus g and p-rank f without leaving the irreducible component of M;T to

which its moduli point belongs.

Lemma 3.2. Suppose g >1,0< f <g, andr > 1.

a. Then ./\/lg is open and dense in Mﬁ
b. Then M{

gir
c. Let S be an irreducible component of M;T. Then S = gb;i(qbg;r(S)). Equivalently, if T is a k-scheme, if
(C;Py,...,P) e S(T), and if (Q1,-..,Qr) is any other labeling of C, then (C;Q1,...,Q,) € S(T).

. .= f
is open and dense in M.,

Proof. Part (a) is well-known if g = 1. For g > 2, the result follows immediately from Lemma since ﬂg
is pure of dimension 2g + f — 3 [0, Thm. 2.3]. Part (b) follows from the fact that the p-rank of a Iabeled curve
depends only on the underlying curve, so that ﬂg;T =M,, X, ﬂg.

For part (c), let S be an irreducible component of ﬂ;r. It suffices to show that ¢} (¢4 (S)) € S. By

part (b), U = SN M, is open and dense in S. Therefore, S is the largest irreducible substack of M;T which
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contains U. The fibers of ¢,., |y are irreducible, so ¢;T(¢g ~(U)) is also an irreducible substack of ﬂg;r which
contains U. Thus ¢} (¢g(U)) C S. This shows that ¢, (¢g;(U)) = U.
To finish the proof, it suffices to show that a T-point of S is a T-point of ¢, Hgr (S )) for an arbitrary

k-scheme T. To this end, let a = (C; Py,...,P.) € S(T), and let = (C;Q1,...,Q,) € Mg;T(T). Note that
bgir(B) = ¢y (), and ¢y, () is supported in the closure of ¢, 7«( ) in ﬂg. Because My, is dense in My, it
follows that (3 is supported in the closure of ¢! (¢, (U)) in /\/lg ., which is S. O

Lemma 3.3. Suppose g > 2 and 0 < f < g. Let S be an irreducible component of Mg.

a. Then S intersects Ao[M,] if and only if f > 1.

b. If f > 1, then each irreducible component of Ao[S] contains the image of a component of ﬂg:;g under
Kg—1;2-

In other words, Lemma b) states that if f > 1 and if 1 is a generic point of Ag[S], then the normalization
Cy,n of Cy,y is a smooth curve of genus g — 1 and p-rank f — 1. The containment in Lemma (b) may be strict
since Ag[S] may contain points s such that C4 s has p-rank strictly less than f.

Proof. If f =0, then equation (2.3.4)) implies that S does not intersect Ag[M,]. If f > 1, then S C M, is
a complete substack of dimension greater than 2g — 3. Let N, = M, — A be the sublocus of curves of compact
type; it is open in M,. By [J, Lemma 2.4], a complete substack of ./\/ has dimension at most 2g — 3. Thus, S
is not contained in N and so S intersects A nontrivially. This Comletes part (a).

For part (b), recall that S is not contained in 9M, by Lemma [3.2(a). Since M,, S and 9M, are proper,
the intersection of S with the divisor A¢[M,] has pure dimension dim S — 1, which equals dim(Ag[M,]/) by

Lemma Thus each irreducible component of S N Ag[M,] contains the image of some component of ﬂ;: LQ
under the finite morphism ry_1,2. In particular, it contains the image of the moduli point of a smooth curve of
genus g — 1 and p-rank f —1. O

The next result shows that the closure of each irreducible component of ./\/lglc intersects A;[M,]? in every
way possible.

Proposition 3.4. Suppose g > 2 and 0 < f <g. Suppose 1 <i<g—1 and (f1, f2) is a pair satisfying the
conditions in (3.1.1). Let S be an irreducible component of M.

a. Then S intersects i1, g—i; 1(ﬂf11 X ﬂf i)

b. Each irreducible component of the intersection contains the image of a component of ./\/ll 1 X ./\/lq il

Proposition b) implies that if 7 is a generic point of S N m;l,g_i;l(Mfll X ./\/lg i:1), then Cy , is a chain

of two smooth curves of respective genera i and g — i and respective p-ranks f; and fs.

Proof. (a) implies (b): To see that (a) implies (b) for fixed g, f, i, and (f1, f2), note that SN A;[M,]f
has pure dimension dim S — 1 = 2g + f — 4 by the same reasoning as in the proof of Lemma (b) By Lemma
this is the same as the dimension of each component of Hi;1,g—z;1(/\/l a1 X /\/lg i)

Base cases: The proof of (a) is by induction on g while holding g — f fixed. The two base cases are
when f =0 and when g =2. When f =0, then the only possibility for (f,f2) is (0,0). By B.3(a), S is
contained in Ny = My — Ag. By [9, Lemma 2.5], S intersects A;[M,], and a point in the intersection must

. —0 =0
be in fi1,g—is1 (Mg X Mg_iq).

For the other base case, let g = 2. The statement is true for g = f =2 (or more generally when g = f)
because M is open and dense in M,. If f =1, then i = 1. Without loss of generality, (f1, f2) = (1,0). Thus
the next claim suffices to conclude the proof of the base cases.

Claim: ﬂ; is irreducible and intersects Hl;l,l;l(ﬂi;l X ﬂil).

To prove the claim, recall that the Torelli morphism My — As is an inclusion [24, Lemma 1.11]. Since
dim(M3) = dim(A}), and since A} is irreducible (e.g., [8, Ex. 11.6]), it follows that M3 is irreducible. Consider
a chain of two smooth elliptic curves, one of which is ordinary and one supersingular, intersecting in an ordinary

double point. The moduli point of this curve is in M; N m;l’m(mil X ﬂ?;l).

Inductive step: Suppose that ¢ > 3 and 1 < f < g. The inductive hypothesis is that, given 1 <4’ < g — 2,
given a pair (ff, f5) such that 0 < f] <, 0< f} <g—1—4, and f{ + f, = f — 1, and given an irreducible
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Wik

component Z of M/}, then Z intersects ;1 g1 (Mjhy % ﬂf_l_i,;l); and, since (a) implies (b), that each

9— 1’
irreducible component of the intersection contains a component of mi/;l’g,l,i,;l(ﬂ{él X M ge1—iri1)

Let S be an irreducible component of Mg. Let 1<i<g—1, and let (f1,f2) be a pair which satisfies
(3.1.1). Possibly after exchanging ¢ with ¢ —4 and f; with f5, we suppose that f; > 0.

Case 1: Suppose i > 1. Let (g1, 95) = (i — 1,9 — i), and let (f, f3) = (f1 — 1, f2). Note that ¢} +g5 =g — 1
and f{ + f3=f—1. Also 0 < fi < g} and g; > 1 for j =1,2. So 1 < g; < g — 2. By Lemma (b), S contains

. = wik! . . . . . .
the image of a component Z of Mg_l;g under k4_1;2. The inductive hypothesis, applied to (the interior of) the

component Z = gbg,l;z(Z) of Mﬁ:}, shows that Z intersects ”9’121795%1(M£i;1 X Mgz;l).

Let £ be a generic geometric point of the intersection. By part (b) of the inductive hypothesis, the curve
Cy—1,¢ is a chain of two irreducible curves, Y7 and Y5, with respective genera g7 and g5 and p-ranks f{ and f3,
intersecting in one point P which is an ordinary double point. Let P; and P, be two distinct points of Y7 — {P}.
Note that after identifying the points P; and P, on Y7, one obtains a (singular) curve of genus g’li<1 = ¢ with

p-rank fi +1= f1. The moduli point € of the labeled curve (Cg—1,¢,{P1, Po}) lies in Z (Lemma ¢)). Then
g-1:2(8) € 5 N iz gminn (ML x MY 1),

Case 2: Suppose ¢ =1. Then g—i=¢g—1 and f; =1. If fo = f—1>0, then case (1) applies after
reindexing. Therefore, it suffices to consider the remaining case (i,g — i) = (1,¢g — 1) and (f1, f2) = (1,0). Let S

be an irreducible component of M}]. Then S contains an irreducible component of 52;17972;1(ﬂ2;1 X Mg,m) by

case (1). By the claim above, and the implication (a) — (b), M, contains the image of an irreducible component
Wi -0 -1 . . . . -1 -0
of My.; X My ; under k1,1 1;1. Thus My, contains the image of an irreducible component of M ; x M 5 under

- . . . . —1 — 0 — 0
k1:1,1;2- Therefore, S contains the image of an irreducible component of M1;1 X /\/11;2 X M972.1 under K1,1,9—2.

. = . . . —-—1 -0
In particular, S has nonempty intersection with r1;1,g—1,1(My,; x My_1,4). O

The next result shows that components of ﬂg deeply intersect the boundary of Mg.

Proposition 3.5. Suppose g > 2 and 0 < f < g. Let S be an irreducible component of /\/l-g. Suppose gi, ..., gm
are positive integers and fi,..., fm are integers such that Y gi =g, > fi=f, and 0< f; <g; for each
1 <i<m. Then S contains the image of a component of

1

T fm—1
Mgllx/\/lgﬂx./\/lgﬂx X M

/™
o XM

gm;l
under the clutching map.

Proof. The proof is by induction on m, and is proved for all g simultaneously. The case m =1 is trivial,
while the case m = 2 is Proposition [3.4]

Now suppose the result is known for every genus g’ and every partition of ¢’ Wlth at most m — 1 parts.
Suppose g, f, 91,---,9m, and f1,..., f, satisfy the conditions of Proposmon Let ¢ = Z;n_ll g; and

= 11 fi- By Proposition [3.4] there exist components Z’ of M o and Z of ./\/l ., such that S contains
Kg'i1,gm:1(Z' % Z). By the mductlve hypothesis, ¢4.1(Z") contains x(Y") for some component Y of

g fm—2 g fm—1

gm—1;1

Mfllx/\/l 2><Mg3.2>< XM X M

Thus, Z' contains k(Y') x7; , Mg,1. By Lemma c), one can choose the labeled point to be supported on
g
the last component of Cy/ ,.(y). Thus, Z’ contains the image of a component X of

-1

f7n2
Mgllx/\/lg22x/\/lg32x X My

f7nl
a2 XM

Im—1;2

Then S contains the image of X x Z. O

The next corollary is not used in the rest of the paper, but is included to show that Proposition

. . —-—0 . . . .
generalizes [J, Lemma 2.5], which states that every component of M, contains the moduli point of a chain of
supersingular elliptic curves.

Corollary 3.6. Suppose g >2 and 0 < f <g. Let Q C{l,...,g} be a subset of cardinality f. Let S be an
irreducible component of M{;, Then S contains the moduli point of a chain of elliptic curves E1, ..., E,, where
E; is ordinary if and only if j € Q.

Proof. This follows immediately from Proposition O
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The next result is the form of Proposition used to prove Theorem which relies on degeneration to
Aq 1. We label the four possibilities for (fi, fo, f3) such that fi + fo + f3 = f and f1, f5 € {0,1} as follows: (A)

(17f - 27 1)7 (B) (va - ]-» 1)7 (B7) (Lf - 170)7 and (C) (03 fao)
Corollary 3.7. Suppose g >3 and 0 < f < g. Let S be an irreducible component of Mg.

a. Then S intersects A1 1[M,].

b. There is a choice of (f1, f2, f3) from cases (A)-(C), and there are irreducible components Sy ofﬂ{;ll and

Sy of ﬂf_g;g and S3 ofﬂ{f'l ; and there are irreducible components Sg of Mf_ﬁff and St, of ﬂf_ﬁff ; 80

that the restriction of the clutching morphisms gives a commutative diagram

Sl X SQ X S3 —_— Sl X SR (3.1.2)
Sr x S3 gﬂALl

c. Furthermore, case (A) occurs as long as f > 2, case (B) or (B’) occurs as long as 1 < f < g—1, and case
(C) occurs as long as f < g — 2.

Proof. All three parts follow immediately from Proposition [3.5] O

3.2 Open questions about the geometry of the p-rank strata

The phrasing of Corollary is as simple as possible given the present lack of information about the number
of components of M-Z;. We note that if Mg is irreducible for some pair g, f, then there are much shorter proofs
of Corollaries [3.6] and

Question 3.8. How many irreducible components does Mg have?

The answer to Question appears to be known for all p only in the following cases: /\/l_{; is irreducible when
f=g9 /\/lg is irreducible when g = 2 and f > 1 and when g = 3 and 0 < f < 3; for M{ or M}, the number of
irreducible components is a class number associated with the quaternion algebra ramified at p and oco. If g > 3,
then .Az; is irreducible [5, Remark 4.7].

Question 3.9. Let S be an irreducible component of M{; . Does the closure of S in M, contain an irreducible
component of Mg?

The analogous property is true for Ag by [5, Remark 4.7]. If the answer to Question is affirmative for
some g, then one can reduce to the case f = 0 in the proof of Theorem

4 Monodromy

4.1 Definition of monodromy

Recall the notations about monodromy found in [3, Section 3.1]. In particular, let C — S be a stable curve of
genus g over a connected k-scheme S. There is an open subset S° C S such that PicO(C)| go is an abelian scheme;
in fact, §° =95 X3, (Mg — Ag). Assume that S° is nonempty and connected. Let s € S° be a geometric point.

Let £ be a prime distinct from p. For each positive integer n, the fundamental group 71 (S°, s) acts linearly on
Pic(C)[¢"]s via a representation po_.g.¢en : 71(S°, s) — Aut(Pic®(C)[¢"]s). The Z/¢"-monodromy of C — S,
written as My (C' — S, s), is the image of pc—g s . If S is equipped with a morphism f : S — M to one of the
moduli stacks M defined in Section [2.1] let Mg (S, s) denote Mg (f*C — S, s), where C — M is the tautological
curve. The isomorphism class of the abstract group M (S, s) is independent of s, and we denote it by Mgx (.S).
Let Mz, (S) = lim My« (S), and let Mg, (S) be the Zariski closure of Mz, (S) in GLag(Qy).

A priori, Mg (S) C GLgy(Z/€"). The principal polarization A on Pic’(C) induces a symplectic pairing
(*,-), on the ("-torsion, with values in p,.. Therefore, there is an inclusion M (S) C GSpy,(Z/£") of the
monodromy group in the group of symplectic similitudes. Moreover, since k contains £"th roots of unity,
Mgn (S) C Spy,(Z/€7). Similarly, M (S) C Spy,(A) if A is either Zy or Q. If the monodromy group is the full
symplectic group, this has a geometric interpretation, as follows. Equip (Z/f)?9 with the standard symplectic
pairing (-, )., and let

Sy == Isom((Pic(C/S)[E], (-, )3), (Z/OF, () gea))-
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For simplicity, assume that S = 5°, i.e., that all fibers of C' — S are of compact type. There is an fth root of
unity on S, so Sy — S is an étale Galois cover, possibly disconnected, with covering group Sp, g(Z /¢). The cover
Sig is connected if and only if M(S) = Spy,(Z/f).

Finally, since the category of étale covers of a Deligne-Mumford stack is a Galois category [22], Section 4],
one can employ the same formalism to study a relative curve C over a connected stack S.

Let h: T — S be a morphism of connected stacks. This morphism is called a fibration [12, X.1.6] [22]
Section A.4] if every choice of base points t € 7 and s € S with h(t) = s induces an exact sequence of homotopy
groups

11(Tot) — 1 (T, t) —2 71 (S, 8) —— 7o (Ta, t) — {1}. (4.1.1)

An arbitrary base change of a fibration is a fibration. If h is a fibration and if the fiber 7, is connected, then
h, is a surjection of fundamental groups. Therefore, if C — S is a relative curve, then the natural inclusion
My(h*C — T,t) — My(C — S, s) is an isomorphism.

Lemma 4.1. Let g and r be positive integers. The morphism M., — M, is a fibration with connected fibers.

Proof. By [18, p. 165], M,.,. is represented by Cy..—1, the tautological (stable, labeled) curve over Mg, _1.

The projection Cgr1 — My,-—1 is proper, flat and surjective with connected fibers. By induction on r,

Ggir + Mg, — M, is proper, flat and surjective, and ¢, is a fibration [22] Section A.1]. O

Lemma 4.2. Let g and r be positive integers. Suppose S C ﬂg ts a connected substack and s is a geometric

point of S. Let S, = S X%, My, and let s, be a lift of s to S,. Then Mg(S,s) = M(Sy, s,).

Proof. By Lemma Mg, — M, is a fibration with connected geometric fibers, and thus so is S, — S.
The result now follows from the defining property (4.1.1)) of fibrations. O

4.2 Monodromy of the p-rank strata

This section contains the main result in the paper, Theorem which is about the monodromy of the p-rank
strata of the moduli space of curves. The proof proceeds by induction on the genus of g. The next lemma, due
to Chai, will be used for the base case while Lemma [4.4] will be used for the inductive step.

Lemma 4.3. Let { be a prime distinct from p. Let U C Ay be an irreducible substack which is stable under (-adic
Hecke correspondences and which is not contained in the supersingular locus. Let S be an irreducible component
of My x4, U. Suppose that dim(S) = dim(U). Then My(S) = Spy,(Z/1).

Proof. For the proof we introduce a fine moduli scheme M, |y}, and then show that any irreducible
component of the pullback of S to Mg |y} has full monodromy.

Fix an integer N > 3 relatively prime to pf and an isomorphism py = Z/N, and let Ay n] be the fine moduli
scheme of principally polarized abelian schemes of relative dimension g equipped with principal symplectic level-
N structure [21], p. 139]. Let My n] = My x4, Ag N} It is the fine moduli scheme of smooth proper curves
of genus g with principal symplectic level-N structure, and the induced Torelli map 7, (5] : Mg n] — Ag (] is
analyzed in [24].

Let Uy = U x4, Ay n- By [3, Prop. 4.4], Uy is irreducible and M, (Ujy)) = Spy,(Z/€). Let Tin) be any
irreducible component of S x 4, Ay ). By [24, Lemma 1.11], there exists an open dense subset V;y) C T}y and
an integer d € {1,2} such that 74 nj|v;y, has degree d. Moreover, if g <2 then d = 1. In summary:

Vim €Tinyg—— S

lZ/d

Ul

Since dim(U) = dim (), 7,,(51(V{n)) is dense in Ujy). By the above conditions on d, Sp,,(Z/{) has no nontrivial
quotient isomorphic to Z/d. It now follows that M¢(V|n]) = Spy,(Z/¢) [3, Lemma 3.3]. Since M;(V|n1) is as large
as possible, it follows that M(S) = Sp,,(Z/f). O

Lemma 4.4. Let g1, g2, r1 and vy be positive integers. Let g = g1 + g2, and let 7 =11 + 19 — 2.

a. There is a canonical isomorphism of sheaves on Mg, .., X Mg,.ry,

Ky PiCO(Cg;r)m = PiCO(Cgl;m)[@ X PiCO(ng;rz)[«?]' (4.2.1)

g1i71,92;72
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b. For i=1,2, suppose S; C Mgi;,.i is connected, and let s; € S) be a geometric point. Let S =
Kgiiri,gairs (S1 X S2), and let s = Kg,.ry goirs (S1 X S2). Under the identification (4.2.1)),

M¢(S1, 81) x Mg(Sa, s2) € My(S, s) € Aut(Pic®(Cyir)[€]s)-

Proof. The proof of [3, Lemma 3.1] applies here. The key point for part (a) is that if C/T is the union
of two T-curves C; and Cy, identified along a single section of T, then there is a canonical isomorphism
Pic’(C) = Pic’(C}) x Pic’(Cy) (2.3.1). The key ideas for part (b) involve the van Kampen theorem and
covariance of the fundamental group. O

Theorem 4.5. Let ¢ be a prime distinct from p and suppose g > 1. Suppose 0 < f <g, and f#0 if g <2.
Let S be an irreducible component of MY, the p-rank f stratum in Mg. Then M(S) = Spy,(Z/0) and
Mz, (S) = Spa, (Ze).-

Proof. For group-theoretic reasons (see Lemma , it suffices to show that M(S) = Spy,(Z/¢); for
topological reasons, it suffices to show that M(S) = Sp,,(Z/£).

The proof is by induction on g. For the base cases, suppose 1 < g < 3 and f # 0if g < 2. There is a Newton
polygon Vf such that the locus U , consisting of principally polarized abelian varieties whose Newton polygon

is Vf is open and dense in .Af [23 Thm 2.1]. The locus Uy f is stable under Hecke correspondences. Since f # 0
if g S 2, v is not supersmgular By [5, Rem. 4.7], U] is 1rredu01ble (Alternatively, see [8, Ex. 11.6].) Let S be
any irreducible component of /\/lg. Then dim(S) = dim(U) [9, Thm. 2.3]; by Lemma Me(S) = Spy, (Z/1).
Now suppose g >4 and 0 < f < g. As an inductive hypothesis assume, for all pairs (¢’, f’) where ¢’ > 3
and 0 < f < ¢’ < g, that My(S") = Sp,,,(Z/{) for every irreducible component S’ of ./\/lg/l
Let S be an irreducible component of Mg. By Corollary S intersects A; 1 and there is a diagram as in
. Specifically, there is a partition f = fi; 4+ f2 + f3, and there are irreducible components S7 C ﬂ{ll and

Sy C ﬂ§2_2,2 and S3 C ﬂ{i, so that the clutching maps in (2.3.5)) restrict to

S1 X SQ X S3 —_— Sl X SR (4.2.2)
Sr x S3 SN Al,l
In particular, Sy, is the irreducible component of Mgl-:ff which contains k1,1,g—2,1(51 x S2), and Sg is the

irreducible component of ./\/lfﬁff which contains kg_2.1,1;1(S2 x S3). Since g — 1 > 3, the inductive hypothesis

and Lemma imply that M¢(S1) = M(Sg) = Spyi,_1)(Z/1).

Choose a base point (sy, s2,53) € (S§ x S5 x S9)(k), and let s = k(sy, 52, 53). Write V = Pic’(C,)[¢]s and,
for 1 <i <3, let V; = Pic’(Cy,)[/]s,- Each of these is a Z/f-vector space equipped with a symplectic form.
There is an isomorphism of symplectic Z/¢-vector spaces V = Vi @ Vo @ V3 by equation . By Lemma
[44|b), M¢(S, s) contains Sp(Vi @ Va) x Mg(S3, s3) and M, (51, s1) x Sp(Va @ V3). Since Sp(Vy @ Va) x Sp(V3) is
a maximal subgroup of Sp(V') [I7, Thm. 3.2], M,(S, s) = Sp(V) = Sp,,(Z/¢) . O

Remark 4.6. The assertion of Theorem 4.5 is false for M{ and M$ if £ > 5. Indeed, a curve of genus g < 2
and p-rank 0 is supersingular. Since a supersmgular p-divisible group over a scheme S becomes trivial after a
finite pullback S — S, the monodromy group Mz, (MY) is finite. In view of Lemma 5.1, My(M9) and M,(M3)
cannot be the full symplectic group.

Remark 4.7. One might wonder whether it is possible to simplify the proof of Theorem [£.5] using the intersection
of S with both A; and A, rather than with Ay ;. This does not work for the case of MyY. The intersection of

ﬂz with Ay involves curves in MY, and the components of M3 do not have full monodromy group Sp,(Z/¢).

4.3 The p-adic monodromy of the p-rank strata of curves

In this section we calculate the p-adic (as opposed to the ¢-adic) monodromy of components of the p-rank strata
M.

! Let S be a scheme of characteristic p, and let X — S be an abelian scheme with constant p-rank f.
The group scheme X|[p] admits a largest étale quotient X[p]** (see, e.g, [25, Cor. 1.7]). Similarly, there is
a largest étale quotient X[p™]¢* of the p-divisible group X[p>]. Let s be a geometric point of S. Then
X[p]® — S is classified by a homomorphism (S, s) — Aut(X[p]®)s = GL¢(Z/p), whose image is denoted
M,(X — S), the physical p-monodromy of X — S. Similarly, to X[p>°]¢* — S corresponds a representation
m1(S, s) = Aut(X [p>=]®"), = GLs(Z,), whose image is denoted Mz, (X — S).
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Proposition 4.8. Suppose g >2 and 1 < f < g. Let S be an irreducible component of ./\/lf;. Then M, (S) =
GLf(Z/p) and MZP(S) = GLf(Zp)

Note that this statement is not a perfect analogue of Theorem [4.5] since it only analyzes the maximal étale
quotient of the p-divisible group of the Jacobian of the tautological curve over S.

Proof. If g = f, this is [, Thm. 2.1]. Otherwise, suppose f < g. By Proposition b), there is an
irreducible component T C ./\/lgff;l such that S contains the image Z of ./\/lé;1 x T under Ky, g—;1. Since
M,(Z) is isomorphic to GL(Z/p), which is as large as possible, M,(S) = M,(S) = GLs#(Z/p). Similarly,
Mz, (S) = Mg, (Z) = GLf(Zy). O

Remark 4.9. In [29], the author proves the analogue of Proposition for the p-rank strata .Ag. From this, he
deduces the irreducibility of a certain Igusa variety, and is able to analyze the structure of the moduli space of
abelian varieties with specified parahoric level-p structure. The analogous statements (e.g., [29] Thm. 4.1]) hold
for the moduli space of curves with parahoric level-p structure, provided one replaces Ag with an irreducible
component of /\/lg.

5 Arithmetic applications

The results of the previous section about the monodromy of components of the moduli space of curves of
genus ¢ and p-rank f have arithmetic applications involving curves over finite fields. Specifically, they imply
the existence of curves of a given type with trivial automorphism group (Application or absolutely simple
Jacobian (Application . Moreover, they give estimates for the proportion of such curves with a rational point
of order £ on the Jacobian (Application [5.9) or for which the numerator of the zeta function has large splitting
field (Application .

For these applications, it is necessary to work over a finite field F, as opposed to its algebraic closure.
Throughout this section, let F be a finite field of characteristic p and cardinality ¢, and let F be an algebraic
closure of F. Let £ be a prime distinct from p.

In this section we redefine M, as the Deligne-Mumford stack of smooth projective curves of genus g fibered
over the category of IFp-schemes.

Section [5.1] contains some results on arithmetic monodromy groups, and recalls a rigidifying structure which
allows one to pass between moduli stacks and moduli schemes. In Sections and we apply these techniques
to deduce consequences for curves over finite fields.

5.1 Arithmetic monodromy and tricanonical structures

Let A be either Z;, Qp or Z/¢™ for some positive integer n. If 7 : C' — S/F is a smooth connected proper relative
curve, its geometric A-monodromy group is M5 (C' — S) = M (Cf — Sz). It is naturally a subgroup of the
(arithmetic) monodromy group Mx(S). If the fibers of m have genus g one has M (S) € GSp,,(A), and

Mz, (S)/MZ°"(S) = Gal(F (k= (F)) /F). (5.1.1)

Lemma 5.1. Let C — S/F be a smooth connected proper relative curve of genus g > 2 over a geometrically
connected base. If ME*™(S) = Spy (Z/0), then MZ ™™ (S) = Spyy(Ze); Mz, (S) has finite index in GSpy,(Ze);
and ME®™(S) = Sp, (Q).

Proof. Since MZ*°™ () is a closed subgroup of Sp,,(Z¢), and since MZ°*™(S) < Spyy(Z¢) — Spy,(Z/¢) is
surjective, it follows that M5°*" (S) 22 Spy (Zy) for group-theoretic reasons [28, Thm. 1.3]. The remainder of the
lemma follows from equation (5.1.1)) and the definition of Mg,. O

In Sections and we use Chebotarev arguments to deduce various applications about curves over
finite fields. At present these tools are only available for families of curves over schemes, as opposed to stacks. To
surmount this, we consider rigidifying data whose corresponding moduli problems are representable by schemes.
By choosing the data M, sk of a tricanonical structure which exists Zariski-locally on the base, as opposed to
a Jacobi level structure which only exists étale-locally on the base, we can relate point counts on M, 3 (F) to
those on M (IF).

Suppose g > 2. The canonical bundle Q¢/g is ample, and Q?ﬁ;’s is very ample. Let N(g) = 5g — 5. Then

W*(Q%;’S) is a locally free Og-module of rank N(g), and sections of this bundle define a closed embedding

C— Pg(g). A tricanonical (3K) structure on C' — S is a choice of isomorphism O?N(g) = (Q%;’S); let Mgy sk
be the moduli space of smooth curves of genus g equipped with a 3K-structure. A curve with 3 K-structure admits
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no nontrivial automorphisms, and M, sk is representable by a scheme [I6, 10.6.5], [2I, Prop. 5.1]. Moreover,
M, may be constructed as the quotient of My 3k by GLy (), so that the forgetful functor ¢, : My 3x — M,
is open [21I, p. 6] and a fibration [22, Thm. A.12].

Lemma 5.2. Let S C My be a connected substack, and let Sz = S X pm, My zr. Then Mg(Szr) = Mg(S).

Proof. Since M3k — M, is a fibration, so is S3x — S. Fix a base point s3x € S3x(F), and let
s = 94(s3x). The fiber S3x s is connected; by the exact sequence (4.1.1), the induced homomorphism g, :
m1(S3k, 83 ) — m1(S, 8) is surjective. As in Lemma this implies My(S3x) = M¢(S). O

5.2 Existence applications: trivial automorphism group and simple Jacobian

In this section, we show there exist curves of genus g and p-rank f with trivial automorphism group and
absolutely simple Jacobian using the Q-monodromy of Mg .

Lemma 5.3. Let S C My be a geometrically connected substack such that Mg™™(S) 22 Spy,(Z/t) for all £

in a set of density one. Then there exists s € S(F) such that Autz(Cy,s) is either trivial or is generated by a
hyperelliptic involution.

Proof. Let Sz = S X pm, Mgysk; by Lemmas and ME 7" (S31¢) 2 Spay (Qe).

Let ¢ be a prime which splits completely in all cyclotomic fields whose degree over QQ is at most 2g.
By the Chebotarev density theorem (see [5, Cor. 4.3] for details), there exists an s3x € S3x(F) such that
Endz(Pic?(C) s, ) ® Q = L, where L is a number field of dimension [L : Q] = 2g which is inert at £.

Since any automorphism of CSSK,T has finite order, AUtF(CSSK,F) is contained in the torsion subgroup of
Oj . Since L is linearly disjoint over Q from each cyclotomic field of degree at most 2g, the torsion subgroup of
OF is simply {£1}. Now, —1 has no nontrivial fixed points on the Tate module T;(Pic’(Cs,, )). Therefore, if an
automorphism ¢ € Aut(Cs,, ) acts as —1 on the Jacobian of Cs,, , then the quotient of Cs,,, by ¢ has genus zero,
and ¢ is a hyperelliptic involution. For s := v4(s3x) € S(F), the group Autz(Cy,s) is either trivial or is generated
by a hyperelliptic involution as well. O

Application 5.4. Suppose g > 3 and 0 < f < g. Then there exists an open dense substack U C /\/lg such that
for each s € U(F), Autz(Cy,s) is trivial.

Proof. After a finite extension of the base field, one can assume that each irreducible component of M£ is
geometrically irreducible. Let S be one such component and recall that dim(S) = 29 — 3 + f [9, Thm. 2.3]. By
Theorem ME°™(S) = Spy,(Z/f) for all £ # p. By Lemma there is a nonempty (and thus open dense)
substack Ug C S whose points correspond to curves of genus g and p-rank f whose automorphism group is either
trivial or generated by a hyperelliptic involution. Every component of the p-rank stratum 'Hg of the hyperelliptic
locus has dimension g — 1 + f by [I1, Thm. 1] for p > 3 and by [27, Cor. 1.3] for p = 2. Thus the intersection of
U with the hyperelliptic locus is a proper closed substack of Ug. Let Us = U — (U5 N Hf; ), and let U be the

union of the stacks Ug over all irreducible components S; if s € U(F), then Autz(Cy ) is trivial. O

Remark 5.5. Application can be proved for Mg for all ¢ >3 and all 0 < f < g without monodromy
techniques; see [2, Thm. 1.1].

Remark 5.6. In special cases, there are results in the literature that have stronger information about the field
of definition of a curve with small automorphism group. In [26], the author shows that for every p and every
g > 3, there is a curve of genus g defined over I, with trivial automorphism group. The p-ranks of these curves
are not determined.

Application 5.7. Suppose g >3 and 0 < f < g. Let S be an irreducible component of ./\/lg. Then there exists
s € S(F) such that the Jacobian of Cs is absolutely simple.

Proof. Possibly after a finite extension of I, one can assume that S is geometrically irreducible. By Theorem
MZ*™(S) = Spy, (Z/f) for all £ # p. By the proof of Lemma there exists a point s € S(F) such that
Endz(Pic(C,,5)) ® Q is a field. Then the Jacobian Pic’(C, ) is absolutely simple. O

Remark 5.8. In special cases, there are results in the literature that have stronger information about the field
of definition of curves with absolutely simple Jacobians. For example, in [I4] the authors show that, for every
prime p, if g =2 or g = 3, then there exists a curve with genus g and p-rank g defined over F, whose Jacobian
is absolutely simple.
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5.3 Enumerative applications: class groups and zeta functions

This section contains enumerative results about curves of genus g and p-rank f that rely on Z/¢-monodromy
groups. Recall that if s € M, (F), then Pic’(C, . )(F) is isomorphic to the class group of the function field F(C, ).
The size of the class group is divisible by ¢ exactly when there is a point of order ¢ on the Jacobian. Roughly
speaking, Application [5.9] shows that among all curves over F of specified genus and p-rank, slightly more than
1/¢ of them have an F-rational point of order ¢ on their Jacobian.

Application 5.9. Suppose g >3, and 0 < f < g, and £ is a prime distinct from p. Let & be the image of |F| in
(Z)e)*. There exists a rational function aye(T) € Q(T') such that the following holds: there exists a constant
B = B(M/,0) such that if MJ(F) #0, then

#{s € MI(F) : £ divides |Pic”(Cy.s)(F)|} B

) —agell)] < N (5.3.1)

Remark 5.10. Suppose ¢ is odd. One knows that ag1(¢) = -5 + O(1/€%), while ay¢(€) = 75 + O(1/6%) if
&€ # 1. A formula for ay 1(¢) is given in [IJ.

Proof. [Proof of | Write M for /\/lg. Let M*®™ be the open dense locus where the reduced stack M is
smooth, and let A/ be the union of all connected components S of M such that S(F) # 0. Let S be any such
component. Since S(F) # (), S is geometrically connected and smooth, and thus geometrically irreducible. In
particular, Sg is dense in an irreducible component of Mg, and thus M%™™(S) = Sp, (Z/{') for all £’ # p.

Let S3x = S X m, My 3Kk Since the map ¢, : M, 3 — M, is a fibration with connected fibers, Sz is also
connected. Tricanonical structures exist Zariski-locally, so Ssk (F) # (0. Finally, ¢, is formally smooth. Taken
together, this shows that S3x is geometrically irreducible and smooth.

By Lemma there is an open dense subscheme Usg of S3i such that if ¢ € Usg, then Aut(Cy ) = {1}.
The geometric monodromy group of Usx is again Spy,(Z/f) (Lemma . An equidistribution theorem ([16]
9.7.13]; see also [I}, 3.1]) shows that an estimate of the form holds (with error term of order O(1/,/7)),
where M is replaced by Usk. Let U = ¢,(Usk); since ¢, is universally open, U is open, too. The fiber over
each s € U(F) consists of exactly |GLy () (F)|/|Aut(Cy.s))| = |GLn(g) (F)| points [16, 10.6.8], and if ¢4(t) = s
then Cy; = Cy 5. Therefore, the proportion of elements s € U(F) for which ¢ divides |Pic0 (Cy,s)(F)| is exactly
the same as the analogous proportion of elements ¢ € Usk (F).

Thus holds when M is replaced by U. For dimension reasons, there exists a constant D such that
#(S —U)(F)/#S(F) < D/q; therefore, holds for S. By invoking this argument for each of the finitely
many irreducible components of N, and remembering that by construction N/ (F) = M*™(TF), one obtains
for M®™(TF). Finally, since there exists a constant D’ such that #(M — MS)(F)/#M(F) < D’/q, this yields

E31). 0

If C/F is a smooth projective curve of genus g, its zeta function has the form P /r(T)/(1 —T)(1 —qT),
where Pe/p(T) € Z[T] is a polynomial of degree 2g. The principal polarization on the Jacobian of C' forces a
symmetry among the roots of Pe/p(T); the largest possible Galois group for the splitting field over Q of P /g (T')
is the Weyl group of Sp,, which is a group of size 29g!.

Application 5.11. Suppose g > 3, and0 < f < g, and p > 2g + 1. There exists a constant v = v(g) > 0 so that
the following holds. There exists a constant E = E(MY) so that if MJ(F) # 0, then

#{s € ./\/lg(F) : Pe, ,/r(T) is reducible, or has splitting field with degree < 29g'}
#M; (F)

< Eq7. (5.3.2)

Proof. The proof is similar to that of Application Again, write M for Mf; . let .S be an irreducible
component of M*™ with S(F) # (), and let Usx be the open dense subscheme of S3x whose points correspond
to curves of the specified type with tricanonical structure with trivial automorphism group. By Lemma[5.2} and
Theorem 4.5, M¥*" (Us) 2 Spy, (Z/€) if £ # p. By [19, Thm. 6.1 and Remark 3.2.(4)], there is a constant E(S)
so that (5.3.2)) is valid for Usk. The argument used in Application shows the same result for each S, and
thus for M. O
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