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Abstract: We determine the Z/`-monodromy and Z`-monodromy of every irreducible component of the stratum Mf
g

of curves of genus g and p-rank f in characteristic p. In particular, we prove that the Z/`-monodromy of every

component of Mf
g is the symplectic group Sp2g(Z/`) if g ≥ 3 and if ` is a prime distinct from p. The method involves

results on the intersection of Mf
g with the boundary of Mg. We give applications to the generic behavior of

automorphism groups, Jacobians, class groups, and zeta functions of curves of given genus and p-rank.
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1 Introduction

Suppose C is a smooth connected projective curve of genus g ≥ 1 over an algebraically closed field k of
characteristic p > 0. The Jacobian Pic0(C) is a principally polarized abelian variety of dimension g. The number
of p-torsion points of Pic0(C) is pf for some integer f , called the p-rank of C, with 0 ≤ f ≤ g.

Let Mg be the moduli space over k of smooth connected projective curves of genus g; it is a smooth Deligne-
Mumford stack over k. The p-rank induces a stratification Mg = ∪Mf

g by locally closed reduced substacks Mf
g ,

whose geometric points correspond to curves of genus g and p-rank f .
Let ` be a prime number distinct from p. In this paper, we compute the `-adic monodromy of every

irreducible component of Mf
g . The main result implies that there is no restriction on the monodromy group

other than that it preserve the symplectic pairing coming from the principal polarization. Heuristically, this
means that p-rank constraints alone do not force the existence of extra automorphisms (or other algebraic
cycles) on a family of curves.

To describe this result more precisely, let S be a connected stack over k, and let s be a geometric point of
S. Let C → S be a relative smooth proper curve of genus g over S. Then Pic0(C)[`] is an étale cover of S with
geometric fiber isomorphic to (Z/`)2g. The fundamental group π1(S, s) acts linearly on the fiber Pic0(C)[`]s,
and the monodromy group M`(C → S, s) is the image of π1(S, s) in Aut(Pic0(C)[`]s). For the main result we
determine M`(S) := M`(C → S, s), where S is an irreducible component of Mf

g and C → S is the tautological
curve. This also determines the `-adic monodromy group MZ`

(S).

Theorem 4.5. Let ` be a prime distinct from p and suppose g ≥ 1. Suppose 0 ≤ f ≤ g, and f 6= 0 if g ≤ 2.
Let S be an irreducible component of Mf

g , the p-rank f stratum in Mg. Then M`(S) ∼= Sp2g(Z/`) and
MZ`

(S) ∼= Sp2g(Z`).

We also prove an analogous result about p-adic monodromy (Proposition 4.8).
We give four applications of Theorem 4.5 in Section 5. The first two do not use the full strength of the

theorem, in that they can be deduced solely from knowledge of the Q`-monodromy. Application (i) complements
[26, Thm. 1] (and recovers [2, Thm. 1.1(i)]), while application (ii) complements results in [14, Thm. 1].
Applications (iii) and (iv) build upon [16, 9.7.13] and [19, 6.1] respectively.

Applications: Let F be a finite field of characteristic p. Under the hypotheses of Theorem 4.5:

(i) there is an F-curve C of genus g and p-rank f with AutF(C) = {id} (5.4);

(ii) there is an F-curve C of genus g and p-rank f whose Jacobian is absolutely simple (5.7);

(iii) if |F| ≡ 1 mod `, about `/(`2 − 1) of the F-curves of genus g and p-rank f have a point of order ` on their
Jacobian (5.9);
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(iv) for most F-curves C of genus g and p-rank f , the splitting field of the numerator of the zeta function of C
has degree 2gg! over Q (5.11).

At its heart, this paper relies on fundamental work of Chai and Oort. The proof of Theorem 4.5 appears
in Section 4.2. It proceeds by degeneration (as in [7]) and induction on the genus. Consider the moduli space
Ag of principally polarized abelian varieties of dimension g and its p-rank strata Af

g . Recent work in [5] gives
information about the integral monodromy of Af

g . In particular, an irreducible subspace of Ag which is stable
under all Hecke correspondences and whose generic point is not supersingular has monodromy group Sp2g(Z/`).
The base cases of Theorem 4.5 rely on the fact that the dimensions of Mf

g and Af
g are equal if g ≤ 3.

We note that [5] is not directly applicable to the strata Mf
g when g ≥ 4. When g ≥ 4, the Torelli locus is

very far from being Hecke-stable. Another method for computing monodromy groups is found in [13], where the
author shows that certain group-theoretic conditions on the local inertia structure of a Z/`-sheaf guarantee that
its global monodromy group is the full symplectic group. The method of [13] applies only to families of curves
in which the Jacobian of at least one degenerate fiber has a nontrivial toric part, and thus does not apply to
M0

g.
The inductive step of Theorem 4.5 uses results about the boundary of Mf

g found in Section 3. In particular,
it employs a new result that the closure of every component S of Mf

g in Mg contains moduli points of chains
of curves of specified genera and p-rank (Proposition 3.5), and in particular intersects the boundary component
∆1,1 in a certain way (Corollary 3.7). As in [3], this implies that the monodromy group of S contains two
non-identical copies of Sp2g−2(Z/`), and is thus isomorphic to Sp2g(Z/`).

A result of independent interest in Section 3 is the following.

Corollary 3.6. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let Ω ⊂ {1, . . . , g} be a subset of cardinality f . Let S be an
irreducible component of Mf

g . Then S contains the moduli point of a chain of elliptic curves E1, . . ., Eg, where
Ej is ordinary if and only if j ∈ Ω.

In Section 3.2, we include some open questions about the geometry of the p-rank strata of curves. For
example, the number of irreducible components of Mf

g is known only in special cases. Finally, we anticipate
that the techniques of this paper can be used to compute the `-adic monodromy of components of the p-rank
strata Hf

g of the moduli space Hg of hyperelliptic curves of genus g as well.
We thank the referee for helpful comments.

2 Background

Let k be an algebraically closed field of characteristic p > 0. In Sections 2, 3, and 4 all objects are defined on the
category of k-schemes, and T is an arbitrary k-scheme. Let ` be a prime distinct from p. We fix an isomorphism
µµµ` ' Z/`.

2.1 Moduli spaces

For each g ≥ 1 consider the following well-known categories, each of which is fibered in groupoids over the
category of k-schemes in its étale topology:

Ag principally polarized abelian schemes of dimension g;

Mg smooth connected proper relative curves of genus g;

Mg stable relative curves of genus g.

For each positive integer r, there is also (see [18, Def. 1.1,1.2]) the category

Mg;r r-labeled stable relative curves (C;P1, . . . , Pr) of genus g.

These are all smooth Deligne-Mumford stacks, and Mg and Mg;r are proper [18, Thm. 2.7]. There is a forgetful
functor φg;r : Mg;r →Mg. Let Mg,0 = Mg. Let Mg;r = Mg;r ×Mg

Mg be the moduli stack of r-labeled
smooth curves of genus g. The boundaries of Mg and Mg;r are ∂Mg = Mg −Mg and ∂Mg;r = Mg;r −Mg;r,
respectively. If S ⊂Mg, let S be the closure of S in Mg.

For a k-scheme T , Mg(T ) = Mork(T,Mg) is the category of smooth proper relative curves of genus g over
T . There is a tautological curve Cg over the moduli stack Mg [6, Sec. 5]. If s ∈Mg(k), let Cg,s denote the fiber
of Cg over s, which is the curve corresponding to the point s : Spec k →Mg. Similar conventions are employed
for the tautological marked curve Cg;r over Mg;r.

Let C/k be a stable curve. The Picard variety Pic0(C) is an abelian variety if each irreducible component
of C is smooth and if the intersection graph of the irreducible components of C is a tree. Such a curve is said
to be of compact type. Curves which are not of compact type correspond to points of a component ∆0 (defined
in Section 2.3) of ∂Mg.
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2.2 The p-rank

Let X be a principally polarized abelian variety of dimension g over an algebraically closed field k′ of
characteristic p. The p-rank of X is the integer f such that X[p](k′) ∼= (Z/p)f . It may be computed as
f(X) = dimFp Hom(µµµp, X), where µµµp is the kernel of Frobenius on the multiplicative group Gm. It is well-known
that 0 ≤ f ≤ g. This definition extends to semiabelian varieties; if X/k′ is a semiabelian variety, its p-rank is
dimFp

Hom(µµµp, X). If X is an extension of an abelian variety Y by a torus W , then f(X) = f(Y ) + dim(W ).
If X/k0 is a semiabelian variety over an arbitrary field of characteristic p, its p-rank is that of Xk′ for any
algebraically closed field k′ containing k0. If C/k′ is a stable curve, then its p-rank f(C) is that of Pic0(C).

Lemma 2.1. Let X → S be a semiabelian scheme of relative dimension g over a Deligne-Mumford stack, and
suppose 0 ≤ f ≤ g. There is a locally closed reduced substack Sf of S such that for each field k′ ⊃ k and point
s ∈ S(k′), then s ∈ Sf (k′) if and only if the p-rank of Xs is f .

Proof. A substack of S is reduced and locally closed if it is locally representable by reduced locally closed
subschemes [6, p. 100] [20, 3.9 and 3.14]. Therefore, it suffices to consider the case that S is an affine scheme.
Write X as an extension 0 →W → X → Y → 0, where Y is an abelian scheme and W is a torus. Since dim(W )
is an upper semicontinuous function on the base [10, p. 8], there is a finite stratification of S by locally closed
subschemes on which dim(W ) is constant. Since a finite union of locally closed subschemes is again locally closed,
one may assume that dim(W ) is constant. Finally, since f(Y ) = f(X) + dim(W ), it suffices to prove the result
for the abelian scheme Y . The existence of Sf then follows immediately from [15, Thm. 3.2.1]. 2

In particular, Af
g and Mf

g denote the locally closed reduced substacks of Ag and Mg, respectively, whose

geometric points correspond to objects with p-rank f . Similary, Mf

g := (Mg)f and Mf

g;r := (Mg:r)f . Note that

Mf

g may be strictly contained in Mf
g since the latter may contain points s such that f(Cg,s) < f .

Every component of Mf

g has dimension 2g − 3 + f [9, Thm. 2.3]. Since Mf

g;r is the fibre of φg,r over Mf

g;r,
it is pure of dimension 2g − 3 + f + r.

2.3 Clutching maps

If g1, g2, r1, r2 are positive integers, there is a clutching map

κg1;r1,g2;r2 : Mg1;r1 ×Mg2;r2
// Mg1+g2;r1+r2−2.

Suppose s1 ∈Mg1;r1(T ) is the moduli point of the labeled curve (C1;P1, . . . , Pr), and suppose s2 ∈Mg2;r2(T )
is the moduli point of (C2;Q1, . . . , Qr2). Then κg1;r1,g2;r2(s1, s2) is the moduli point of the labeled T -curve
(D;P1, . . . , Pr1−1, Q2, . . . Qr2), where the underlying curve D has components C1 and C2, the sections Pr1 and
Q1 are identified in an ordinary double point, and this nodal section is dropped from the labeling. The clutching
map is a closed immersion if g1 6= g2 or if r1 + r2 ≥ 3, and is always a finite, unramified map [18, Cor. 3.9].

By [4, Ex. 9.2.8],

Pic0(D) ∼= Pic0(C1)× Pic0(C2). (2.3.1)

Then the p-rank of E is

f(D) = f(C1) + f(C2). (2.3.2)

Similarly, if g is a positive integer and if r ≥ 2, there is a map

κg;r : Mg;r
// Mg+1;r−2.

If s ∈Mg;r(T ) is the moduli point of the labeled curve (C;P1, . . . , Pr) then κg;r(s) is the moduli point of the
labeled curve (E;P1, . . . , Pr−2) where E is obtained by identifying the sections Pr−1 and Pr in an ordinary
double point, and these sections are subsequently dropped from the labeling. Again, the morphism κg;r is finite
and unramified [18, Cor. 3.9].

By [4, Ex. 9.2.8], Pic0(E) is an extension

0 // W // Pic0(E) // Pic0(C) // 0 , (2.3.3)
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where W is a one-dimensional torus. In particular, the toric rank of Pic0(E) is one greater than that of Pic0(C),
and their maximal projective quotients are isomorphic, so that

f(E) = f(C) + 1. (2.3.4)

For 1 ≤ i ≤ g − 1, let ∆i = ∆i[Mg] be the image of κi,1;g−i,1. Note that ∆i and ∆g−i are the same substack
of Mg. Let ∆0 = ∆0[Mg] be the image of Mg−1;2 under κg−1;2. Each ∆i is an irreducible divisor in Mg, and
∂Mg is the union of the ∆i for 0 ≤ i ≤ bg/2c (e.g., [18, p.190]). If S is a stack equipped with a map S →Mg,
let ∆i[S] denote S ×Mg

∆i[Mg]. Also define ∆i[Mg]f := (∆i[Mg])f .
If g ≥ 3, then there exists a commutative diagram of clutching maps

M1,1 ×Mg−2,2 ×M1,1

��

//

κ1,g−2,1

))TTTTTTTTTTTTTTTTT
Mg−1,1 ×M1,1

��
M1,1 ×Mg−1,1

// Mg.

(2.3.5)

Let ∆1,1 = ∆1,1[Mg] denote the image in Mg of the upper left-hand object; it is the (reduced) self-
intersection locus of ∆1. There is an open, dense substack U1,1 ⊂ ∆1,1 such that if s ∈ U1,1(k), then Cg,s is
a chain of three irreducible smooth curves Y1, Y2, Y3 with gY1 = gY3 = 1 and gY2 = g − 2. Also, for i ∈ {1, 3},
the curves Yi and Y2 intersect in a point Pi which is an ordinary double point.

3 The p-rank strata of curves

3.1 Boundary of the p-rank strata of curves

The p-rank strata of the boundary of Mg are easy to describe using the clutching maps. First, if f ≥ 1, then
∆0[Mg]f is the image of Mf−1

g−1;2 under κg−1;2 by (2.3.4). Second, if 1 ≤ i ≤ g − 1 and 0 ≤ f ≤ g, then (2.3.2)

implies that ∆i[Mg]f is the union of the images of Mf1

i;1 ×M
f2

g−i;1 under κi;1,g−i;1 as (f1, f2) ranges over all
pairs such that

0 ≤ f1 ≤ i, 0 ≤ f2 ≤ g − i and f1 + f2 = f. (3.1.1)

Lemma 3.1. Suppose g ≥ 2 and 0 ≤ f ≤ g. If 0 ≤ i ≤ g − 1 and (f, i) 6= (0, 0), then every component of
∆i[Mg]f has dimension 2g + f − 4.

Proof. Suppose 1 ≤ f ≤ g. Then Mf−1

g−1;2 is pure of dimension dim(Mf−1

g−1) + 2 = 2g + f − 4. Since κg−1;2

is finite, ∆0[Mg]f is pure of dimension 2g + f − 4 as well.
Similarly, suppose 0 ≤ f ≤ g and 1 ≤ i ≤ g − 1. Let (f1, f2) be any pair of integers satisfying (3.1.1). Then

Mf1

i;1 ×M
f2

g−i;1 is pure of dimension dim(Mf1

i;1) + dim(Mf2

g−i;1) = 2g + f − 4. Since κi;1,g−i;1 is finite, ∆i[Mg]f

is pure of dimension 2g + f − 4 as well. 2

The first part of the next lemma shows that if η is a generic point of Mf

g , then the curve Cg,η is smooth.

Thus no component of Mf

g is contained in the boundary ∂Mg. The last part shows that one can adjust the

labeling of an r-labeled curve of genus g and p-rank f without leaving the irreducible component of Mf

g;r to
which its moduli point belongs.

Lemma 3.2. Suppose g ≥ 1, 0 ≤ f ≤ g, and r ≥ 1.

a. Then Mf
g is open and dense in Mf

g .

b. Then Mf
g;r is open and dense in Mf

g;r.

c. Let S be an irreducible component of Mf

g;r. Then S = φ−1
g;r(φg;r(S)). Equivalently, if T is a k-scheme, if

(C;P1, . . . , Pr) ∈ S(T ), and if (Q1, . . . , Qr) is any other labeling of C, then (C;Q1, . . . , Qr) ∈ S(T ).

Proof. Part (a) is well-known if g = 1. For g ≥ 2, the result follows immediately from Lemma 3.1, since Mf

g

is pure of dimension 2g + f − 3 [9, Thm. 2.3]. Part (b) follows from the fact that the p-rank of a labeled curve
depends only on the underlying curve, so that Mf

g;r = Mg;r ×Mg
Mf

g .

For part (c), let S be an irreducible component of Mf

g;r. It suffices to show that φ−1
g;r(φg;r(S)) ⊆ S. By

part (b), U = S ∩Mg;r is open and dense in S. Therefore, S is the largest irreducible substack of Mf

g;r which
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contains U . The fibers of φg;r|U are irreducible, so φ−1
g;r(φg;r(U)) is also an irreducible substack of Mf

g;r which
contains U . Thus φ−1

g;r(φg;r(U)) ⊂ S. This shows that φ−1
g;r(φg;r(U)) = U .

To finish the proof, it suffices to show that a T -point of S is a T -point of φ−1
g;r(φg;r(S)) for an arbitrary

k-scheme T . To this end, let α = (C;P1, . . . , Pr) ∈ S(T ), and let β = (C;Q1, . . . , Qr) ∈M
f

g;r(T ). Note that

φg;r(β) = φg;r(α), and φg;r(α) is supported in the closure of φg;r(U) in Mf

g . Because Mg;r is dense in Mg;r, it

follows that β is supported in the closure of φ−1
g;r(φg;r(U)) in Mf

g;r, which is S. 2

Lemma 3.3. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let S be an irreducible component of Mf
g .

a. Then S intersects ∆0[Mg] if and only if f ≥ 1.
b. If f ≥ 1, then each irreducible component of ∆0[S] contains the image of a component of Mf−1

g−1,2 under
κg−1;2.

In other words, Lemma 3.3(b) states that if f ≥ 1 and if η is a generic point of ∆0[S], then the normalization
C̃g,η of Cg,η is a smooth curve of genus g − 1 and p-rank f − 1. The containment in Lemma 3.3(b) may be strict
since ∆0[S] may contain points s such that Cg,s has p-rank strictly less than f .

Proof. If f = 0, then equation (2.3.4) implies that S does not intersect ∆0[Mg]. If f ≥ 1, then S ⊂Mg is
a complete substack of dimension greater than 2g − 3. Let Ng = Mg −∆0 be the sublocus of curves of compact
type; it is open in Mg. By [9, Lemma 2.4], a complete substack of Ng has dimension at most 2g − 3. Thus, S
is not contained in Ng and so S intersects ∆0 nontrivially. This completes part (a).

For part (b), recall that S is not contained in ∂Mg by Lemma 3.2(a). Since Mg, S and ∂Mg are proper,
the intersection of S with the divisor ∆0[Mg] has pure dimension dimS − 1, which equals dim(∆0[Mg]f ) by
Lemma 3.1. Thus each irreducible component of S ∩∆0[Mg] contains the image of some component of Mf−1

g−1;2

under the finite morphism κg−1;2. In particular, it contains the image of the moduli point of a smooth curve of
genus g − 1 and p-rank f − 1. 2

The next result shows that the closure of each irreducible component of Mf
g intersects ∆i[Mg]f in every

way possible.

Proposition 3.4. Suppose g ≥ 2 and 0 ≤ f ≤ g. Suppose 1 ≤ i ≤ g − 1 and (f1, f2) is a pair satisfying the
conditions in (3.1.1). Let S be an irreducible component of Mf

g .

a. Then S intersects κi;1,g−i;1(M
f1

i;1 ×M
f2

g−i;1).

b. Each irreducible component of the intersection contains the image of a component of Mf1

i;1 ×M
f2

g−i;1.

Proposition 3.4(b) implies that if η is a generic point of S ∩ κi;1,g−i;1(M
f1

i;1 ×M
f2

g−i;1), then Cg,η is a chain
of two smooth curves of respective genera i and g − i and respective p-ranks f1 and f2.

Proof. (a) implies (b): To see that (a) implies (b) for fixed g, f , i, and (f1, f2), note that S ∩∆i[Mg]f

has pure dimension dimS − 1 = 2g + f − 4 by the same reasoning as in the proof of Lemma 3.3(b). By Lemma
3.1 this is the same as the dimension of each component of κi;1,g−i;1(M

f1

i;1 ×M
f2

g−i;1).

Base cases: The proof of (a) is by induction on g while holding g − f fixed. The two base cases are
when f = 0 and when g = 2. When f = 0, then the only possibility for (f1, f2) is (0, 0). By 3.3(a), S is
contained in Ng = Mg −∆0. By [9, Lemma 2.5], S intersects ∆i[Mg], and a point in the intersection must
be in κi;1,g−i;1(M

0

i;1 ×M
0

g−i;1).
For the other base case, let g = 2. The statement is true for g = f = 2 (or more generally when g = f)

because Mg
g is open and dense in Mg. If f = 1, then i = 1. Without loss of generality, (f1, f2) = (1, 0). Thus

the next claim suffices to conclude the proof of the base cases.

Claim: M1

2 is irreducible and intersects κ1;1,1;1(M
1

1;1 ×M
0

1;1).
To prove the claim, recall that the Torelli morphism M2 → A2 is an inclusion [24, Lemma 1.11]. Since

dim(M1
2) = dim(A1

2), and since A1
2 is irreducible (e.g., [8, Ex. 11.6]), it follows that M1

2 is irreducible. Consider
a chain of two smooth elliptic curves, one of which is ordinary and one supersingular, intersecting in an ordinary
double point. The moduli point of this curve is in M1

2 ∩ κ1;1,1;1(M
1

1;1 ×M
0

1;1).

Inductive step: Suppose that g ≥ 3 and 1 ≤ f ≤ g. The inductive hypothesis is that, given 1 ≤ i′ ≤ g − 2,
given a pair (f ′1, f

′
2) such that 0 ≤ f ′1 ≤ i′, 0 ≤ f ′2 ≤ g − 1− i′, and f ′1 + f ′2 = f − 1, and given an irreducible
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component Z of Mf−1
g−1 , then Z intersects κi′;1,g−1−i′;1(M

f ′1
i′;1 ×M

f ′2
g−1−i′;1); and, since (a) implies (b), that each

irreducible component of the intersection contains a component of κi′;1,g−1−i′;1(M
f ′1
i′;1 ×M

f ′2
g−1−i′;1).

Let S be an irreducible component of Mf
g . Let 1 ≤ i ≤ g − 1, and let (f1, f2) be a pair which satisfies

(3.1.1). Possibly after exchanging i with g − i and f1 with f2, we suppose that f1 > 0.

Case 1: Suppose i > 1. Let (g′1, g
′
2) = (i− 1, g − i), and let (f ′1, f

′
2) = (f1 − 1, f2). Note that g′1 + g′2 = g − 1

and f ′1 + f ′2 = f − 1. Also 0 ≤ f ′j ≤ g′j and g′j ≥ 1 for j = 1, 2. So 1 ≤ g′1 ≤ g − 2. By Lemma 3.3(b), S contains

the image of a component Z̃ of Mf−1

g−1;2 under κg−1;2. The inductive hypothesis, applied to (the interior of) the

component Z = φg−1;2(Z̃) of Mf−1

g−1 , shows that Z intersects κg′1;1,g′2;1
(Mf ′1

g′1;1
×Mf ′2

g′2;1
).

Let ξ be a generic geometric point of the intersection. By part (b) of the inductive hypothesis, the curve
Cg−1,ξ is a chain of two irreducible curves, Y1 and Y2, with respective genera g′1 and g′2 and p-ranks f ′1 and f ′2,
intersecting in one point P which is an ordinary double point. Let P1 and P2 be two distinct points of Y1 − {P}.
Note that after identifying the points P1 and P2 on Y1, one obtains a (singular) curve of genus g′1 + 1 = i with
p-rank f ′1 + 1 = f1. The moduli point ξ̃ of the labeled curve (Cg−1,ξ, {P1, P2}) lies in Z̃ (Lemma 3.2(c)). Then
κg−1;2(ξ̃) ∈ S ∩ κi;1,g−i;1(M

f1

i;1 ×M
f2

g−i;1).

Case 2: Suppose i = 1. Then g − i = g − 1 and f1 = 1. If f2 = f − 1 > 0, then case (1) applies after
reindexing. Therefore, it suffices to consider the remaining case (i, g − i) = (1, g − 1) and (f1, f2) = (1, 0). Let S
be an irreducible component of M1

g. Then S contains an irreducible component of κ2;1,g−2;1(M
1

2;1 ×M
0

g−2;1) by

case (1). By the claim above, and the implication (a) → (b), M1

2 contains the image of an irreducible component
of M1

1;1 ×M
0

1;1 under κ1;1,1;1. Thus M1

2;1 contains the image of an irreducible component of M1

1;1 ×M
0

1;2 under

κ1;1,1;2. Therefore, S contains the image of an irreducible component of M1

1;1 ×M
0

1;2 ×M
0

g−2;1 under κ1,1,g−2.

In particular, S has nonempty intersection with κ1;1,g−1;1(M
1

1;1 ×M
0

g−1;1). 2

The next result shows that components of Mf

g deeply intersect the boundary of Mg.

Proposition 3.5. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let S be an irreducible component of Mf
g . Suppose g1, . . . , gm

are positive integers and f1, . . . , fm are integers such that
∑
gi = g,

∑
fi = f , and 0 ≤ fi ≤ gi for each

1 ≤ i ≤ m. Then S contains the image of a component of

Mf1

g1;1 ×M
f2

g2;2 ×M
f3

g3;2 × · · · ×M
fm−1

gm−1;2 ×M
fm

gm;1

under the clutching map.

Proof. The proof is by induction on m, and is proved for all g simultaneously. The case m = 1 is trivial,
while the case m = 2 is Proposition 3.4.

Now suppose the result is known for every genus g′ and every partition of g′ with at most m− 1 parts.
Suppose g, f , g1, . . . , gm, and f1, . . . , fm satisfy the conditions of Proposition 3.5. Let g′ =

∑m−1
i=1 gi and

f ′ =
∑m−1

i=1 fi. By Proposition 3.4, there exist components Z ′ of Mf ′

g′;1 and Z of Mfm

gm;1 such that S contains
κg′;1,gm;1(Z ′ × Z). By the inductive hypothesis, φg′;1(Z ′) contains κ(Y ) for some component Y of

Mf1

g1;1 ×M
f2

g2;2 ×M
f3

g3;2 × · · · ×M
fm−2

gm−2;2 ×M
fm−1

gm−1;1.

Thus, Z ′ contains κ(Y )×Mg′
Mg′;1. By Lemma 3.2(c), one can choose the labeled point to be supported on

the last component of Cg′,κ(Y ). Thus, Z ′ contains the image of a component X of

Mf1

g1;1 ×M
f2

g2;2 ×M
f3

g3;2 × · · · ×M
fm−2

gm−2;2 ×M
fm−1

gm−1;2.

Then S contains the image of X × Z. 2

The next corollary is not used in the rest of the paper, but is included to show that Proposition 3.5
generalizes [9, Lemma 2.5], which states that every component of M0

g contains the moduli point of a chain of
supersingular elliptic curves.

Corollary 3.6. Suppose g ≥ 2 and 0 ≤ f ≤ g. Let Ω ⊂ {1, . . . , g} be a subset of cardinality f . Let S be an
irreducible component of Mf

g . Then S contains the moduli point of a chain of elliptic curves E1, . . ., Eg, where
Ej is ordinary if and only if j ∈ Ω.

Proof. This follows immediately from Proposition 3.5. 2
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The next result is the form of Proposition 3.5 used to prove Theorem 4.5, which relies on degeneration to
∆1,1. We label the four possibilities for (f1, f2, f3) such that f1 + f2 + f3 = f and f1, f3 ∈ {0, 1} as follows: (A)
(1, f − 2, 1); (B) (0, f − 1, 1); (B’) (1, f − 1, 0); and (C) (0, f, 0).

Corollary 3.7. Suppose g ≥ 3 and 0 ≤ f ≤ g. Let S be an irreducible component of Mf
g .

a. Then S intersects ∆1,1[Mg].
b. There is a choice of (f1, f2, f3) from cases (A)-(C), and there are irreducible components S1 of Mf1

1;1 and

S2 of Mf2

g−2;2 and S3 of Mf3

1;1; and there are irreducible components SR of Mf2+f3

g−1;1 and SL of Mf1+f2

g−1;1 ; so
that the restriction of the clutching morphisms gives a commutative diagram

S1 × S2 × S3
//

��

S1 × SR

��
SL × S3

// S ∩∆1,1

(3.1.2)

c. Furthermore, case (A) occurs as long as f ≥ 2, case (B) or (B’) occurs as long as 1 ≤ f ≤ g − 1, and case
(C) occurs as long as f ≤ g − 2.

Proof. All three parts follow immediately from Proposition 3.5. 2

3.2 Open questions about the geometry of the p-rank strata

The phrasing of Corollary 3.7 is as simple as possible given the present lack of information about the number
of components of Mf

g . We note that if Mf
g is irreducible for some pair g, f , then there are much shorter proofs

of Corollaries 3.6 and 3.7.

Question 3.8. How many irreducible components does Mf
g have?

The answer to Question 3.8 appears to be known for all p only in the following cases: Mf
g is irreducible when

f = g; Mf
g is irreducible when g = 2 and f ≥ 1 and when g = 3 and 0 ≤ f ≤ 3; for M0

1 or M0
2, the number of

irreducible components is a class number associated with the quaternion algebra ramified at p and ∞. If g ≥ 3,
then Af

g is irreducible [5, Remark 4.7].

Question 3.9. Let S be an irreducible component of Mf
g . Does the closure of S in Mg contain an irreducible

component of M0
g?

The analogous property is true for Af
g by [5, Remark 4.7]. If the answer to Question 3.9 is affirmative for

some g, then one can reduce to the case f = 0 in the proof of Theorem 4.5.

4 Monodromy

4.1 Definition of monodromy

Recall the notations about monodromy found in [3, Section 3.1]. In particular, let C → S be a stable curve of
genus g over a connected k-scheme S. There is an open subset S◦ ⊂ S such that Pic0(C)|S◦ is an abelian scheme;
in fact, S◦ = S ×Mg

(Mg −∆0). Assume that S◦ is nonempty and connected. Let s ∈ S◦ be a geometric point.
Let ` be a prime distinct from p. For each positive integer n, the fundamental group π1(S◦, s) acts linearly on

Pic0(C)[`n]s via a representation ρC→S,s,`n : π1(S◦, s) → Aut(Pic0(C)[`n]s). The Z/`n-monodromy of C → S,
written as M`n(C → S, s), is the image of ρC→S,s,`n . If S is equipped with a morphism f : S →M to one of the
moduli stacks M defined in Section 2.1, let M`n(S, s) denote M`n(f∗C → S, s), where C →M is the tautological
curve. The isomorphism class of the abstract group M`n(S, s) is independent of s, and we denote it by M`n(S).
Let MZ`

(S) = lim←
n

M`n(S), and let MQ`
(S) be the Zariski closure of MZ`

(S) in GL2g(Q`).
A priori, M`n(S) ⊂ GL2g(Z/`n). The principal polarization λ on Pic0(C) induces a symplectic pairing

〈·, ·〉λ on the `n-torsion, with values in µµµ`n . Therefore, there is an inclusion M`n(S) ⊆ GSp2g(Z/`n) of the
monodromy group in the group of symplectic similitudes. Moreover, since k contains `nth roots of unity,
M`n(S) ⊆ Sp2g(Z/`n). Similarly, MΛ(S) ⊆ Sp2g(Λ) if Λ is either Z` or Q`. If the monodromy group is the full
symplectic group, this has a geometric interpretation, as follows. Equip (Z/`)2g with the standard symplectic
pairing 〈·, ·〉std, and let

S[`] := Isom((Pic0(C/S)[`], 〈·, ·〉λ), ((Z/`)2g
S , 〈·, ·〉std)).
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For simplicity, assume that S = S◦, i.e., that all fibers of C → S are of compact type. There is an `th root of
unity on S, so S[`] → S is an étale Galois cover, possibly disconnected, with covering group Sp2g(Z/`). The cover
S[`] is connected if and only if M`(S) ∼= Sp2g(Z/`).

Finally, since the category of étale covers of a Deligne-Mumford stack is a Galois category [22, Section 4],
one can employ the same formalism to study a relative curve C over a connected stack S.

Let h : T → S be a morphism of connected stacks. This morphism is called a fibration [12, X.1.6] [22,
Section A.4] if every choice of base points t ∈ T and s ∈ S with h(t) = s induces an exact sequence of homotopy
groups

π1(Ts, t) // π1(T , t)
h∗ // π1(S, s) // π0(Ts, t) // {1}. (4.1.1)

An arbitrary base change of a fibration is a fibration. If h is a fibration and if the fiber Ts is connected, then
h∗ is a surjection of fundamental groups. Therefore, if C → S is a relative curve, then the natural inclusion
M`(h∗C → T , t) → M`(C → S, s) is an isomorphism.

Lemma 4.1. Let g and r be positive integers. The morphism Mg;r →Mg is a fibration with connected fibers.

Proof. By [18, p. 165], Mg;r is represented by Cg;r−1, the tautological (stable, labeled) curve over Mg;r−1.
The projection Cg;r−1 →Mg;r−1 is proper, flat and surjective with connected fibers. By induction on r,
φg;r : Mg;r →Mg is proper, flat and surjective, and φg;r is a fibration [22, Section A.1]. 2

Lemma 4.2. Let g and r be positive integers. Suppose S ⊂Mg is a connected substack and s is a geometric
point of S. Let Sr = S ×Mg

Mg;r, and let sr be a lift of s to Sr. Then M`(S, s) = M`(Sr, sr).

Proof. By Lemma 4.1, Mg;r →Mg is a fibration with connected geometric fibers, and thus so is Sr → S.
The result now follows from the defining property (4.1.1) of fibrations. 2

4.2 Monodromy of the p-rank strata

This section contains the main result in the paper, Theorem 4.5, which is about the monodromy of the p-rank
strata of the moduli space of curves. The proof proceeds by induction on the genus of g. The next lemma, due
to Chai, will be used for the base case while Lemma 4.4 will be used for the inductive step.

Lemma 4.3. Let ` be a prime distinct from p. Let U ⊂ Ag be an irreducible substack which is stable under `-adic
Hecke correspondences and which is not contained in the supersingular locus. Let S be an irreducible component
of Mg ×Ag

U . Suppose that dim(S) = dim(U). Then M`(S) ∼= Sp2g(Z/`).

Proof. For the proof we introduce a fine moduli scheme Mg,[N ], and then show that any irreducible
component of the pullback of S to Mg,[N ] has full monodromy.

Fix an integer N ≥ 3 relatively prime to p` and an isomorphism µµµN
∼= Z/N , and let Ag,[N ] be the fine moduli

scheme of principally polarized abelian schemes of relative dimension g equipped with principal symplectic level-
N structure [21, p. 139]. Let Mg,[N ] = Mg ×Ag

Ag,[N ]. It is the fine moduli scheme of smooth proper curves
of genus g with principal symplectic level-N structure, and the induced Torelli map τg,[N ] : Mg,[N ] → Ag,[N ] is
analyzed in [24].

Let U[N ] = U ×Ag
Ag,[N ]. By [5, Prop. 4.4], U[N ] is irreducible and M`(U[N ]) ∼= Sp2g(Z/`). Let T[N ] be any

irreducible component of S ×Ag
Ag,[N ]. By [24, Lemma 1.11], there exists an open dense subset V[N ] ⊂ T[N ] and

an integer d ∈ {1, 2} such that τg,[N ]|V[N] has degree d. Moreover, if g ≤ 2 then d = 1. In summary:

V[N ] ⊆ T[N ] //

Z/d

��

S

U[N ]

Since dim(U) = dim(S), τg,[N ](V[N ]) is dense in U[N ]. By the above conditions on d, Sp2g(Z/`) has no nontrivial
quotient isomorphic to Z/d. It now follows that M`(V[N ]) ∼= Sp2g(Z/`) [3, Lemma 3.3]. Since M`(V[N ]) is as large
as possible, it follows that M`(S) ∼= Sp2g(Z/`). 2

Lemma 4.4. Let g1, g2, r1 and r2 be positive integers. Let g = g1 + g2, and let r = r1 + r2 − 2.

a. There is a canonical isomorphism of sheaves on Mg1;r1 ×Mg2;r2 ,

κ∗g1;r1,g2;r2
Pic0(Cg;r)[`] ∼= Pic0(Cg1;r1)[`]× Pic0(Cg2;r2)[`]. (4.2.1)
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b. For i = 1, 2, suppose Si ⊂Mgi;ri
is connected, and let si ∈ S◦i be a geometric point. Let S =

κg1;r1,g2;r2(S1 × S2), and let s = κg1;r1,g2;r2(s1 × s2). Under the identification (4.2.1),

M`(S1, s1)×M`(S2, s2) ⊆ M`(S, s) ⊂ Aut(Pic0(Cg;r)[`]s).

Proof. The proof of [3, Lemma 3.1] applies here. The key point for part (a) is that if C/T is the union
of two T -curves C1 and C2, identified along a single section of T , then there is a canonical isomorphism
Pic0(C) ∼= Pic0(C1)× Pic0(C2) (2.3.1). The key ideas for part (b) involve the van Kampen theorem and
covariance of the fundamental group. 2

Theorem 4.5. Let ` be a prime distinct from p and suppose g ≥ 1. Suppose 0 ≤ f ≤ g, and f 6= 0 if g ≤ 2.
Let S be an irreducible component of Mf

g , the p-rank f stratum in Mg. Then M`(S) ∼= Sp2g(Z/`) and
MZ`

(S) ∼= Sp2g(Z`).

Proof. For group-theoretic reasons (see Lemma 5.1), it suffices to show that M`(S) ∼= Sp2g(Z/`); for
topological reasons, it suffices to show that M`(S) ∼= Sp2g(Z/`).

The proof is by induction on g. For the base cases, suppose 1 ≤ g ≤ 3 and f 6= 0 if g ≤ 2. There is a Newton
polygon νf

g such that the locus Uf
g , consisting of principally polarized abelian varieties whose Newton polygon

is νf
g , is open and dense in Af

g [23, Thm. 2.1]. The locus Uf
g is stable under Hecke correspondences. Since f 6= 0

if g ≤ 2, νf
g is not supersingular. By [5, Rem. 4.7], Uf

g is irreducible. (Alternatively, see [8, Ex. 11.6].) Let S be
any irreducible component of Mf

g . Then dim(S) = dim(U) [9, Thm. 2.3]; by Lemma 4.3, M`(S) ∼= Sp2g(Z/`).
Now suppose g ≥ 4 and 0 ≤ f ≤ g. As an inductive hypothesis assume, for all pairs (g′, f ′) where g′ ≥ 3

and 0 ≤ f ′ ≤ g′ < g, that M`(S′) ∼= Sp2g′(Z/`) for every irreducible component S′ of Mf ′

g′ .
Let S be an irreducible component of Mf

g . By Corollary 3.7, S intersects ∆1,1 and there is a diagram as in

(3.1.2). Specifically, there is a partition f = f1 + f2 + f3, and there are irreducible components S1 ⊂Mf1

1,1 and

S2 ⊂Mf2

g−2,2 and S3 ⊂Mf3

1,1, so that the clutching maps in (2.3.5) restrict to

S1 × S2 × S3
//

��

S1 × SR

��
SL × S3

// S ∩∆1,1

(4.2.2)

In particular, SL is the irreducible component of Mf1+f2

g−1,1 which contains κ1;1,g−2;1(S1 × S2), and SR is the

irreducible component of Mf2+f3

g−1,1 which contains κg−2;1,1;1(S2 × S3). Since g − 1 ≥ 3, the inductive hypothesis
and Lemma 4.2 imply that M`(SL) ∼= M`(SR) ∼= Sp2(g−1)(Z/`).

Choose a base point (s1, s2, s3) ∈ (S◦1 × S◦2 × S◦3 )(k), and let s = κ(s1, s2, s3). Write V = Pic0(Cg)[`]s and,
for 1 ≤ i ≤ 3, let Vi = Pic0(Cgi)[`]si . Each of these is a Z/`-vector space equipped with a symplectic form.
There is an isomorphism of symplectic Z/`-vector spaces V ∼= V1 ⊕ V2 ⊕ V3 by equation (4.2.1). By Lemma
4.4(b), M`(S, s) contains Sp(V1 ⊕ V2)×M`(S3, s3) and M`(S1, s1)× Sp(V2 ⊕ V3). Since Sp(V1 ⊕ V2)× Sp(V3) is
a maximal subgroup of Sp(V ) [17, Thm. 3.2], M`(S, s) ∼= Sp(V ) ∼= Sp2g(Z/`) . 2

Remark 4.6. The assertion of Theorem 4.5 is false for M0
1 and M0

2 if ` ≥ 5. Indeed, a curve of genus g ≤ 2
and p-rank 0 is supersingular. Since a supersingular p-divisible group over a scheme S becomes trivial after a
finite pullback S̃ → S, the monodromy group MZ`

(M0
g) is finite. In view of Lemma 5.1, M`(M0

1) and M`(M0
2)

cannot be the full symplectic group.

Remark 4.7. One might wonder whether it is possible to simplify the proof of Theorem 4.5 using the intersection
of S with both ∆1 and ∆2 rather than with ∆1,1. This does not work for the case of M0

4. The intersection of
M0

4 with ∆2 involves curves in M0
2, and the components of M0

2 do not have full monodromy group Sp4(Z/`).

4.3 The p-adic monodromy of the p-rank strata of curves

In this section we calculate the p-adic (as opposed to the `-adic) monodromy of components of the p-rank strata
Mf

g .
Let S be a scheme of characteristic p, and let X → S be an abelian scheme with constant p-rank f .

The group scheme X[p] admits a largest étale quotient X[p]ét (see, e.g, [25, Cor. 1.7]). Similarly, there is
a largest étale quotient X[p∞]ét of the p-divisible group X[p∞]. Let s be a geometric point of S. Then
X[p]ét → S is classified by a homomorphism π1(S, s) → Aut(X[p]ét)s

∼= GLf (Z/p), whose image is denoted
Mp(X → S), the physical p-monodromy of X → S. Similarly, to X[p∞]ét → S corresponds a representation
π1(S, s) → Aut(X[p∞]ét)s

∼= GLf (Zp), whose image is denoted MZp(X → S).
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Proposition 4.8. Suppose g ≥ 2 and 1 ≤ f ≤ g. Let S be an irreducible component of Mf
g . Then Mp(S) ∼=

GLf (Z/p) and MZp(S) ∼= GLf (Zp).

Note that this statement is not a perfect analogue of Theorem 4.5, since it only analyzes the maximal étale
quotient of the p-divisible group of the Jacobian of the tautological curve over S.

Proof. If g = f , this is [7, Thm. 2.1]. Otherwise, suppose f < g. By Proposition 3.4(b), there is an
irreducible component T ⊂M0

g−f ;1 such that S contains the image Z of Mf
f ;1 × T under κf ;1,g−f ;1. Since

Mp(Z) is isomorphic to GLf (Z/p), which is as large as possible, Mp(S) ∼= Mp(S) ∼= GLf (Z/p). Similarly,
MZp(S) ∼= MZp(Z) ∼= GLf (Zp). 2

Remark 4.9. In [29], the author proves the analogue of Proposition 4.8 for the p-rank strata Af
g . From this, he

deduces the irreducibility of a certain Igusa variety, and is able to analyze the structure of the moduli space of
abelian varieties with specified parahoric level-p structure. The analogous statements (e.g., [29, Thm. 4.1]) hold
for the moduli space of curves with parahoric level-p structure, provided one replaces Af

g with an irreducible
component of Mf

g .

5 Arithmetic applications

The results of the previous section about the monodromy of components of the moduli space of curves of
genus g and p-rank f have arithmetic applications involving curves over finite fields. Specifically, they imply
the existence of curves of a given type with trivial automorphism group (Application 5.4) or absolutely simple
Jacobian (Application 5.7). Moreover, they give estimates for the proportion of such curves with a rational point
of order ` on the Jacobian (Application 5.9) or for which the numerator of the zeta function has large splitting
field (Application 5.11).

For these applications, it is necessary to work over a finite field F, as opposed to its algebraic closure.
Throughout this section, let F be a finite field of characteristic p and cardinality q, and let F be an algebraic
closure of F. Let ` be a prime distinct from p.

In this section we redefine Mg as the Deligne-Mumford stack of smooth projective curves of genus g fibered
over the category of Fp-schemes.

Section 5.1 contains some results on arithmetic monodromy groups, and recalls a rigidifying structure which
allows one to pass between moduli stacks and moduli schemes. In Sections 5.2 and 5.3, we apply these techniques
to deduce consequences for curves over finite fields.

5.1 Arithmetic monodromy and tricanonical structures

Let Λ be either Z`, Q` or Z/`n for some positive integer n. If π : C → S/F is a smooth connected proper relative
curve, its geometric Λ-monodromy group is Mgeom

Λ (C → S) = MΛ(CF → SF). It is naturally a subgroup of the
(arithmetic) monodromy group MΛ(S). If the fibers of π have genus g one has MΛ(S) ⊆ GSp2g(Λ), and

MZ`
(S)/Mgeom

Z`
(S) ∼= Gal(F(µµµ`∞(F))/F). (5.1.1)

Lemma 5.1. Let C → S/F be a smooth connected proper relative curve of genus g ≥ 2 over a geometrically
connected base. If Mgeom

` (S) ∼= Sp2g(Z/`), then Mgeom
Z`

(S) ∼= Sp2g(Z`); MZ`
(S) has finite index in GSp2g(Z`);

and Mgeom
Q`

(S) ∼= Sp2g(Q`).

Proof. Since Mgeom
Z`

(S) is a closed subgroup of Sp2g(Z`), and since Mgeom
Z`

(S) ↪→ Sp2g(Z`) → Sp2g(Z/`) is
surjective, it follows that Mgeom

Z`
(S) ∼= Sp2g(Z`) for group-theoretic reasons [28, Thm. 1.3]. The remainder of the

lemma follows from equation (5.1.1) and the definition of MQ`
. 2

In Sections 5.2 and 5.3, we use Chebotarev arguments to deduce various applications about curves over
finite fields. At present these tools are only available for families of curves over schemes, as opposed to stacks. To
surmount this, we consider rigidifying data whose corresponding moduli problems are representable by schemes.
By choosing the data Mg,3K of a tricanonical structure which exists Zariski-locally on the base, as opposed to
a Jacobi level structure which only exists étale-locally on the base, we can relate point counts on Mg,3K(F) to
those on Mg(F).

Suppose g ≥ 2. The canonical bundle ΩC/S is ample, and Ω⊗3
C/S is very ample. Let N(g) = 5g − 5. Then

π∗(Ω⊗3
C/S) is a locally free OS-module of rank N(g), and sections of this bundle define a closed embedding

C ↪→ PN(g)
S . A tricanonical (3K) structure on C → S is a choice of isomorphism O⊕N(g)

S
∼= π∗(Ω⊗3

C/S); let Mg,3K

be the moduli space of smooth curves of genus g equipped with a 3K-structure. A curve with 3K-structure admits
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no nontrivial automorphisms, and Mg,3K is representable by a scheme [16, 10.6.5], [21, Prop. 5.1]. Moreover,
Mg may be constructed as the quotient of Mg,3K by GLN(g), so that the forgetful functor ψg : Mg,3K →Mg

is open [21, p. 6] and a fibration [22, Thm. A.12].

Lemma 5.2. Let S ⊂Mg be a connected substack, and let S3K = S ×Mg
Mg,3K . Then M`(S3K) ∼= M`(S).

Proof. Since Mg,3K →Mg is a fibration, so is S3K → S. Fix a base point s3K ∈ S3K(F), and let
s = ψg(s3K). The fiber S3K,s is connected; by the exact sequence (4.1.1), the induced homomorphism ψg∗ :
π1(S3K , s3K) → π1(S, s) is surjective. As in Lemma 4.2, this implies M`(S3K) ∼= M`(S). 2

5.2 Existence applications: trivial automorphism group and simple Jacobian

In this section, we show there exist curves of genus g and p-rank f with trivial automorphism group and
absolutely simple Jacobian using the Q`-monodromy of Mf

g .

Lemma 5.3. Let S ⊂Mg be a geometrically connected substack such that Mgeom
` (S) ∼= Sp2g(Z/`) for all `

in a set of density one. Then there exists s ∈ S(F) such that AutF(Cg,s) is either trivial or is generated by a
hyperelliptic involution.

Proof. Let S3K = S ×Mg
Mg,3K ; by Lemmas 5.1 and 5.2, Mgeom

Q`
(S3K) ∼= Sp2g(Q`).

Let ` be a prime which splits completely in all cyclotomic fields whose degree over Q is at most 2g.
By the Chebotarev density theorem (see [5, Cor. 4.3] for details), there exists an s3K ∈ S3K(F) such that
EndF(Pic0(C)s3K

)⊗Q ∼= L, where L is a number field of dimension [L : Q] = 2g which is inert at `.
Since any automorphism of Cs3K ,F has finite order, AutF(Cs3K ,F) is contained in the torsion subgroup of

O×L . Since L is linearly disjoint over Q from each cyclotomic field of degree at most 2g, the torsion subgroup of
O×L is simply {±1}. Now, −1 has no nontrivial fixed points on the Tate module T`(Pic0(Cs3K

)). Therefore, if an
automorphism ι ∈ Aut(Cs3K

) acts as −1 on the Jacobian of Cs3K
, then the quotient of Cs3K

by ι has genus zero,
and ι is a hyperelliptic involution. For s := ψg(s3K) ∈ S(F), the group AutF(Cg,s) is either trivial or is generated
by a hyperelliptic involution as well. 2

Application 5.4. Suppose g ≥ 3 and 0 ≤ f ≤ g. Then there exists an open dense substack U ⊂Mf
g such that

for each s ∈ U(F), AutF(Cg,s) is trivial.

Proof. After a finite extension of the base field, one can assume that each irreducible component of Mf
g is

geometrically irreducible. Let S be one such component and recall that dim(S) = 2g − 3 + f [9, Thm. 2.3]. By
Theorem 4.5, Mgeom

` (S) ∼= Sp2g(Z/`) for all ` 6= p. By Lemma 5.3, there is a nonempty (and thus open dense)
substack U ′S ⊂ S whose points correspond to curves of genus g and p-rank f whose automorphism group is either
trivial or generated by a hyperelliptic involution. Every component of the p-rank stratum Hf

g of the hyperelliptic
locus has dimension g − 1 + f by [11, Thm. 1] for p ≥ 3 and by [27, Cor. 1.3] for p = 2. Thus the intersection of
U ′S with the hyperelliptic locus is a proper closed substack of U ′S . Let US = U ′S − (U ′S ∩Hf

g ), and let U be the
union of the stacks US over all irreducible components S; if s ∈ U(F), then AutF(Cg,s) is trivial. 2

Remark 5.5. Application 5.4 can be proved for Mf
g for all g ≥ 3 and all 0 ≤ f ≤ g without monodromy

techniques; see [2, Thm. 1.1].

Remark 5.6. In special cases, there are results in the literature that have stronger information about the field
of definition of a curve with small automorphism group. In [26], the author shows that for every p and every
g ≥ 3, there is a curve of genus g defined over Fp with trivial automorphism group. The p-ranks of these curves
are not determined.

Application 5.7. Suppose g ≥ 3 and 0 ≤ f ≤ g. Let S be an irreducible component of Mf
g . Then there exists

s ∈ S(F) such that the Jacobian of Cs is absolutely simple.

Proof. Possibly after a finite extension of F, one can assume that S is geometrically irreducible. By Theorem
4.5, Mgeom

` (S) ∼= Sp2g(Z/`) for all ` 6= p. By the proof of Lemma 5.3, there exists a point s ∈ S(F) such that
EndF(Pic0(Cg,s))⊗Q is a field. Then the Jacobian Pic0(Cg,s) is absolutely simple. 2

Remark 5.8. In special cases, there are results in the literature that have stronger information about the field
of definition of curves with absolutely simple Jacobians. For example, in [14] the authors show that, for every
prime p, if g = 2 or g = 3, then there exists a curve with genus g and p-rank g defined over Fp whose Jacobian
is absolutely simple.
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5.3 Enumerative applications: class groups and zeta functions

This section contains enumerative results about curves of genus g and p-rank f that rely on Z/`-monodromy
groups. Recall that if s ∈Mg(F), then Pic0(Cg,s)(F) is isomorphic to the class group of the function field F(Cg,s).
The size of the class group is divisible by ` exactly when there is a point of order ` on the Jacobian. Roughly
speaking, Application 5.9 shows that among all curves over F of specified genus and p-rank, slightly more than
1/` of them have an F-rational point of order ` on their Jacobian.

Application 5.9. Suppose g ≥ 3, and 0 ≤ f ≤ g, and ` is a prime distinct from p. Let ξ be the image of |F| in
(Z/`)×. There exists a rational function αg,ξ(T ) ∈ Q(T ) such that the following holds: there exists a constant
B = B(Mf

g , `) such that if Mf
g (F) 6= ∅, then∣∣∣∣∣#{s ∈Mf

g (F) : ` divides
∣∣Pic0(Cg,s)(F)

∣∣}
#Mf

g (F)
− αg,ξ(`)

∣∣∣∣∣ < B
√
q
. (5.3.1)

Remark 5.10. Suppose ` is odd. One knows that αg,1(`) = `
`2−1 +O(1/`3), while αg,ξ(`) = 1

`−1 +O(1/`3) if
ξ 6= 1. A formula for αg,1(`) is given in [1].

Proof. [Proof of 5.9] Write M for Mf
g . Let Msm be the open dense locus where the reduced stack M is

smooth, and let N be the union of all connected components S of Msm such that S(F) 6= ∅. Let S be any such
component. Since S(F) 6= ∅, S is geometrically connected and smooth, and thus geometrically irreducible. In
particular, SF is dense in an irreducible component of MF, and thus Mgeom

`′ (S) ∼= Sp2g(Z/`′) for all `′ 6= p.
Let S3K = S ×Mg

Mg,3K . Since the map ψg : Mg,3K →Mg is a fibration with connected fibers, S3K is also
connected. Tricanonical structures exist Zariski-locally, so S3K(F) 6= ∅. Finally, ψg is formally smooth. Taken
together, this shows that S3K is geometrically irreducible and smooth.

By Lemma 5.3, there is an open dense subscheme U3K of S3K such that if t ∈ U3K , then Aut(Cg,t) ∼= {1}.
The geometric monodromy group of U3K is again Sp2g(Z/`) (Lemma 5.2). An equidistribution theorem ([16,
9.7.13]; see also [1, 3.1]) shows that an estimate of the form (5.3.1) holds (with error term of order O(1/

√
q)),

where M is replaced by U3K . Let U = ψg(U3K); since ψg is universally open, U is open, too. The fiber over
each s ∈ U(F) consists of exactly

∣∣GLN(g)(F)
∣∣/|Aut(Cg,s))| =

∣∣GLN(g)(F)
∣∣ points [16, 10.6.8], and if ψg(t) = s

then Cg,t
∼= Cg,s. Therefore, the proportion of elements s ∈ U(F) for which ` divides

∣∣Pic0(Cg,s)(F)
∣∣ is exactly

the same as the analogous proportion of elements t ∈ U3K(F).
Thus (5.3.1) holds when M is replaced by U . For dimension reasons, there exists a constant D such that

#(S − U)(F)/#S(F) < D/q; therefore, (5.3.1) holds for S. By invoking this argument for each of the finitely
many irreducible components of N , and remembering that by construction N (F) = Msm(F), one obtains (5.3.1)
for Msm(F). Finally, since there exists a constant D′ such that #(M−Msm)(F)/#M(F) < D′/q, this yields
(5.3.1). 2

If C/F is a smooth projective curve of genus g, its zeta function has the form PC/F(T )/(1− T )(1− qT ),
where PC/F(T ) ∈ Z[T ] is a polynomial of degree 2g. The principal polarization on the Jacobian of C forces a
symmetry among the roots of PC/F(T ); the largest possible Galois group for the splitting field over Q of PC/F(T )
is the Weyl group of Sp2g which is a group of size 2gg!.

Application 5.11. Suppose g ≥ 3, and 0 ≤ f ≤ g, and p > 2g + 1. There exists a constant γ = γ(g) > 0 so that
the following holds. There exists a constant E = E(Mf

g ) so that if Mf
g (F) 6= ∅, then

#{s ∈Mf
g (F) : PCg,s/F(T ) is reducible, or has splitting field with degree < 2gg!}

#Mf
g (F)

< Eq−γ . (5.3.2)

Proof. The proof is similar to that of Application 5.9. Again, write M for Mf
g . let S be an irreducible

component of Msm with S(F) 6= ∅, and let U3K be the open dense subscheme of S3K whose points correspond
to curves of the specified type with tricanonical structure with trivial automorphism group. By Lemma 5.2, and
Theorem 4.5, Mgeom

` (U3K) ∼= Sp2g(Z/`) if ` 6= p. By [19, Thm. 6.1 and Remark 3.2.(4)], there is a constant E(S)
so that (5.3.2) is valid for U3K . The argument used in Application 5.9 shows the same result for each S, and
thus for M. 2
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