CURVES OF GIVEN p-RANK WITH TRIVIAL
AUTOMORPHISM GROUP
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ABSTRACT. Let k be an algebraically closed field of characteristic p > 0.
Suppose g > 3 and 0 < f < g. We prove there is a smooth projective
k-curve of genus g and p-rank f with no non-trivial automorphisms.
In addition, we prove there is a smooth projective hyperelliptic k-curve
of genus g and p-rank f whose only non-trivial automorphism is the
hyperelliptic involution. The proof involves computations about the
dimension of the moduli space of (hyperelliptic) k-curves of genus g and
p-rank f with extra automorphisms.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic p > 0. If g > 3, there
exist a k-curve C of genus g with Aut(C) = {1} and a hyperelliptic k-curve
D of genus g with Aut(D) ~ Z/2 (see, e.g., [16] and [8], respectively). In this
paper, we extend these results to curves with given genus and p-rank.

If C is a smooth projective k-curve of genus g with Jacobian Jac(C'), the
p-rank of C is the integer fo such that the cardinality of Jac(C)[p](k) is p/©.
It is known that 0 < fo < g. We prove the following;:

Theorem 1.1. Suppose g >3 and 0 < f < g.

(i) There exists a smooth projective k-curve C of genus g and p-rank f with
Aut(C) = {1}.

(i) There exists a smooth projective hyperelliptic k-curve D of genus g and
p-rank [ with Aut(D) ~ Z/2.

More generally, we consider the moduli space M, of curves of genus g over
k. The p-rank induces a stratification M, ; of M, so that the geometric points
of Mg y parametrize k-curves of genus g and p-rank at most f. Similarly, we
consider the p-rank stratification H, ¢ of the moduli space H, of hyperelliptic
k-curves of genus g. Our main results (Theorems 2.3 and 3.7) state that, for
every geometric generic point n of M f (resp. Hgy f), the corresponding curve
C, satisfies Aut(C,) = {1} (resp. Aut(D,) ~ Z/2).
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For the proof of the first result, we consider the locus ./\/l_f; of M, parametriz-
ing k-curves of genus g which have an automorphism of order ¢. Results from
[7] and [16] allow us to compare the dimensions of M § and M. The most
difficult case, when ¢ = p, involves wildly ramified covers and deformation
results from [2]. For the proof of the second result, we compare the dimen-
sions of Hy ¢ and M}, using [9] and [10]. When p = 2, this relies on [17]. The
hardest case for hyperelliptic curves is when p > 3, f =0, and ¢ = 4 and we
use a degeneration argument to finish this case.

The statements and proofs of our main results would be simpler if more
were known about the geometry of M, r and H, ;. For example, one could
reduce to the case f = 0 if one knew that each irreducible component of M, ¢
contained a component of M, ¢. Even the number of irreducible components
of Mg s (or Hg ¢) is known only in special cases.

We also sketch a second proof of the main results that uses degeneration
to the boundaries of M, y and H, ¢, see Remark 3.9.

Remark 1.2. There is no information in Theorem 1.1 about the field of defini-
tion of the curves. In the literature, there are several results about curves with
trivial automorphism group which are defined over finite fields. In [14] and
[15], the author constructs an Fy-curve Co of genus g with Autg (Co) = {1}
and a hyperelliptic Fj-curve Dy of genus g with Autg (Do) ~ Z/2. However,
the p-ranks of Cy and Dy are not considered.

For p =2 and 0 < f < g, the author of [19] constructs a hyperelliptic
Fa-curve Dy of genus g and p-rank f with Autg (Do) ~ Z/2. The analogous
question for odd characteristic appears to be open. Furthermore, for all p it

seems to be an open question whether there exists an F,-curve Cy of genus g
and p-rank f with Autg (Co) = {1} [19, Question 1].

1.1. Notation and background. All objects are defined over an algebrai-
cally closed field k of characteristic p > 0. Let M, be the moduli space
of smooth projective connected curves of genus g, with tautological curve
Cy — M, Let Hy be the moduli space of smooth projective connected
hyperelliptic curves of genus g, with tautological curve D, — H,,.

If C is a k-curve of genus g, the p-rank of C' is the number f € {0,...,g}
such that Jac(C)[p](k) = (Z/p)’. The p-rank is a discrete invariant which is
lower semicontinuous in families. It induces a stratification of M, by closed
reduced subspaces M, ; which parametrize curves of genus g with p-rank at
most f. Similarly, let H, ¢ C H,y be the locus of hyperelliptic curves of genus
g with p-rank at most f.

Recall that dim(M,) = 3g — 3 and dim(H,) = 2¢g — 1. Every irreducible
component of M, ; has dimension 2g — 3 + f by [7, Thm. 2.3]. Every irre-
ducible component of H, ; has dimension g — 1+ f by [9, Thm. 1] when p > 3
and by [17, Cor. 1.3] when p = 2. In other words, the locus of curves of genus
g and p-rank f has pure codimension g — f in M, and in H,.
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Every irreducible component of M, ¢ (and Hg ) has a geometric generic
point 7. Let C, (resp. D,) denote the curve corresponding to the point 7.

Let ¢ be prime. Let Mg C M, denote the locus of curves which admit an
automorphism of order ¢ (after pullback by a finite cover of the base). The
locus ./\/lg is closed in M. If D is a hyperelliptic curve, let » denote the unique
hyperelliptic involution of D. Then ¢ is in the center of Aut(D). Let Hg -
H, denote the locus of hyperelliptic curves which admit a non-hyperelliptic
automorphism of order ¢. Let H;}’L denote the locus of hyperelliptic curves
which admit an automorphism ¢ of order four such that o2 = ¢.

An Artin-Schreier curve is a curve that admits a structure as Z/p-cover of
the projective line. Let AS, C M, denote the locus of Artin-Schreier curves
of genus g and let AS, ; denote its p-rank strata.

Unless stated otherwise, we assume g > 3 and 0 < f < g.

2. THE CASE OF M,

2.1. A dimension result. Suppose O is an irreducible component of Mf;
with generic point £. Let Y be the quotient of C¢ by a group of order £. Let
gy and fy be respectively the genus and p-rank of Y. Consider the Z/¢-cover
¢ :Cc — Y. Let B CY be the branch locus of ¢. If £ = p, let j, be the jump
in the lower ramification filtration of ¢ at a branch point b € B [18, IV].

Lemma 2.1. (i) If{ # p, then dim(©) <2(g—gy)/({—1) + fy — 1;
(i) If €= p, then dim(©) < 2(g —gv)/( = 1) + fy =1 =3 yeplin/p].

Proof. Let ¢ : C¢ — Y be as above, with branch locus B C Y. Because
g > 3, if gy = 1 then |B| > 0. Let M, r 5 be the moduli space of
curves of genus gy and p-rank at most fy with |B| marked points. Then
dim(My, 1, .1B]) = 29y =3+ fy +|B| if gy > 1. Also dim(Mg,p|) = |B| -3
if |B| > 3.

(i) Since ¢ : C¢ — Y is tamely ramified, the curve C¢ is determined by the
quotient curve Y, the branch locus B, and ramification data which is
discrete. Therefore, dim(©) < dim(My, ¢, p|) if gy > 1 and dim(0) <
|B| — 3 if gy = 0. By the Riemann-Hurwitz formula, 2g — 2 = ¢(2gy —
2) + |B|(¢ — 1). One can deduce that |B| = 2(g — fgy)/({ — 1) + 2 and
the desired result follows.

(ii) By the Riemann-Hurwitz formula for wildly ramified covers [18, IV,
Prop. 4],

20 —2=pQ2gy —2)+ > (b +Dp—1).
beB
For b € B, let (ﬁb : C, — Y, be the germ of the cover ¢ at the
ramification point z above b. By [2, p.229], the dimension of the mod-
uli space of covers ¢, with ramification break j, is dy = jp — |js/p]-
3



The local/global principle of formal patching (found, for example, in
[2, Prop. 5.1.3]) implies dim(©) < dim(Mg, ¢, B|) + > pecp dp- Since
|B] + > e dv = 2(9 — pgy)/(p — 1) + 2, this simplifies to

dim(©) < 2(g —gv)/(p—1) + fr =1 =Y Li/p)-

beB

2.2. No automorphism of order p.

Lemma 2.2. SupposeI' is a component of Mg ¢ with geometric generic point
1. Then C, does not have an automorphism of order p.

Proof. The strategy of the proof is to show that dim(I' N M%) < dim(T).
Recall that dim(T") = 2g — 3 + f by [7, Thm. 2.3].

Let © be an irreducible component of I'N. MV, with geometric generic point
§. Consider the resulting cover ¢ : C¢ — Y, which is either étale or wildly
ramified. Let gy and fy be respectively the genus and p-rank of Y.

Suppose first that gy = 0. In other words, £ € AS y and C¢ is an Artin-
Schreier curve. By [17, Lemma 2.6], g = d(p — 1)/2 for some d € N. If p = 2,
then dim(ASy ¢) = g—14 f [17, Cor. 1.3]. If p > 3, then dim(AS, ) < d—-1
by [17, Thm. 1.1]. In either case, dim(©) < dim(AS, ¢) < dim(I") since g > 3.

Now suppose that gy > 1. If p > 3, Lemma 2.1(ii) implies that dim(©) <
g—gy +fyr—1<29-3+f.

If p =2 and if gy > 1, let |B| be the number of branch points of ¢. By the
Deuring-Shafarevich formula [5, Cor. 1.8], f —1 = 2(fy — 1) + |B|. Lemma
2.1(ii) implies that dim(©) < 2g — 2gy + (f — 1 — [B|)/2 = Y peplin/2). In
particular, dim(©) < 29 — 2gy + f/2. So dim(©) < 2g — 3+ f if gy > 2.

Suppose p = 2 and gy = 1. The hypothesis g > 3 implies that ¢ is ramified.
So |B| > 1 and j, > 1 for b € B. Then dim(©) < 2g — 3 + f/2.

Thus dim(0) < dim(I") in all cases. This inequality implies that n ¢ M5
and Aut(C,) does not contain an automorphism of order p. O

2.3. The main result for M, .

Theorem 2.3. Suppose g > 3 and 0 < f < g. Suppose n is the geometric
generic point of an irreducible component I' of Mg r. Then Aut(C,) = {1}.

Proof. By Lemma 2.2, Aut(C,) contains no automorphism of order p. Let
£ # p be prime. Consider an irreducible component © C I' N Mf]. The result
follows in any case where dim(©) < dim(T") = 2¢g — 3 + f.

Let £ be the geometric generic point of ©. Let Y be the quotient of C¢ by
a group of order £. Let gy and fy be the genus and p-rank of Y.

If £ > 3, then Lemma 2.1(i) implies dim(©) < g — gy + fy — 1. Thus
dim(©) < 2¢g — 3 + f and C,) has no automorphism of order ¢ > 3.
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Suppose { = 2. If gy = 0, then C, is hyperelliptic and in particular
dim(0) < dim(Hg ) =g—1+f <29 -3+ f. If gy > 1, then dim(©) <
29 — 29y + fy — 1 which is less than 2g — 3 4+ f except when gy = 1 and
f=f <L

For the final case, when ¢ =2, gy = 1, and f = fy, Lemma 2.1 alone does
not suffice to prove the claim. Let M?Y be the moduli space of curves of
genus g which are Z/2-covers of Y. It is the geometric fiber over the moduli
point of Y of a map from a proper, irreducible Hurwitz space to M (see,
e.g., [3, Cor. 6.12]). Therefore, M?]’Y is irreducible. Now & € Mz’y NT. The
strategy is to show that there exists s € MZ’Y such that f; > fy. From
this, it follows that Mg’y N Mg s, is a closed subset of Mg’y of positive
codimension. Then O is a closed subset of I" of positive codimension, and the
proof is complete.

To construct s, consider a Z/2-cover ¢ : Y — PL. If g is odd (resp. even),
let 15 : X — P! be a Z/2-cover so that X has genus (g — 1)/2 (resp. g/2)
and so that the branch locus of 12 contains exactly 2 (resp. 3) of the branch
points of ¥;. Since only 2 (resp. 3) of the branch points of 9 are specified,
one can suppose X is ordinary. Consider the fiber product ¢ : W — P! of 1,
and 9. Following the construction of [9, Prop. 3], W has genus g and p-rank
at least g/2. Since W is a Z/2-cover of Y, it corresponds to a point s € Mi’y
with p-rank at least fy + 1. o

Here is the proof of part (i) of Theorem 1.1:

Corollary 2.4. Suppose g > 3 and 0 < f < g. There exists a smooth
projective k-curve C' of genus g and p-rank f with Aut(C) = {1}.

Proof. Let I' be an irreducible component of M ¢, with geometric generic
point 1. Let IV C T be the open, dense subset parametrizing curves with
p-rank exactly f [7, Thm. 2.3]. By Theorem 2.3, Aut(C,) = 1. The sheaf
Aut(C) is constructible on IV, but there are only finitely many possibilities
for the automorphism group of a curve of genus g. Therefore, there is a
nonempty open subspace U C I such that, for each s € U(k), Cs has p-rank
f and Aut(Cs) = 1. O

Corollary 2.5. Let g > 3 and 0 < f < g. There exists a principally polarized
abelian variety (A, \) over k of dimension g and p-rank f with Aut(A,\) =

{+1}.

Proof. Let A be the Jacobian of the curve given in Corollary 2.4. The desired
properties then follow from Torelli’s theorem [13, Thm. 12.1]. O

3. THE CASE OF H,

Recall that g >3 and 0 < f < g.



3.1. When p = 2.

Lemma 3.1. Let p = 2 and suppose 1 is the geometric generic point of a
component I' of Hg y. Then Aut(D,) ~ Z/2.

Proof. The automorphism group of a hyperelliptic curve always contains a
(central) copy of Z/2. Let U C I' be the subset parametrizing curves with
automorphism group Z/2. As in the proof of Corollary 2.4, U is open; it
suffices to show that U is nonempty.

By [17, Cor. 1.3], Hg 0 is irreducible of dimension g — 1 when p = 2. For
g > 3, there exists a hyperelliptic curve Dy with p-rank 0 and Aut(Dg) ~ Z/2
(19, Thm. 3]. The component I' contains H, o by [17, Cor. 4.6]. Then U is
non-empty since U N 'Hy ¢ is nonempty. g

3.2. No automorphism of order p. Suppose p > 3.

Lemma 3.2. If p|(2g + 2) or p|(2g + 1), then dimH}) = [(2g + 2)/p] — 2.
Otherwise, HL is empty.

Proof. Suppose s € HE(k). There exists ¢ € Aut(Ds) of order p. Since ¢
and o commute, o descends to an automorphism of Ds/(1) ~ P!. Let Z
be the projective line D;s/(o,¢). Then Dy — Z is the fiber product of the
hyperelliptic cover ¢ : D; /(o) — Z and the Z/p-cover ¢ : Dy/{1) — Z.

Since D,/(t) has genus zero, the cover v is ramified only at one point b
and the jump j in the lower ramification filtration equals 1. After changing
coordinates on D, /(1) and Z, the cover 1 is isomorphic to ¢? — ¢ = .

If ¢ is not branched at co then each branch point of ¢ lifts to p branch points
of the cover Dy — D, /(t), and the branch locus of ¢ consists of (2g + 2)/p
points. On the other hand, if ¢ is branched at co then the branch locus of
¢ consists of (2g + 1)/p points. Therefore, if H?(k) is nonempty, then either
pl(29 +1) or p[(2g +2).

Moreover, any branch locus of size [ (2g + 2)/p] uniquely determines such a
cover ¢. A point s € HP is determined by the branch locus of ¢ up to the action
of affine linear transformations on Z. Thus dim(H}) = [(29 +2)/p] —2. O

Lemma 3.3. Let ) be the geometric generic point of a component of Hg r.
Then Aut(D,)) contains no automorphism of order p.

Proof. By Lemma 3.2, H? is either empty or of dimension |(2g +2)/p| — 2.
If g > 3, then dim(H?) < g — 1+ f = dim(H, ). Thus D, does not have an
automorphism of order p. O

3.3. Extra automorphisms of order two and four. Suppose p > 3. In
this section, we show that the geometric generic point of any component of
Hg4,r parametrizes a curve with no extra automorphism of order two or four.
The proof relies on degeneration and requires an analysis of curves of genus
2 and p-rank 0.



Lemma 3.4. Suppose p > 3 and g = 2. If n is a geometric generic point of
H270, then Aut(Dn) >~ Z/2

Proof. By [11, p.130], Aut(D,)/(¢) ~ G where G is one of the following groups:
{1}, Z/5, )2, S3, 7)2 ® Z/2, D12, S4, or PGLo(Z/5). Let T C Ha g be the
sublocus parametrizing hyperelliptic curves D with Aut(D)/(:) ~ G. Since
every component of Hs ¢ has dimension one, it suffices to show that each T¢
is zero-dimensional.

If G =7/5 and s € T%(k), then the Jacobian of D, has an action by Z/5,
and thus must be one of the two abelian surfaces with complex multiplication
by Z[(5]). Therefore, there exist at most two hyperelliptic curves D of genus 2
and p-rank 0 with Aut(D)/(1) ~ 7Z/5.

Now let G be any non-trivial group from the list other than Z/5. A curve of
genus two and p-rank zero is necessarily supersingular, and any supersingular
hyperelliptic curve D of genus two with Aut(D)/(t) ~ G is superspecial by [11,
Prop. 1.3]. Since there are only finitely many superspecial abelian surfaces,
TC is a proper closed subset of Hz o for each G # {1} on the list. Thus
Aut(D,) ~ Z/2. O

Lemma 3.5. Suppose p >3 and g > 3.

(i) Then M} is irreducible with dimension g;
(i) there exists s € H2(k) such that Dy has p-rank at least 2;
(ii) and dim(Hyo NHZ) < g— 1.

Proof. Suppose s € ’Hg(kz). There is a Klein-four cover ¢ : Dy — P}. such that
¢ is the fiber product of two hyperelliptic covers v; : C; — Pi [9, Lemma 3].
If g is even, then one can assume that C; and Cy both have genus g/2 and
that the branch loci of ¥, and vy differ in a single point. If g is odd, then
one can assume that C; has genus (g + 1)/2, C has genus (g — 1)/2, and
the branch locus of 1, is contained in the branch locus of ¢ [9, Prop. 3]. In
both cases, the third Z/2-subquotient of D, has genus zero. In particular, if
fs denotes the p-rank of Dy then f, = fo, + fo, [9, Cor. 2].
(i) This is found in [9, Cor. 1].
(ii) One can choose 9 so that C is ordinary. Then f, > [§] > 2.
(iii) Suppose s € Hq0(k), so that f; = fo, = fc, = 0. If g is even, then the
parameter space for choices of 1 has dimension dim(Hy/20) = g/2 — 1.
For fixed 1;, the parameter space for choices of 1> has dimension at
most 1. Similarly, if ¢ is odd, the parameter space for choices of
has dimension dim(H441)/2,0) = (9 — 1)/2. For fixed 11, there are at
most finitely many possibilities for 5. In either case dim(Hg o N 'Hg) <
l9/2) <g—1.
O



Lemma 3.6. Suppose p >3 and g > 3. Then H;L’L is irreducible with dimen-
sion g — 1 and its geometric generic point parametrizes a curve with positive
p-rank.

Proof. Suppose s € H;“(k). Let o be an automorphism of Dy of order 4 such

that 02 = 1. Consider the Z/4-cover D, = P! LA P.. Then 3 is branched
at two points and ramified at two points. Without loss of generality, one can
suppose these are 0, and oo, on P! and 0, and co, on PL. This implies that
the action of o on P. is given by o(x) = —x.

The inertia groups of Soa above 0 and oo are subgroups of (o) ~ Z/4 which
are not contained in (02). Thus they each have order 4 and « is branched over
0, and co,. The other 2g branch points of a form orbits under the action of o
and one can denote them by {£\1,...,£),}. Without loss of generality, one
can suppose A\g = 1 and $(\y) = 1 and therefore D, has an affine equation of
the form 32 = z(z? — 1) [TZ] (22 — A2).

Let S =P —{0,1,00}. Let A C S97! be the strong diagonal consisting of
all (g—1)-tuples (x1,...,74_1) so that z; = x; for some i # j. Let A’ C S9~!

consist of all (¢ — 1)-tuples (z1,...,24-1) so that x; = —x; for some ¢ # j.
There is a surjective morphism w : (P! — {0,1,00})97! — (AU A') — H*,
where w sends (A1,. .., Ag—1) to the isomorphism class of the curve with affine

equation y? = x(2? — 1) Hf;f(ﬁ — A?). Thus H,* is irreducible.

There are only finitely many fractional linear transformations fixing the set
{£A1,...,£X;_1,£1,0,00}. Thus w is finite-to-one and dim(Hé*L) =g-—1

Suppose g > 3, and let n be the geometric generic point of Hg’b. To
finish the proof, it suffices to show that the p-rank of D, is positive. Let
T = Spec(k[[t]]) and let T" = Spec(k((t))). Consider the image of the T"’-
point (tA1,tA2, A3, ..., Ag—1) under w. This gives a T"-point of Hy* C H,. The
moduli space H, of stable hyperelliptic curves is proper, so the T'-point of H,,
gives rise to a T-point of ﬂg. The special fiber of this T-point corresponds
to a stable curve Y. The stable curve Y has two components Y; and Y5
intersecting in an ordinary double point. Here Y7 has genus 2 and affine
equation y7 = z(2? — \?)(2? — A\3), while Y2 has genus g — 2 and affine
equation y3 = []/Z5 (2% — \2).

The moduli point s € Hy(k) of Y is in the closure of Hj*. The automor-
phism o extends to Y, and stabilizes each of the two components Y; and Y5.
Therefore, the moduli point of Y7 lies in Hg’L. There is a one-parameter family
of such curves Y7 since one can vary the choice of A\s. By Lemma 3.4, one can
suppose that fy, # 0. Now fy = fy, + fy, by [4, Ex. 9.2.8]. Thus fy # 0.
Since the p-rank can only decrease under specialization, and since s is in the
closure of 7, the p-rank of D, is non-zero as well. O

3.4. Main Result for H, ;.



Theorem 3.7. Suppose g > 3 and 0 < f < g. If n is the geometric generic
point of an irreducible component of Hy ¢, then Aut(D,) ~Z/2.

Proof. Let I" be the irreducible component of H, ; whose geometric generic
point is 1. Suppose o € Aut(D,,) has order ¢ with o ¢ (¢). Then p > 3 by
Lemma 3.1. Without loss of generality, one can suppose that either £ is prime
or £ = 4 with 02 = 1.

If / = 4 and 02 = 1, then H‘gl" is irreducible with dimension g — 1 by
Lemma 3.6. This is strictly less than dim(I") unless f = 0. If f = 0, the two
dimensions are equal but the geometric generic point of H‘;’L corresponds to
a curve of non-zero p-rank by Lemma 3.6. Thus D,, has no automorphism o
of order 4 with 02 = &.

If ¢ is prime, one can suppose that ¢ # p by Lemma 3.3. In [10, p.10], the
authors use an argument similar to the proof of Lemma 3.2 to show that 'Hg
is empty unless ¢ | (2g + 2 — i) for some i € {0,1,2}; and if ’Hf; is non-empty
then its dimensionis dg o = =14 (29 +2 —4)/0. If dyp < dim(T) =g+ f —1
then D,, cannot have an automorphism of order £. This inequality is always
satisfied when ¢ > 3 since g > 3.

Suppose £ = 2. Then dy, < dim(I") unless f < 1. If f = 1 then the
two dimensions are equal. By Lemma 3.5, Hg is irreducible and contains the
moduli point of a curve with p-rank at least two. Therefore, the component
I of Hy,1 is not the same as the unique irreducible component of H2.

Finally, suppose ¢ = 2 and f = 0. By Lemma 3.5(iii), dim(I'NH,,0) < g—1.
Thus n ¢ H2, and Aut(D,) ~ Z/2. O

g

Part (ii) of Theorem 1.1 now follows:

Corollary 3.8. Suppose g > 3 and 0 < f < g. There exists a smooth
projective hyperelliptic k-curve D of genus g and p-rank f with Aut(D) ~ Z/2.

Proof. The result follows from Theorem 3.7, using the same argument that
was used to deduce Corollary 2.4 from Theorem 2.3. g

Remark 3.9. The proof of the last statement of Lemma 3.6 uses the inter-
section of ﬁjb with the boundary component Ay of H,. More generally, one
can give a different proof of the main results of this paper using induction.
Here are the main steps of the inductive proof. If ¢ > 3 and if 1 < i < ¢/2,
one can show that the closure of every component of M, ¢ in ﬂg intersects
the boundary component A; by [6, p.80], [12]. Points of A; correspond to
singular curves Y that have two components Y7 and Y5 of genera ¢ and g — ¢
intersecting in an ordinary double point. Using a dimension argument, one
can show that Y7 and Y5 are generically smooth and that their p-ranks f; and
f2 add up to f. If the generic point of a component of M, ¢ parametrizes
a curve with a nontrivial automorphism, another dimension argument shows
that this automorphism stabilizes each of Y7 and Y. This would imply that
9



the generic point of a component of M,_; ¢, parametrizes a curve with non-
trivial automorphism group, which would contradict the inductive hypothesis.

An analogous proof works for H, y when p > 3 using [7].
One can also use monodromy techniques to prove Corollary 2.5, see [1,

App. 4.4].
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