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Abstract. Let k be an algebraically closed field of characteristic p > 0.

Suppose g ≥ 3 and 0 ≤ f ≤ g. We prove there is a smooth projective
k-curve of genus g and p-rank f with no non-trivial automorphisms.

In addition, we prove there is a smooth projective hyperelliptic k-curve

of genus g and p-rank f whose only non-trivial automorphism is the
hyperelliptic involution. The proof involves computations about the

dimension of the moduli space of (hyperelliptic) k-curves of genus g and

p-rank f with extra automorphisms.

1. Introduction

Let k be an algebraically closed field of characteristic p > 0. If g ≥ 3, there
exist a k-curve C of genus g with Aut(C) = {1} and a hyperelliptic k-curve
D of genus g with Aut(D) ' Z/2 (see, e.g., [16] and [8], respectively). In this
paper, we extend these results to curves with given genus and p-rank.

If C is a smooth projective k-curve of genus g with Jacobian Jac(C), the
p-rank of C is the integer fC such that the cardinality of Jac(C)[p](k) is pfC .
It is known that 0 ≤ fC ≤ g. We prove the following:

Theorem 1.1. Suppose g ≥ 3 and 0 ≤ f ≤ g.
(i) There exists a smooth projective k-curve C of genus g and p-rank f with

Aut(C) = {1}.
(ii) There exists a smooth projective hyperelliptic k-curve D of genus g and

p-rank f with Aut(D) ' Z/2.

More generally, we consider the moduli space Mg of curves of genus g over
k. The p-rank induces a stratificationMg,f ofMg so that the geometric points
of Mg,f parametrize k-curves of genus g and p-rank at most f . Similarly, we
consider the p-rank stratification Hg,f of the moduli space Hg of hyperelliptic
k-curves of genus g. Our main results (Theorems 2.3 and 3.7) state that, for
every geometric generic point η of Mg,f (resp. Hg,f ), the corresponding curve
Cη satisfies Aut(Cη) = {1} (resp. Aut(Dη) ' Z/2).
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For the proof of the first result, we consider the locusM`
g ofMg parametriz-

ing k-curves of genus g which have an automorphism of order `. Results from
[7] and [16] allow us to compare the dimensions of Mg,f and M`

g. The most
difficult case, when ` = p, involves wildly ramified covers and deformation
results from [2]. For the proof of the second result, we compare the dimen-
sions of Hg,f and H`

g using [9] and [10]. When p = 2, this relies on [17]. The
hardest case for hyperelliptic curves is when p ≥ 3, f = 0, and ` = 4 and we
use a degeneration argument to finish this case.

The statements and proofs of our main results would be simpler if more
were known about the geometry of Mg,f and Hg,f . For example, one could
reduce to the case f = 0 if one knew that each irreducible component of Mg,f

contained a component of Mg,0. Even the number of irreducible components
of Mg,f (or Hg,f ) is known only in special cases.

We also sketch a second proof of the main results that uses degeneration
to the boundaries of Mg,f and Hg,f , see Remark 3.9.

Remark 1.2. There is no information in Theorem 1.1 about the field of defini-
tion of the curves. In the literature, there are several results about curves with
trivial automorphism group which are defined over finite fields. In [14] and
[15], the author constructs an Fp-curve C0 of genus g with AutF̄p

(C0) = {1}
and a hyperelliptic Fp-curve D0 of genus g with AutF̄p

(D0) ' Z/2. However,
the p-ranks of C0 and D0 are not considered.

For p = 2 and 0 ≤ f ≤ g, the author of [19] constructs a hyperelliptic
F2-curve D0 of genus g and p-rank f with AutF̄p

(D0) ' Z/2. The analogous
question for odd characteristic appears to be open. Furthermore, for all p it
seems to be an open question whether there exists an Fp-curve C0 of genus g
and p-rank f with AutF̄p

(C0) = {1} [19, Question 1].

1.1. Notation and background. All objects are defined over an algebrai-
cally closed field k of characteristic p > 0. Let Mg be the moduli space
of smooth projective connected curves of genus g, with tautological curve
Cg → Mg. Let Hg be the moduli space of smooth projective connected
hyperelliptic curves of genus g, with tautological curve Dg → Hg.

If C is a k-curve of genus g, the p-rank of C is the number f ∈ {0, . . . , g}
such that Jac(C)[p](k) ∼= (Z/p)f . The p-rank is a discrete invariant which is
lower semicontinuous in families. It induces a stratification of Mg by closed
reduced subspaces Mg,f which parametrize curves of genus g with p-rank at
most f . Similarly, let Hg,f ⊂ Hg be the locus of hyperelliptic curves of genus
g with p-rank at most f .

Recall that dim(Mg) = 3g − 3 and dim(Hg) = 2g − 1. Every irreducible
component of Mg,f has dimension 2g − 3 + f by [7, Thm. 2.3]. Every irre-
ducible component of Hg,f has dimension g−1+f by [9, Thm. 1] when p ≥ 3
and by [17, Cor. 1.3] when p = 2. In other words, the locus of curves of genus
g and p-rank f has pure codimension g − f in Mg and in Hg.
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Every irreducible component of Mg,f (and Hg,f ) has a geometric generic
point η. Let Cη (resp. Dη) denote the curve corresponding to the point η.

Let ` be prime. Let M`
g ⊂Mg denote the locus of curves which admit an

automorphism of order ` (after pullback by a finite cover of the base). The
locus M`

g is closed in Mg. If D is a hyperelliptic curve, let ι denote the unique
hyperelliptic involution of D. Then ι is in the center of Aut(D). Let H`

g ⊂
Hg denote the locus of hyperelliptic curves which admit a non-hyperelliptic
automorphism of order `. Let H4,ι

g denote the locus of hyperelliptic curves
which admit an automorphism σ of order four such that σ2 = ι.

An Artin-Schreier curve is a curve that admits a structure as Z/p-cover of
the projective line. Let ASg ⊂Mg denote the locus of Artin-Schreier curves
of genus g and let ASg,f denote its p-rank strata.

Unless stated otherwise, we assume g ≥ 3 and 0 ≤ f ≤ g.

2. The case of Mg

2.1. A dimension result. Suppose Θ is an irreducible component of M`
g

with generic point ξ. Let Y be the quotient of Cξ by a group of order `. Let
gY and fY be respectively the genus and p-rank of Y . Consider the Z/`-cover
φ : Cξ → Y . Let B ⊂ Y be the branch locus of φ. If ` = p, let jb be the jump
in the lower ramification filtration of φ at a branch point b ∈ B [18, IV].

Lemma 2.1. (i) If ` 6= p, then dim(Θ) ≤ 2(g − gY )/(`− 1) + fY − 1;
(ii) If ` = p, then dim(Θ) ≤ 2(g − gY )/(`− 1) + fY − 1−

∑
b∈Bbjb/pc.

Proof. Let φ : Cξ → Y be as above, with branch locus B ⊂ Y . Because
g ≥ 3, if gY = 1 then |B| > 0. Let MgY ,fY ,|B| be the moduli space of
curves of genus gY and p-rank at most fY with |B| marked points. Then
dim(MgY ,fY ,|B|) = 2gY −3+fY + |B| if gY ≥ 1. Also dim(M0,0,|B|) = |B|−3
if |B| ≥ 3.

(i) Since φ : Cξ → Y is tamely ramified, the curve Cξ is determined by the
quotient curve Y , the branch locus B, and ramification data which is
discrete. Therefore, dim(Θ) ≤ dim(MgY ,fY ,|B|) if gY ≥ 1 and dim(Θ) ≤
|B| − 3 if gY = 0. By the Riemann-Hurwitz formula, 2g − 2 = `(2gY −
2) + |B|(`− 1). One can deduce that |B| = 2(g − `gY )/(`− 1) + 2 and
the desired result follows.

(ii) By the Riemann-Hurwitz formula for wildly ramified covers [18, IV,
Prop. 4],

2g − 2 = p(2gY − 2) +
∑
b∈B

(jb + 1)(p− 1).

For b ∈ B, let φ̂b : Ĉz → Ŷb be the germ of the cover φ at the
ramification point z above b. By [2, p.229], the dimension of the mod-
uli space of covers φ̂b with ramification break jb is db = jb − bjb/pc.
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The local/global principle of formal patching (found, for example, in
[2, Prop. 5.1.3]) implies dim(Θ) ≤ dim(MgY ,fY ,|B|) +

∑
b∈B db. Since

|B|+
∑

b∈B jb = 2(g − pgY )/(p− 1) + 2, this simplifies to

dim(Θ) ≤ 2(g − gY )/(p− 1) + fY − 1−
∑
b∈B

bjb/pc.

�

2.2. No automorphism of order p.

Lemma 2.2. Suppose Γ is a component of Mg,f with geometric generic point
η. Then Cη does not have an automorphism of order p.

Proof. The strategy of the proof is to show that dim(Γ ∩ Mp
g) < dim(Γ).

Recall that dim(Γ) = 2g − 3 + f by [7, Thm. 2.3].
Let Θ be an irreducible component of Γ∩Mp

g, with geometric generic point
ξ. Consider the resulting cover φ : Cξ → Y , which is either étale or wildly
ramified. Let gY and fY be respectively the genus and p-rank of Y .

Suppose first that gY = 0. In other words, ξ ∈ ASg,f and Cξ is an Artin-
Schreier curve. By [17, Lemma 2.6], g = d(p− 1)/2 for some d ∈ N. If p = 2,
then dim(ASg,f ) = g−1+f [17, Cor. 1.3]. If p ≥ 3, then dim(ASg,f ) ≤ d−1
by [17, Thm. 1.1]. In either case, dim(Θ) ≤ dim(ASg,f ) < dim(Γ) since g ≥ 3.

Now suppose that gY ≥ 1. If p ≥ 3, Lemma 2.1(ii) implies that dim(Θ) ≤
g − gY + fY − 1 < 2g − 3 + f .

If p = 2 and if gY ≥ 1, let |B| be the number of branch points of φ. By the
Deuring-Shafarevich formula [5, Cor. 1.8], f − 1 = 2(fY − 1) + |B|. Lemma
2.1(ii) implies that dim(Θ) ≤ 2g − 2gY + (f − 1 − |B|)/2 −

∑
b∈Bbjb/2c. In

particular, dim(Θ) < 2g − 2gY + f/2. So dim(Θ) < 2g − 3 + f if gY ≥ 2.
Suppose p = 2 and gY = 1. The hypothesis g ≥ 3 implies that φ is ramified.

So |B| ≥ 1 and jb ≥ 1 for b ∈ B. Then dim(Θ) < 2g − 3 + f/2.
Thus dim(Θ) < dim(Γ) in all cases. This inequality implies that η 6∈ Mp

g

and Aut(Cη) does not contain an automorphism of order p. �

2.3. The main result for Mg,f .

Theorem 2.3. Suppose g ≥ 3 and 0 ≤ f ≤ g. Suppose η is the geometric
generic point of an irreducible component Γ of Mg,f . Then Aut(Cη) = {1}.

Proof. By Lemma 2.2, Aut(Cη) contains no automorphism of order p. Let
` 6= p be prime. Consider an irreducible component Θ ⊂ Γ ∩M`

g. The result
follows in any case where dim(Θ) < dim(Γ) = 2g − 3 + f .

Let ξ be the geometric generic point of Θ. Let Y be the quotient of Cξ by
a group of order `. Let gY and fY be the genus and p-rank of Y .

If ` ≥ 3, then Lemma 2.1(i) implies dim(Θ) ≤ g − gY + fY − 1. Thus
dim(Θ) < 2g − 3 + f and Cη has no automorphism of order ` ≥ 3.
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Suppose ` = 2. If gY = 0, then Cη is hyperelliptic and in particular
dim(Θ) ≤ dim(Hg,f ) = g − 1 + f < 2g − 3 + f . If gY ≥ 1, then dim(Θ) ≤
2g − 2gY + fY − 1 which is less than 2g − 3 + f except when gY = 1 and
f = fY ≤ 1.

For the final case, when ` = 2, gY = 1, and f = fY , Lemma 2.1 alone does
not suffice to prove the claim. Let M2,Y

g be the moduli space of curves of
genus g which are Z/2-covers of Y . It is the geometric fiber over the moduli
point of Y of a map from a proper, irreducible Hurwitz space to M1 (see,
e.g., [3, Cor. 6.12]). Therefore, M2,Y

g is irreducible. Now ξ ∈M2,Y
g ∩ Γ. The

strategy is to show that there exists s ∈ M2,Y
g such that fs > fY . From

this, it follows that M2,Y
g ∩ Mg,fY

is a closed subset of M2,Y
g of positive

codimension. Then Θ is a closed subset of Γ of positive codimension, and the
proof is complete.

To construct s, consider a Z/2-cover ψ1 : Y → P1. If g is odd (resp. even),
let ψ2 : X → P1 be a Z/2-cover so that X has genus (g − 1)/2 (resp. g/2)
and so that the branch locus of ψ2 contains exactly 2 (resp. 3) of the branch
points of ψ1. Since only 2 (resp. 3) of the branch points of ψ2 are specified,
one can suppose X is ordinary. Consider the fiber product ψ : W → P1 of ψ1

and ψ2. Following the construction of [9, Prop. 3], W has genus g and p-rank
at least g/2. Since W is a Z/2-cover of Y , it corresponds to a point s ∈M2,Y

g

with p-rank at least fY + 1. �

Here is the proof of part (i) of Theorem 1.1:

Corollary 2.4. Suppose g ≥ 3 and 0 ≤ f ≤ g. There exists a smooth
projective k-curve C of genus g and p-rank f with Aut(C) = {1}.

Proof. Let Γ be an irreducible component of Mg,f , with geometric generic
point η. Let Γ′ ⊂ Γ be the open, dense subset parametrizing curves with
p-rank exactly f [7, Thm. 2.3]. By Theorem 2.3, Aut(Cη) = 1. The sheaf
Aut(C) is constructible on Γ′, but there are only finitely many possibilities
for the automorphism group of a curve of genus g. Therefore, there is a
nonempty open subspace U ⊂ Γ′ such that, for each s ∈ U(k), Cs has p-rank
f and Aut(Cs) = 1. �

Corollary 2.5. Let g ≥ 3 and 0 ≤ f ≤ g. There exists a principally polarized
abelian variety (A, λ) over k of dimension g and p-rank f with Aut(A, λ) =
{±1}.

Proof. Let A be the Jacobian of the curve given in Corollary 2.4. The desired
properties then follow from Torelli’s theorem [13, Thm. 12.1]. �

3. The case of Hg

Recall that g ≥ 3 and 0 ≤ f ≤ g.
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3.1. When p = 2.

Lemma 3.1. Let p = 2 and suppose η is the geometric generic point of a
component Γ of Hg,f . Then Aut(Dη) ' Z/2.

Proof. The automorphism group of a hyperelliptic curve always contains a
(central) copy of Z/2. Let U ⊂ Γ be the subset parametrizing curves with
automorphism group Z/2. As in the proof of Corollary 2.4, U is open; it
suffices to show that U is nonempty.

By [17, Cor. 1.3], Hg,0 is irreducible of dimension g − 1 when p = 2. For
g ≥ 3, there exists a hyperelliptic curve D0 with p-rank 0 and Aut(D0) ' Z/2
[19, Thm. 3]. The component Γ contains Hg,0 by [17, Cor. 4.6]. Then U is
non-empty since U ∩Hg,0 is nonempty. �

3.2. No automorphism of order p. Suppose p ≥ 3.

Lemma 3.2. If p|(2g + 2) or p|(2g + 1), then dimHp
g = b(2g + 2)/pc − 2.

Otherwise, Hp
g is empty.

Proof. Suppose s ∈ Hp
g(k). There exists σ ∈ Aut(Ds) of order p. Since ι

and σ commute, σ descends to an automorphism of Ds/〈ι〉 ' P1. Let Z
be the projective line Ds/〈σ, ι〉. Then Ds → Z is the fiber product of the
hyperelliptic cover φ : Ds/〈σ〉 → Z and the Z/p-cover ψ : Ds/〈ι〉 → Z.

Since Ds/〈ι〉 has genus zero, the cover ψ is ramified only at one point b
and the jump jb in the lower ramification filtration equals 1. After changing
coordinates on Ds/〈ι〉 and Z, the cover ψ is isomorphic to cp − c = x.

If φ is not branched at∞ then each branch point of φ lifts to p branch points
of the cover Ds → Ds/〈ι〉, and the branch locus of φ consists of (2g + 2)/p
points. On the other hand, if φ is branched at ∞ then the branch locus of
φ consists of (2g + 1)/p points. Therefore, if Hp

g(k) is nonempty, then either
p|(2g + 1) or p|(2g + 2).

Moreover, any branch locus of size b(2g + 2)/pc uniquely determines such a
cover φ. A point s ∈ Hp

g is determined by the branch locus of φ up to the action
of affine linear transformations on Z. Thus dim(Hp

g) = b(2g + 2)/pc − 2. �

Lemma 3.3. Let η be the geometric generic point of a component of Hg,f .
Then Aut(Dη) contains no automorphism of order p.

Proof. By Lemma 3.2, Hp
g is either empty or of dimension b(2g + 2)/pc − 2.

If g ≥ 3, then dim(Hp
g) < g − 1 + f = dim(Hg,f ). Thus Dη does not have an

automorphism of order p. �

3.3. Extra automorphisms of order two and four. Suppose p ≥ 3. In
this section, we show that the geometric generic point of any component of
Hg,f parametrizes a curve with no extra automorphism of order two or four.
The proof relies on degeneration and requires an analysis of curves of genus
2 and p-rank 0.
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Lemma 3.4. Suppose p ≥ 3 and g = 2. If η is a geometric generic point of
H2,0, then Aut(Dη) ' Z/2.

Proof. By [11, p.130], Aut(Dη)/〈ι〉 ' G whereG is one of the following groups:
{1}, Z/5, Z/2, S3, Z/2⊕Z/2, D12, S4, or PGL2(Z/5). Let TG ⊂ H2,0 be the
sublocus parametrizing hyperelliptic curves D with Aut(D)/〈ι〉 ' G. Since
every component of H2,0 has dimension one, it suffices to show that each TG

is zero-dimensional.
If G = Z/5 and s ∈ TG(k), then the Jacobian of Ds has an action by Z/5,

and thus must be one of the two abelian surfaces with complex multiplication
by Z[ζ5]. Therefore, there exist at most two hyperelliptic curves D of genus 2
and p-rank 0 with Aut(D)/〈ι〉 ' Z/5.

Now let G be any non-trivial group from the list other than Z/5. A curve of
genus two and p-rank zero is necessarily supersingular, and any supersingular
hyperelliptic curveD of genus two with Aut(D)/〈ι〉 ' G is superspecial by [11,
Prop. 1.3]. Since there are only finitely many superspecial abelian surfaces,
TG is a proper closed subset of H2,0 for each G 6= {1} on the list. Thus
Aut(Dη) ' Z/2. �

Lemma 3.5. Suppose p ≥ 3 and g ≥ 3.

(i) Then H2
g is irreducible with dimension g;

(ii) there exists s ∈ H2
g(k) such that Ds has p-rank at least 2;

(iii) and dim(Hg,0 ∩H2
g) < g − 1.

Proof. Suppose s ∈ H2
g(k). There is a Klein-four cover φ : Ds → P1

k such that
φ is the fiber product of two hyperelliptic covers ψi : Ci → P1

k [9, Lemma 3].
If g is even, then one can assume that C1 and C2 both have genus g/2 and

that the branch loci of ψ1 and ψ2 differ in a single point. If g is odd, then
one can assume that C1 has genus (g + 1)/2, C2 has genus (g − 1)/2, and
the branch locus of ψ2 is contained in the branch locus of ψ1 [9, Prop. 3]. In
both cases, the third Z/2-subquotient of Ds has genus zero. In particular, if
fs denotes the p-rank of Ds then fs = fC1 + fC2 [9, Cor. 2].

(i) This is found in [9, Cor. 1].
(ii) One can choose ψ1 so that C1 is ordinary. Then fs ≥ d g

2e ≥ 2.
(iii) Suppose s ∈ Hg,0(k), so that fs = fC1 = fC2 = 0. If g is even, then the

parameter space for choices of ψ1 has dimension dim(Hg/2,0) = g/2− 1.
For fixed ψ1, the parameter space for choices of ψ2 has dimension at
most 1. Similarly, if g is odd, the parameter space for choices of ψ1

has dimension dim(H(g+1)/2,0) = (g − 1)/2. For fixed ψ1, there are at
most finitely many possibilities for ψ2. In either case dim(Hg,0 ∩H2

g) ≤
bg/2c < g − 1.

�
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Lemma 3.6. Suppose p ≥ 3 and g ≥ 3. Then H4,ι
g is irreducible with dimen-

sion g − 1 and its geometric generic point parametrizes a curve with positive
p-rank.

Proof. Suppose s ∈ H4,ι
g (k). Let σ be an automorphism of Ds of order 4 such

that σ2 = ι. Consider the Z/4-cover Ds
α→ P1

x
β→ P1

z. Then β is branched
at two points and ramified at two points. Without loss of generality, one can
suppose these are 0x and ∞x on P1

x and 0z and ∞z on P1
z. This implies that

the action of σ on P1
x is given by σ(x) = −x.

The inertia groups of β◦α above 0 and∞ are subgroups of 〈σ〉 ' Z/4 which
are not contained in 〈σ2〉. Thus they each have order 4 and α is branched over
0x and ∞x. The other 2g branch points of α form orbits under the action of σ
and one can denote them by {±λ1, . . . ,±λg}. Without loss of generality, one
can suppose λg = 1 and β(λg) = 1 and therefore Ds has an affine equation of
the form y2 = x(x2 − 1)

∏g−1
i=1 (x2 − λ2

i ).
Let S = P1−{0, 1,∞}. Let ∆ ⊂ Sg−1 be the strong diagonal consisting of

all (g−1)-tuples (x1, . . . , xg−1) so that xi = xj for some i 6= j. Let ∆′ ⊂ Sg−1

consist of all (g − 1)-tuples (x1, . . . , xg−1) so that xi = −xj for some i 6= j.
There is a surjective morphism ω : (P1 − {0, 1,∞})g−1 − (∆ ∪ ∆′) → H4,ι

g ,
where ω sends (λ1, . . . , λg−1) to the isomorphism class of the curve with affine
equation y2 = x(x2 − 1)

∏g−1
i=1 (x2 − λ2

i ). Thus H4,ι
g is irreducible.

There are only finitely many fractional linear transformations fixing the set
{±λ1, . . . ,±λg−1,±1, 0,∞}. Thus ω is finite-to-one and dim(H4,ι

g ) = g − 1.
Suppose g ≥ 3, and let η be the geometric generic point of H4,ι

g . To
finish the proof, it suffices to show that the p-rank of Dη is positive. Let
T = Spec(k[[t]]) and let T ′ = Spec(k((t))). Consider the image of the T ′-
point (tλ1, tλ2, λ3, . . . , λg−1) under ω. This gives a T ′-point ofH4,ι

g ⊂ Hg. The
moduli space Hg of stable hyperelliptic curves is proper, so the T ′-point of Hg

gives rise to a T -point of Hg. The special fiber of this T -point corresponds
to a stable curve Y . The stable curve Y has two components Y1 and Y2

intersecting in an ordinary double point. Here Y1 has genus 2 and affine
equation y2

1 = x(x2 − λ2
1)(x

2 − λ2
2), while Y2 has genus g − 2 and affine

equation y2
2 =

∏g−1
i=3 (x2 − λ2

i ).
The moduli point s ∈ Hg(k) of Y is in the closure of H4,ι

g . The automor-
phism σ extends to Y , and stabilizes each of the two components Y1 and Y2.
Therefore, the moduli point of Y1 lies in H4,ι

2 . There is a one-parameter family
of such curves Y1 since one can vary the choice of λ2. By Lemma 3.4, one can
suppose that fY1 6= 0. Now fY = fY1 + fY2 by [4, Ex. 9.2.8]. Thus fY 6= 0.
Since the p-rank can only decrease under specialization, and since s is in the
closure of η, the p-rank of Dη is non-zero as well. �

3.4. Main Result for Hg,f .
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Theorem 3.7. Suppose g ≥ 3 and 0 ≤ f ≤ g. If η is the geometric generic
point of an irreducible component of Hg,f , then Aut(Dη) ' Z/2.

Proof. Let Γ be the irreducible component of Hg,f whose geometric generic
point is η. Suppose σ ∈ Aut(Dη) has order ` with σ 6∈ 〈ι〉. Then p ≥ 3 by
Lemma 3.1. Without loss of generality, one can suppose that either ` is prime
or ` = 4 with σ2 = ι.

If ` = 4 and σ2 = ι, then H4,ι
g is irreducible with dimension g − 1 by

Lemma 3.6. This is strictly less than dim(Γ) unless f = 0. If f = 0, the two
dimensions are equal but the geometric generic point of H4,ι

g corresponds to
a curve of non-zero p-rank by Lemma 3.6. Thus Dη has no automorphism σ
of order 4 with σ2 = ι.

If ` is prime, one can suppose that ` 6= p by Lemma 3.3. In [10, p.10], the
authors use an argument similar to the proof of Lemma 3.2 to show that H`

g

is empty unless ` | (2g + 2− i) for some i ∈ {0, 1, 2}; and if H`
g is non-empty

then its dimension is dg,` = −1 + (2g + 2− i)/`. If dg,` < dim(Γ) = g + f − 1
then Dη cannot have an automorphism of order `. This inequality is always
satisfied when ` ≥ 3 since g ≥ 3.

Suppose ` = 2. Then dg,` < dim(Γ) unless f ≤ 1. If f = 1 then the
two dimensions are equal. By Lemma 3.5, H2

g is irreducible and contains the
moduli point of a curve with p-rank at least two. Therefore, the component
Γ of Hg,1 is not the same as the unique irreducible component of H2

g.
Finally, suppose ` = 2 and f = 0. By Lemma 3.5(iii), dim(Γ∩Hg,0) < g−1.

Thus η 6∈ H2
g, and Aut(Dη) ' Z/2. �

Part (ii) of Theorem 1.1 now follows:

Corollary 3.8. Suppose g ≥ 3 and 0 ≤ f ≤ g. There exists a smooth
projective hyperelliptic k-curve D of genus g and p-rank f with Aut(D) ' Z/2.

Proof. The result follows from Theorem 3.7, using the same argument that
was used to deduce Corollary 2.4 from Theorem 2.3. �

Remark 3.9. The proof of the last statement of Lemma 3.6 uses the inter-
section of H4,ι

g with the boundary component ∆2 of Hg. More generally, one
can give a different proof of the main results of this paper using induction.
Here are the main steps of the inductive proof. If g ≥ 3 and if 1 ≤ i ≤ g/2,
one can show that the closure of every component of Mg,f in Mg intersects
the boundary component ∆i by [6, p.80], [12]. Points of ∆i correspond to
singular curves Y that have two components Y1 and Y2 of genera i and g − i
intersecting in an ordinary double point. Using a dimension argument, one
can show that Y1 and Y2 are generically smooth and that their p-ranks f1 and
f2 add up to f . If the generic point of a component of Mg,f parametrizes
a curve with a nontrivial automorphism, another dimension argument shows
that this automorphism stabilizes each of Y1 and Y2. This would imply that

9



the generic point of a component of Mg−i,f2 parametrizes a curve with non-
trivial automorphism group, which would contradict the inductive hypothesis.

An analogous proof works for Hg,f when p ≥ 3 using [7].
One can also use monodromy techniques to prove Corollary 2.5, see [1,

App. 4.4].
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