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Abstract

We study wildly ramified G-Galois covers ¢ : Y — X branched at B (defined
over an algebraically closed field of characteristic p). We show that curves
Y of arbitrarily high genus occur for such covers even when G, X, B and
the inertia groups are fixed. The proof relies on a Galois action on covers of
germs of curves and formal patching. As a corollary, we prove that for any
nontrivial quasi-p group G and for any sufficiently large integer o with p 1t o,
there exists a G-Galois étale cover of the affine line with conductor o above
the point oco.
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1 Introduction.

Consider a G-Galois cover ¢ : Y — X of smooth projective irreducible curves defined
over an algebraically closed field k of characteristic p. If ¢ is tamely ramified, the
Riemann-Hurwitz formula implies that the genus of Y is determined by |G|, gx, the
size of the branch locus B and the orders of the inertia groups. This statement is no
longer true when ¢ is wildly ramified. Not only can wildly ramified covers usually
be deformed without varying X or the branch locus B of ¢, but they can be often
be distinguished from each other by studying finer ramification invariants such as
the conductor. The genus of Y now depends on these finer ramification invariants.

This phenomenon is already apparent when one considers Z/p-Galois covers ¢ :
Y — P} of the projective line branched only over co. Each of these can be given
by an Artin-Schreier equation y? — y = f(z) where the degree j of f(z) € k[z| is
relatively prime to p. The genus gy of Y equals (p — 1)(j — 1)/2 and thus can be
arbitrarily large.

The main point of this paper is that the same unboundedness phenomenon occurs
for covers of any affine curve with any Galois group whose order is divisible by p.
Namely, as in the case of Z/p-covers of the affine line, the discrete invariants of
covers of a fixed affine curve with fixed group can be arbitrarily large. When G is an
abelian p-group, these results are a well-understood consequence of class field theory.
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Already the case of non-abelian p-groups does not seem to appear in the literature.
The complexity of the problem is related to the fact that the Galois group can be
a simple group in which case the cover ¢ will not factor through a Galois cover of
smaller degree. For this reason, we use the technique of formal patching.

Here are the main results. One discrete invariant for an étale cover of the affine
line is its conductor (or last jump in the filtration of ramification groups in the upper
numbering). Abhyankar’s Conjecture states that a G-Galois cover of the affine line
exists if and only if G is quasi-p, i.e. if and only if GG is generated by p-groups.

Corollary 3.3. If G # 0 is a quasi-p group and o € N (p1 o) is sufficiently large,
then there exists a G-Galois cover ¢ : 'Y — P} branched at only one point with
conductor o.

More generally, suppose X is a smooth projective irreducible k-curve and B C X
is a non-empty finite set of points. Suppose G is a finite quotient of 7 (X — B) so
that p divides |G|. (These groups were classified by Raynaud [11] and Harbater [3]
in their proof of Abhyankar’s Conjecture.) We show that curves Y of arbitrarily
high genus occur for GG-Galois covers ¢ : Y — X branched at B.

Corollary 3.4. There is an arithmetic progression p C N so that for all g € p,
there exists a G-Galois cover ¢ : Y — X branched only at B with genus(Y') = g.

In addition, we give a lower bound for the proportion of natural numbers which
occur as the genus of Y for a G-Galois cover ¢ : Y — X branched at B. This lower
bound depends only on G and p and not on X and B.

Hurwitz spaces for tamely ramified covers are well-understood by the work of
[14]. The following corollary shows that the the structure of Hurwitz spaces for
wildly ramified covers will be vastly different.

Corollary 3.6 For any smooth projective irreducible k-curve X and any non-empty
finite set of points B C X and any finite quotient G of (X — B) so that p divides
|G|, a Hurwitz space for G-Galois covers ¢ : Y — X branched at B will have
infinitely many components.

The main results, all appearing in Section 3, use formal patching to reduce to the
question of deformations of a wildly ramified cover é of germs of curves. We study
these deformations by analyzing a Galois action on the /-Galois cover ¢ in Section 2.
Here I corresponds to the inertia group of ¢ at a ramification point and is of the form
P X, pi, where |P| = p® and p t m. We use group theory and ramification theory
to factor qg as ko ¢ o ¢, The Galois group of ¢ is an elementary abelian p-group
denoted A, the Galois group of ¢ is P/A, and x is a Kummer j,,-cover. We define
a Galois action on gg which acts non-trivially only on the subcover ¢*. It causes the
set of wildly ramified I-Galois covers of germs of curves which dominate ¢ o & to
form a principal homogeneous space under the action of an explicitly computable
group. The effect of this Galois action on the ramification filtration of a cover is
investigated in Proposition 2.7.



Another application of this Galois action can be found in [8], where it is used
to study deformations of wildly ramified covers of germs of curves with control over
the conductor. The results in Section 2 appear in the generality needed for this
application.

I would like to thank D. Harbater, along with J. Achter and I. Bouw, for many
suggestions which helped improve earlier drafts of this paper. I would also like to
thank the participants of the conferences in Banff and in Leiden for enlightening
conversations.

2 Galois action on wildly ramified covers.

In this section, we investigate a Galois action on a wildly ramified cover of germs of
curves and its effect on the conductor. The main result is Proposition 2.7 which we
use in Section 3 to control the change in the ramification filtration when we modify
a Galois cover of germs of curves.

Let k be an algebraically closed field of characteristic p > 0. Consider a com-
patible system of roots of unity of k. Denote by ( the chosen generator of p,,. We
start in Section 2.1 with background on the ramification filtrations and upper and
lower jumps of a wildly ramified cover gzg of germs of curves.

2.1 Higher ramification groups.

In this section, we define the filtration of higher ramification groups of a wildly
ramified Galois cover gb Y — U of germs of curves. More precisely, we fix an
irreducible k-scheme € and let U = Spec(Oql[u]]). Let £ be the point of height one
of U defined by the equation u = 0.

Suppose qb Y — U is a Galois cover of normal connected germs of {2-curves
which is wildly ramified at the closed point n = ¢~1(¢) € Y. By [10, Lemma 2.1.4],
after an étale pullback of €2, the decomposition group and inertia group over the
generic point of n are the same and so the Galois group of quS is the same as the
inertia group.

Recall that the inertia group I at the generic point of 7 is of the form P x, u,,
where |P| = p® for some e > 0 and p { m, [13]. Here ¢ denotes the automorphism of
P which determines the conjugation action of yu,, on P.

Associated to the cover gg, there are two filtrations of 7, namely the filtration of
higher ramification groups /. in the lower numbering and the filtration of higher
ramification groups /¢ in the upper numbering. If ¢ € N, then [. is the normal
subgroup of all g € I such that g acts trivially on Oy /7 *!. Here 7 is a uniformizer
of Oy at the genemc point of 1. Equivalently, I = {g € I|val(g(r) —m) > ¢ + 1}.
If ¢ € R" and " = ||, then [, is defined to equal I... Recall by Herbrand’s
formula [13, IV, Section 3|, that the filtration /¢ in the upper numbering is given



by I¢ = I, where ¢ = U(c) and ¥(c) = [;(I° : I')dt. Equivalently, ¢ = o(c') where

d) = foc dt/(Io : I).

If I; # Iy for some j € NT, we say that j is a lower jump of b at n. The
multiplicity of j is the integer ¢ so that I;/I;,; ~ (Z/p)*. A rational number c
is an upper jump of gb at  if ¢ = ¢(j) for some lower jump j. We denote by
J1y--+,Je (vesp. o1,...,0.) the set of lower (resp. upper) jumps of ¢ at n written
in increasing order Wlth multiplicity. Note that these are the positive breaks in
the filtration of ramification groups in the lower (resp. upper) numbering. By [13,
IV, Proposition 11], p t j; for any lower jump j;. Herbrand’s formula implies that
Ji — Ji-1 = (00 — oi-1)|I]/|1;,]. In particular, o;|1|/|17"| € N and o1 = ji/m.

We call o = o, the conductor of qg at n; o is the largest ¢ € QQ such that inertia
group I¢ is non-trivial in the filtration of higher ramification groups in the upper
numbering. (Note that this indexing is slightly different than in [13], where if z
is a uniformizer at the branch point, then the ideal (z°!) is the conductor of the
extension of complete discrete valuation rings.)

If .Y — X is a G-Galois cover of projective curves branched at B, we briefly
recall how the genus gy of Y depends on the upper jumps of ¢ at each branch point.
Let I, denote the inertia group of ¢ at a point above b € B and let mp® denote its
order; (for simplicity we drop the index b from the variables m and e).

Lemma 2.1. (Riemann-Hurwitz formula)

gy = 1+[Gl(gx — 1)+ Y |Gldeg(Ry)/2|1,].

beB
deg(Ry) = || — 1+ (p — 1)moy + pos + .. .pe_lae].

Proof. The proof follows immediately from the Riemann-Hurwitz formula [6, IV.2.4],
[13, IV, Proposition 4], and Herbrand’s formula [13, IV.3]. O

We will increase the conductor of ¢ by modifying its A-Galois subcover while
fixing its I/A-Galois quotient for a suitable choice of A C 1.

Lemma 2.2. Suppose I >~ P X, i,,. Suppose ¢:Y — U is an I-Galois cover with
conductor o. Then there exists A C I satisfying the following hypotheses: A is
central in P; A is normal in I; A is a nontrivial elementary abelian p-group; and A
15 irreducible under the p,,-action.

Proof. By [13, IV, Cor. 3 through Prop. 7], we see that 17 is elementary abelian. By
13,1V, Prop. 10],if g € I = I and h € Iy(,) then ghg 'h™" € Iy(y)41 = id. Thus I?
is central in P. The subgroup 7 is normal 1n I by definition. Thus the conjugation
action of u,, stablizes I?. So any choice for A among nontrivial subgroups of I
stabilized and irreducible under the action of pu,, satisfies all the hypotheses. O]



Given an I-Galois cover ¢ : Y — U with conductor o, we fix A C P satisfying the
hypotheses of Lemma 2.2. Let a be the positive integer such that A ~ (Z/p)*. Let
A X, l,, be the semi-direct product determined by the restriction of the conjugation
action of p,, on P. We fix a set of generators {r;| 1 <i < a} for A. Let P = P/A
and I = I/A.

The condition that A is central in P (resp. A is normal in I) is used to define a
transitive action of A-Galois covers on P-Galois covers in Section 2.2 (resp. I-Galois
covers in Section 2.3). The conditions that A ~ (Z/p)* and that A is irreducible
under the action of p,, make it easy to describe these A-Galois covers with equa-
tions. The condition that A C [? is important for controling the conductor when
performing this action which is necessary in Section 2.5 for Proposition 2.7.

2.2 Definition of the Galois action.

Suppose g% .Y — Uis an I-Galois cover and A is a subgroup in the center of P.
This yields a factorization of ¢ which we denote

VATV AT AU

Here ¢ is A-Galois, EAis P-Galois, and & is pm-Galois. Let ¢EP Y - X denote the
P-Galois subcover of ¢. If A is normal in [ and [ = I/A, then ko ¢ is an I-Galois
cover. Let 1 = ¢*(n) (resp. £ = k~1(€)) be the ramification point of Y (resp. X).
So
n—=mn—E =L

Also, X =~ Spec(Ogq)[[x]]) for some z such that 2™ = u. The generator ¢ of ji,,
acts as ((z) = ¢ (x) for some integer h relatively prime to m. Let U = U — {£}
and X' =k 1(U") = X — {¢'}.

Consider the group H4 = Hom(m;(X"), A). We suppress the choice of basepoint
from the notation. An element o € H4 may be identified with the isomorphism

class of an A-Galois cover of X branched only over the closed point &. We denote
this cover by ¢, : V — X.

Lemma 2.3. Let Hy = Hom(m(X'), A). If A is in the center of P, then the fibre

Hg of Hom(m (X'), P) — Hom(m (X'), P) over ¢ is a principal homogeneous space
for Hy. In other words, Ha acts simply transitively on the fibre Hg.

Proof. If v € Hz and w € m(X’), then we define the action of o € H4 on Hy as fol-
lows: ay(w) = a(w)y(w) € P. The action is well-defined since vy € Hom(m;(X’), P)
and the image of ay(w) and y(w) in P are equal. The action is transitive since if
7,7 € Hzthen w — y(w)y'(w)~" is an element of H 4 because A is in the center of P.
The action is simple since oy = az if a3 (w)y(w) = a2(w)y(w) for allw € m (X’). O

For more details about Lemma 2.3 in the case that A ~ Z/p, see [5, Section 4].
We note that the fibre Hj may be identified with isomorphism classes of (possibly
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disconnected) P-Galois covers Y — X of normal germs of curves which are étale
over X’ and dominate the P-Galois cover ¢ : Y — X.

We now give a more explicit formulation of this action. Suppose a € Hy
corresponds to the isomorphism class of an A-Galois cover 1, : V — X and
v € Hom(m (X'), P) corresponds to the isomorphism class of a P-Galois cover
¢P Y — X. How do Y, and ¢P determine the cover corresponding to ay, which we

denote gbw. Consider the normalized fibre products Z = Y xV and Z =Y x5V

1xA

7 X5y
L P l¢§
v o X

Now (gzgf X1y 1 Z — X is the P x A-Galois cover corresponding to the element
(v,0) € Horn(7r1 (X'),P x A). Let A” C P x A be the normal subgroup generated
by (7, 7; 1) for 1 <4 < a. Note that A’ ~ A and that P ~ (P x A)/A’. We denote
by qb : W — X the P-Galois quotient (qbp X1ho)? corresponding to the fixed field
W of A’ in Z.

1xA ~

A — Y
| A | o
wo Ry
Lemma 2.4. If A 1s in the center of P, then the P-Galois cover corresponding to
ay € Hom(m (X'), P) is isomorphic to W — X,

Proof. If w € m(X') then ay(w) = oz(w)y(w) € P. On the other hand, (v, )(w)
(7(w), a(w)) € P x A. Since (y(w),a(w)) = (y(w)a(w), 1) modulo A" = <(7’,, H

);
the two covers give the same element of Hom(m(X"), P). O

2.3 Invariance under the p,,-action.

In this section, we consider the invariance of these covers under the pu,,-Galois action.
Suppose A is central in P and normal in . Since ¢ restricts to an automorphism
of A, we see that ¢ acts naturally on Hy = Hom(m(X’), A). Denote by HY the
subgroup of Hy fixed by ¢. In other words, the elements of H' correspond to A-
Galois covers ¢ : V — X branched only over the closed point & for which the
composition ko1 : V — U is an (A X, u,,)-Galois cover.

Suppose é .Y — U is an [-Galois cover where I ~ P x, fm- Let v €
Hom (7, (X"), P) correspond to the isomorphism class of the P-Galois subcover of
of ¢. If a € H 4, recall that gb is the cover corresponding to ay € Hom(m (X'), P).

Lemrna 2.5. Suppose A is central in P and normal in I. Let o € Hy. The cover
ko (¢F ) W — U is an I-Galois cover if and only if a € HY.
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Proof. Let (P x A) X, pi, be the semi-direct product for which the conjugation action
of ¢ on the subgroups (0, A) and (A,0) in P x A is the same. By the hypotheses
on A, the subgroup A’ = (A, A™!) is normal in (P x A) X, pt,. So by Lemma 2.4,
the cover k o (Agv) : W — U is I-Galois if and only if Z — U is (P X A) X, fim-
Galois. Onme direction is now immediate: if o € HY, then the cover Z — U is
(P x A) %, i,,-Galois so k o ( Agy) : W — U is I-Galois.

Conversely, suppose ko éf; W — U is I-Galois. Since Y — U and W — U are

I-Galois the action of pu,, extends to an automorphism of Y and of W, which reduce
to the same automorphism of Y. Since Y is the fixed field of Z under (0, A) C P x A
and W is the fixed field of Z under A’, we see that the action of pu,, extends to an
automorphism of Z. Thus Z — U is (P x A) X, u,-Galois. Recall that V' is the
quotient of Z by the normal subgroup (P,0) of (P x A) X, f,. So the quotient
V — U is (A %, i, )-Galois which implies o € HY. O

2.4 The irreducible elementary abelian case.

In this section, we consider the case that A C P is a non-trivial elementary abelian
p-group (Z/p)* which is irreducible under the action of p,, on P. In other words,
A satisfies all the hypotheses of Lemma 2.2 except that A C 7. In this case, the
results in Sections 2.2 and 2.3 can be made more explicit. Let ;; = 1 if ¢ = j and
0;; = 0 otherwise.

First, if A is a non-trivial elementary abelian p-group, then the cover 1, corre-
sponding to o € H, is determined by its (7;)-Galois quotients which are given by
equations vf — v; = r,, with r,, € Ogl[z]][z™!]. The generator 7; € A corresponds
to an automorphism 7,; of V' given by 7y ;(v;) = v; + §;;. Given another such cover
Y’ with equations v — v; = rf, the group operation for H, corresponds to adding
the Laurent series in the Artin-Schreier equations. This yields the cover given by
the equations v — v; = 14, + 7.

Next, if A is a non-trivial elementary abelian p-group, then Lemma 2.4 allows
us to view the action of Hy on Hy on the ring level. The cover q@f corresponding
to v € Hom(m(X'), P) is determined from its ¢-quotient by an A-Galois cover
gb:‘; .Y — Y. This cover gbj;‘ is determined by its (7;)-Galois quotients which are
given by Artin-Schreier equations y} —y; = r,,. Herer., € K where K is the fraction
field of the complete local ring of Y at the closed point 7. The Galois action is given
by TA’Z.(yj) = y; + 0;;. Note that w; = y; +v; is invariant under ((7;, 7, ")). Thus the
cover ggfv : W — X is determined from ¢ by the A-Galois cover W — Y which is
determined by the equations w? — w; = 1., + 74,. This gives an even more explicit
description of the Galois action.

Furthermore, suppose A C P is a non-trivial elementary abelian p-group so that
im acts irreducibly on A. If 1, is the A-Galois cover corresponding to @ € HY,
then 1, is determined by any one of its (7;)-Galois quotients along with the cover
k. Also the filtration of higher ramification groups for a € H* can have only one
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jump which occurs with full multiplicity a. In addition, the conductor of 1, is an
integer which must satisfy a certain congruence condition.

Lemma 2.6. i) Suppose gzg Y S Uisanl ~ P X, piy,-Galois cover with conductor
o and last lower jump j.. Suppose A C I° satisfies the hypotheses of Lemma
2.2. Suppose o € HY has conductor s. Then s = j./|P| mod m.

ii) Associated to the p,,-Galois cover k : X — U and the group A x, lm, there is
a unique integer s, (such that 1 < s, < m) having the following property: if
o € HY has conductor s then s = s, mod m.

Proof. i) Suppose |P| = p?. Let y be a primitive element for the A-Galois extension
of the function field K of Y. The valuation of y in the function field K ofY is
—j. where j, is the last lower jump of ¢. The equation for the A-Galois cover
¢* 1Y — Y is of the form f(y) = r 5 where f(y) € Oqly| is a relative Eisenstein
polynomial of degree p* and r 3 € K. From the equation, the valuation of r 3
in K is p° val(y) = —p®je. It follows that the valuation of r; in K is —j,.
Also z has valuation p? in K. This implies that there is a unit u; of Oz so
that r: = z /Py, Likewise, the equation for the A-Galois cover ¢ : V — X
is of the form f(v) = r, where r, = 2 %uy for some unit us of Og[[z]]. The

generator ¢ of y,, acts by ((z) = ("z. So ((v) = (,"v and ((y) = C;the/pdy.

Since y + v is in the function field of W, the action of ¢ on y and v must be
compatible. Thus s = j./|P| mod m.

ii) It is sufficient to show that the conductors s; of any two covers o, ; € HY; are
congruent modulo m. This follows directly from part (i) (taking b =roa,
P=A and j. = s1).

]

2.5 Effect of the Galois action on the conductor.

At this point, we determine the effect of the Galois action on the conductor of the
cover. Consider an [-Galois cover ¢ : Y — U with conductor o and, more generally,
upper jumps oy, ..., 0. in the ramification groups I;fs in the upper numbering; (here

o = 0.). Consider A C Ig satisfying the hypotheses of Lemma 2.2 and choose

a € HY. By definition, o corresponds to an A-Galois cover 1, : V — X. Let
s € NT be the conductor of v, and note p t s. Since A is irreducible under the
tm-action, 1, has ramification filtration IS = A for 0 < ¢ < s and IS =0 for ¢ > s.
The action of « takes qg to another I-Galois cover which we denote by &O‘ W —=U.
Recall that ¢ is the I-Galois cover o A;) where v € Hom(7 (X’), P) corresponds

to the P-Galois subcover ¢
The following result will be crucial in order to modify a Galois cover of germs of
curves with control over the change in the ramification filtration.



Proposition 2.7. If the cover ¢* is connected, then it has conductor max{s/m,o}.
More generally, the ramification filtration of ¢ is Iga = IE) for0<c¢ <o, I(‘éa =A
for o < ¢ <max{s/m,o}, and Iga =0 for max{s/m,o} < c.

Proof. The P-Galois subcover ¢E§,y = (¢*)F : W — X dominates ¢ : ¥ — X. So
after intersecting with P, the ramification filtrations for ngP and gzg; are equal, i.e.
Iz, N P=1 Ha P.

So the only issue is to find the index at which each generator 7; of A drops out
of the filtration of higher ramification groups. In fact, the jumps for the 7; are all
equal. This is because the jumps of the 7; are the same (occurring with multiplicity
a) for both of the covers (ﬁp and 1,. To complete the proof it is thus sufficient
to find the conductor of the cover (ﬁ"‘. In particular, by Herbrand’s formula, it is
sufficient to show the conductor of the P-Galois subcover (¢%)F equals max{s, mo}.

To do this, we investigate the filtration of the A x A-Galois cover Z — Y. Here
s and mo are the relevant upper jumps of Z — X. Denote by V() the function
which takes the indexing on the ramification filtration of the P x A-Galois cover
from the upper to lower numbering. So the numbers ¥, ,)(s) and W, )(mo) are the
corresponding lower jumps for Z — X, and thus also for Z — Y by [13 Proposition
2]. Also the lower (and upper) jump for Z — Z is W(, 4)(mo) and for Z — Y is
U, (s). Since the Galois group of Z — W is generated by the automorphisms
(T4, Tos) the cover Z — W has lower jump min{W(, q)(s), ¥U(,.q)(mo)}.

If s < mo, the conductors of Z — W and of Z — Y are the same; this implies
that the conductor of W — Y equals the conductor of ¥ — Y, namely v (mo)
Thus the conductor of gbo‘ is mo and the ramification filtrations for gb"‘ and qb are
the same. Similarly, if s > mo, the conductors of Z — W and Z — Z are the
same; this implies that the conductor of W — Y equals the conductor of Z — Y.
So the ramification filtrations for gg"‘ and Z — U are the same, which implies that
the conductor of the former is also s/m. ]

See Example 4.4 for a computational proof of Proposition 2.7 in the case that
m=1and P =7Z/p*

2.6 Connected and smooth covers

Suppose (% .Y — U is an I-Galois cover of normal connected germs of curves (wildly
ramified with conductor o as above). Suppose A C Ig satisfies the hypotheses of
Lemma 2.2 and o € HY,. In future applications [8] and briefly in Section 3, we need
to consider questions of connectedness and smoothness for the I-Galois cover 923“.
First, we show that the I-Galois cover an : W — U is almost always connected.

Lemma 2.8. If ngS is a cover of connected germs of curves, then there are only finitely
many choices of a for which ¢ is not connected. In particular, ¢* is connected if
o does not dominate 1),,.



Proof. The first statement follows directly from the second since ¢EP only dominates
a finite number of A-Galois covers.

For the second statement, suppose ggP does not dominate 1,. The fact that both
Y and V are invariant under the p,,-Galois action and the fact that A is irreducible
under this action imply that ¢ and 1, are linearly disjoint. It follows that the
curve Z = Y'X XV is connected. If Z is connected then its quotient W = Z4" is
connected and so ¢"‘ : W — X is a cover of connected germs of curves. O]

Lemma 2.9. ]f$ is a cover of connected germs of curves and « is such that the
cover ¢% is not connected, then s = mo.

Proof. Consider the covers 95 Y — U and 950‘ : W — U. Recall that Y and
W are two of the quotients of Z by subgroups of A x A. The fact that Y is
connected implies that Z has at most |A| components. Also Z is not connected
since W is not connected. The stabilizer of a component of Z has size |A| since A is
irreducible under the p,,-action. As a result, only one of the A-quotients of Z can
be disconnected. In particular, Z is connected.

The A-Galois covers Y — Y and Z — Y are not linearly disjoint since their
fibre product Z — Y is disconnected. By the fact that A is irreducible under the
pum-action, it follows that these two A-Galois covers are identical. Thus the /-Galois
Covers gb Y — U and Z — U are the same and thus have the same conductor. The
conductor of the former is 0. The conductor of the latter is the same as the upper
jump of V' — U which is s/m. O

Remark 2.10. Note that ngﬁa could be connected even if s = mo. The cover ngSO‘ is
connected (and thus has conductor max{s/m, o} by Proposition 2.7) as long as the
leading term of 75 does not cancel the leading term of ro + 77 — r for any r € K.
For this will guarantee that — val(r; + ro) = max{—val(r;), — val(r,)}.

A final issue that will come up is one related to smoothness. Fix Q = Spec(R)
where R is an equal characteristic complete local ring with residue field k£ and fraction
field K. Consider the special fibre q@% : Wy — Uy of the cover qga : W — U of Q-
curves. It is possible that the curve Wy is singular at its closed point w. The
following lemma implies that this can only occur when the ramification filtrations
of qgo‘ are not the same on the generic and spec.

Lemma 2.11. Suppose that gga : W — U is a Galois cover of normal irreducible
germs of Q-curves with Wy, reduced, ég separable, and an étale outside . Let dy,
(resp. dg ) be the degree of the ramification divisor over &, (resp. £ ). Then dy = dy,
if and only if w is a smooth point of Wy.

Proof. The value of d; and the question of whether w is a smooth point of W} do
not depend on R. The value of dg depends only on the ramification at the generic
point of k. For this reason, it is sufficient to restrict to the case that R = k[[t]].
The proof then follows from Kato’s formula [7] which states (under the conditions
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above) that i, — 1 = n(ue, — 1) + dg — d¥*. Here n = deg(¢®), pe, = 0 since & is
a smooth point of Uy and p,, is the invariant measuring the singularity of W at w.
Namely, let m, : Wi — Wy be the normalization of Wj. Define M = 204, — My + 1
where 8, = dim(0,,/Oy) and m,, = |7, (w)|. We see that g, = 0 if and only if w
is smooth on Wj,.

Write ¢y : Wy — Uy and é,;l(fk) = {w;|1 <i < my}. Let §; and e; be respec-
tively the discriminant ideal and the ramification index of the extension k[[u]] —
O, 0, 00 the special fibre. Let d; = v(d;) and let d¥¥ = d; —e; + 1. Let dyy = >, d;
and let dpild =S~ dwid.,

By Kato’s formula, i, =1 —n+dg — d¥ " =1 —n+dgx — my,(v(5;) — e; + 1).
Thus p, =1 —n+dg —di +n—my =1—my + dg — di. Note that dg > dj. So
the condition that w is smooth implies p,, = 0, m,, = 1, and dx = d;. Conversely,
if dg = dj, then p, =1 —m,,, but my,, > 1 so u,, = 0 and w is smooth on Wj,. [

3 Increasing the Conductor of a Cover.

In this section, we consider the question of increasing the conductor of a cover of
curves at a wild branch point. Suppose X is a smooth projective irreducible k-curve
and B is a non-empty finite set of points of X. Suppose G is a finite quotient of
m1 (X — B). When |B| is nonempty, these groups have been classified by Raynaud
and Harbater ([11] [3]) in their proof of Abhyankar’s Conjecture. Namely, G is a
finite quotient of (X — B) if and only if the number of generators of G/p(G) is at
most 2gx + |B| — 1. Here p(G) denotes the characteristic subgroup of G generated
by the group elements of p-power order.

Suppose ¢ : Y — X is a G-Galois cover of smooth projective irreducible k-curves
branched only at B. Suppose ¢ wildly ramified over b € X and let I be the inertia
group at a ramification point 77 above b. Let R be an equal characteristic complete
discrete valuation ring with residue field k£ and let K = Frac(R). In this section, we
will “deform” ¢ to a cover ¢r : Yg — X X R so that the conductor of ¢ at this
wild branch point increases on the generic fibre. By Lemma 2.11, it is not possible
to do this without introducing a singularity. In other words, the special fibre ¢, of
¢r will be singular and ¢ will be isomorphic to the normalization of ¢, away from
b.

More precisely, let ¢ : ¥ — Uy, be the germ of ¢ at 1. Here U, ~ Spec(k[[u]]).
Let Ugr = Spec(k[[t]][[u]]). Let & (resp. &g) be the closed point of Uy (resp. Ug)
given by the equation u = 0. For lack of better terminology, a singular deformation
of ¢ is an [-Galois cover ¢p : Y — Upg of normal irreducible germs of R-curves,
whose branch locus consists of only the R-point {g, such that the normalization of
the special fibre of qu is isomorphic to qb away from . (Note that the special fibre
qﬁk of gbR is the restriction of gbR over Uy (when t = 0). The generic fibre gbK of ngR
is the cover of Ur x g K = Spec(k[[t]][[u]][t7"]).
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Lemma 2.11 shows that a deformation is singular if and only if the ramification
data on the generic and special fibres are not the same.

The following proposition shows that there is always a singular deformation of
gZA> with larger conductor on the generic fibre.

Proposition 3.1. Suppose (5 .Y — U, is an I-Galois cover of normal connected
germs of curves with conductor o. Suppose A C 17 satisfies the hypotheses of Lemma
2.2. Suppose s € N is such that pt s, s > mo, and s = s, mod m (with s, as in
Lemma 2.6). Then there exists a singular deformation QASR : Y — Ug whose generic
fibre éK : Yk — Uk has inertia I and conductor s/m. In addition, 15, = 1; for
0<c<o, I§, = A foro <c<s/m, and I§ =0 forc> s/m.

Proof. The A-Galois subcover Y — Y is determined by x and by the equation y? —
y = 1y of its (1;)-Galois quotient (where 74 € K). Consider the singular deformation
of ¢ whose P-Galois quotient is constant and whose (11)-Galois subquotient is given
generically by the following equation: y? —y = ry +to~°. The curve Y is singular
only above the point (u,t) = (0,0). The normalization of the special fibre agrees
with gE away from v = 0. The cover QASR is branched only at £g since u = 0 is the
only pole of the function ry4 + tx=°. When ¢ # 0, by Proposition 2.7, the conductor
of g is s and the statement on ramification filtrations is true. ]

Proposition 3.1 shows that we can increase the conductor from o to s/m. By
Herbrand’s formula, it follows that the last lower jump increases from j. to j. +
p~*m(s/m — o). One can check that the latter number is always an integer which
is not divisible by p.

The next theorem uses Proposition 3.1 and formal patching to (singularly) de-
form a cover ¢ : Y — X of projective curves to a family of covers ¢r of X so that
the conductor increases at the chosen branch point. This family can be defined over
a variety © of finite type over k. We then specialize to a fibre of the family over
another k-point of © to get a cover ¢’ with larger conductor.

Theorem 3.2. Let ¢ : Y — X be a G-Galois cover of smooth projective irreducible
curves with branch locus B. Suppose ¢ is wildly ramified with inertia group I ~
P X, by, and conductor o above some point b € B. Suppose A C 17 satisfies the
hypotheses of Lemma 2.2. Let s, be as defined in Lemma 2.6(ii). Suppose s € N
such that p t s, s > mo, and s = s, mod m. Then there exist G-Galois covers
Oor:Yr — X X3 R and ¢' : Y — X such that:

1. The curves Yr andY' are irreducible and Y andY' are smooth and connected.

2. After normalization, the special fibre ¢ of ¢r is isomorphic to ¢ away from
b.

3. The branch locus of the cover ¢r (resp. ¢') consists exactly of the R-points
Er = & Xg R (resp. the k-points &) for £ € B.
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4. For & € B, & # b, the ramification behavior for ¢r at g (resp. ¢' at &) is
identical to that of ¢ at £.

5. At the K-point bg (resp. at b), the cover ¢x (respectively ¢') has inertia I
and conductor s/m and in addition I;K = I(g for 0 < ¢ < o, I(‘;K = A for
o<c<s/m,and I§ =0 forc>s/m.

6. The genus of Y' and of Yk is ¢ = gy + |G|(s/m —o)(1 —1/p*)/2 where a is
such that |A| = p°.

Proof. Let n € ¢~ 1(b) and consider the I-Galois cover ¢ : ?;7 — X,. Applying
Proposition 3.1 to gzg, there exists a singular deformation QASR : Yg — Xg of gg with
the desired properties. In particular, QASK has inertia I and conductor s over bg.
Consider the disconnected G-Galois cover IndS (¢r).

The covers ¢, and Ind¥(¢x) and the isomorphism between their overlap consti-
tute a relative G-Galois thickening problem. The (unique) solution to this thickening
problem [5, Theorem 4] yields the G-Galois cover ¢r : Yg — X X, R. Recall that
the cover ¢r is isomorphic to IndIG(¢ER) over X rp- Also, ¢r is isomorphic to the
trivial deformation ¢y, : Y;, — Xy, of ¢ away from b. Thus Yy is irreducible since Y
is irreducible and Y is smooth since Y}, x and YK are smooth.

The data for the cover ¢ is contained in a subring ©® C R of finite type over k,
with © # k since the family is non-constant. Since k is algebraically closed, there
exist infinitely many k-points of Spec(©). The cover ¢r descends to a cover of ©-
curves. The closure L of the locus of k-points 6 of Spec(©) over which the fibre ¢y
is not a G-Galois cover of smooth connected curves is closed, [2, Proposition 9.29].
Furthermore, L # Spec(0) since Yk is smooth and irreducible. Let ¢/ : Y/ — X
be the fibre over a k-point not in L. Note that Y’ is smooth and irreducible by
definition.

Properties 2-5 follow immediately from the compatibility of ¢r with Ind?(éR)
over X rp and with the trivial deformation ¢y, : Y;, — X, away from b.

The genus of Y’ and of Yy increases because of the extra contribution to the
Riemann-Hurwitz formula. In particular, there are |G|/m/|P| ramification points
above bg. If |P| = p° then by Herbrand’s formula, each ramification point has
(s/m — o)mp®~® extra non-trivial ramification groups of order p® in the lower num-
bering. Thus the degree of the ramification divisor over by increases by |G|(s/m —

o)(1—=1/p")/2. O

One can say more when X ~ P} and B = {co}. By Abhyankar’s Conjecture,
the non-trivial quasi-p groups are exactly the ones so that G is a finite quotient of
m1(A}) and p divides |G].

Corollary 3.3. If G # 0 is a quasi-p group and o € N (p1 o) is sufficiently large,
then there exists a G-Galois cover ¢ : Y — P} branched at only one point with
conductor o.
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The author obtained a similar result in [9] under the restriction that the Sylow
p-subgroup of G has order p.

Proof. By [11] and [3], there exists a G-Galois cover ¢ : Y — P}, branched only at oo
whose inertia groups are the Sylow p-subgroups of G. The result is then automatic
from Theorem 3.2. O]

As another corollary, we show that curves Y of arbitrarily high genus occur for
G-Galois covers ¢ : Y — X branched at B as long as p divides |G|.

Corollary 3.4. Suppose X is a smooth projective irreducible k-curve and B C X is
a non-empty finite set of points. Suppose G is a finite quotient of m (X — B) such
that p divides |G|. Let p C N be the set of genera g for which there exists a G-Galois
cover ¢ : Y' — X branched only at B with genus(Y') = g. Then the set p contains
an arithmetic progression whose increment depends only on G and p.

Proof. First we show that the hypotheses on GG guarantee the existence of a G-
Galois cover ¢ : Y — X branched only at B with wild ramification at some point.
Let p(G) be the normal subgroup of G' generated by all elements of p-power order.
Let S C p(G) be a Sylow p-subgroup of G. Consider the natural morphism 7 :
G — G/p(G). By [4, Lemma 2.4], there exists F' C G which is prime-to-p and
normalizes S so that 7(F) = G/p(G). Let g1,..., g, be a minimal set of generators
for G/p(G). After possibly replacing F' with the subgroup generated by elements
hi, ..., h, where m(h;) = g;, we see that F' can be generated by r elements. By
Abhyankar’s Conjecture [3], r < 2¢gx + |B| — 1 and there exists an F-Galois cover
Y, — X branched only over B. Note that F' and p(G) generate G. As a result,
the F-Galois cover Y, — X and p(G) satisfy all the hypotheses of [4, Theorems
2.1 and 4.1]. Let I; be the inertia group of Y, — X above a chosen point b € B.
These theorems allow one to modify the cover Y, — X to get a new G-Galois cover
¢ 'Y — X branched only at B so that the inertia above b is I = [1S. Since p
divides |G|, it follows that S is non-trivial and so ¢ is wildly ramified above b.

Let gy be the genus of Y. The inertia group I is of the form P %, u, for some
P C S. Suppose |P| = p°. Let o be the conductor of ¢ above b. Let n be the fixed
integer |G|(1 — 1/p*)o/2. Let s be such that p { s, s > mo, and s = s, mod m.
By Theorem 3.2, it is possible to deform ¢ to produce another curve ¢’ : Y/ — X
branched only at B with larger genus gy = gy —n+ |G|(1 —1/p®)s/2m. The set of
g4 realized in this way clearly contains an arithmetic progression.

By the congruence condition on s, one can increase s only by a multiple s'm of
m, which causes the genus to increase by |G|(1 — 1/p®)s’/2. But one has to remove
(1/p)th of these values since the integer s+ s'm will be divisible by p exactly (1/p)th
of the time. So the set p contains p — 1 arithmetic progressions with increment

pIGI(1 —1/p")/2. O
Remark 3.5. The proportion of the set p in N is at least 2(p® —p®~!)/|G|(p* —1) for
some a > 1 such that the center of S contains a subgroup A ~ (Z/p)®. This lower
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bound is approximately 2/|G| for large p. It is realized when X ~ P}, B = {co} and
G = Z/p. To see this, note that Z/p-covers of the affine line correspond to Artin-
Schreier equations y? — y = f(z) where the degree j of f(z) is prime-to-p. Such
a curve has genus (p — 1)(j — 1)/2. It follows that the proportion of genera which
occur in this case is exactly 2/p. But in general, we expect that this lower bound is
not optimal. For example, we expect that this proportion equals 2/p whenever G is
an abelian p-group.

The following corollary shows that the the structure of Hurwitz spaces for wildly
ramified covers will be vastly different from those of tamely ramified covers.

Corollary 3.6. For any smooth projective irreducible k-curve X and any non-empty
finite set of points B C X and any finite quotient of m (X — B) so that p divides |G/,
a Hurwitz space for G-Galois covers ¢ :' Y — X branched at B will have infinitely
many components.

Proof. The proof is immediate from Corollary 3.4 since two covers with different
genus cannot correspond to points in the same component of a Hurwitz space. [

4 Example: Inertia Z/p°.

In this section, we study Z/p°-Galois covers using class field theory. We give an
example of Proposition 2.7 and of singular deformations.

Definition 4.1. A sequence o7y, ...,0. is p®-admissible if o; € Nt p t o1 and for
1 <i<e—1,either ;41 = po; or 0,41 > po; and p{ oiy.

For convenience, we include the proof of the following classical lemma, [12].

Lemma 4.2. [quS Y 5 U isa Z./p°-Galois cover, then the upper jumps oy, ..., 0.
of its ramification filtration are p°-admissible. For any p®-admissible sequence X,
there exists a Z/p°-Galois cover ¢ : Y — Uy, with upper jumps at the indices in .

Proof. By the Hasse-Arf Theorem, o; € Nt. Since 01 = j;, we see that p t o1.
Suppose k((u)) — L is the p*-Galois field extension corresponding to ¢. Note that
for 0; < n < 041, the nth ramification group /™ in the upper numbering equals
p'Z/p°. Denote by U™ the unit group (1 + u"k[[u]]) C k[[u]]*. By local class field
theory, there is a reciprocity isomorphism w : k((u))*/NL* — Z/p° so that the
image of U™ under w equals I", [13, Chapter XV].

First we show that o,.1 > po;. There is some 1+ t"h € U whose image under
w generates p*'Z/p°. Thus the image of (1 + t7h)? = 1 + tP7ih? € UP’ generates
pp*1Z/p°. Thus p'Z/p® C I’ which implies o;,1 > po;.

Next suppose plo; 41 and write 0,41 = p(0; + ¢) for some ¢ € N. The image of
1 + tPl@ite) ¢ %+ must generate p'Z/p® so the image of 1 + ¢%F¢ must generate
p~Z/p°. Thus 1+ %< € U% which implies ¢ = 0.
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Finally, for any p®-admissible sequence {0y, ...,0.} we define a homomorphism
Ul — Z/p° as follows: if ptcand 0; < ¢ < 0441, then 1 + 7€ — p'p’ € Z/p°. Since
U' is isomorphic to the abelianization of the fundamental group of k((u)), it follows
that there exists a Z/p°®-Galois cover ngS Y — U,. The upper jumps of gg are the
given sequence since I™ # I"™! if and only if n = o; for some i. ]

We define a partial ordering on the set of p®-admissible sequences as follows.

Definition 4.3. Suppose 3 and ¥/ are two p®-admissible sequences given by o1, ..., 0.
and o1, ..., 0. respectively. Then 3’ > ¥ if 0] > o; for 1 <i <e.

The p®-admissible sequence which is smaller than all others is {1,p,p?, ..., p*'}.

In the following example, we give a computational proof of Proposition 2.7 in
the case that m = 1 and P = Z/p?. We note that, even in this simple case, the
equations are quite complicated.

Example 4.4. Suppose P = Z/p* and A = Z/p Choose j € N* with p { j. By
Lemma 4.2, there exists a P-Galois cover gb Y — X of germs of k-curves with
upper jumps o7 = j and oo = pj. Furthermore, no conductor smaller than pj can
occur for a P-Galois cover with o1 = j. By Herbrand’s formula, the lower jumps of
$ are jy = j and j, = (2 —p+ 1)j.

After some changes of coordinates, the equation for the Z/p-Galois quotient
¢:Y — X can be given generically by o —y, = 7. Note that there is a natural
valuation val on the fraction field K = k((z))[y1]/(¥? —y1 —277) of Y and val(z) =
and val(y;) = —j. The equation for the Z/p-Galois subcover ¢4 is y5 —yo = f(y1, )
for some f(y;,r) € K with valuation —j,.

The Z/p-Galois cover v, is given by an equation v? — v = g(x) for some g(x) €
k((z)). Let s be the degree of 271 in g(x). By Lemma 2.4, the cover ¢ is determined
by its Z/p-Galois subcover W — Y which is given by the equation w? — w =
f(y1,2) + g(x). By Lemma 2.3, any P-Galois cover dominating ¢ is of this form for
some g(z) € k((z)).

We now give an explicit proof of Proposition 2.7 in this case. Namely, we show
that the upper jumps of qbo‘ are o1 and max{s, 02} The first upper jump is o since
qﬁa dominates ¢. Let J be the last lower jump of gbo‘ Recall that J is the prime-to-p
valuation of f(y1,z) + g(z). Note that 275 = (% — y,)¥/7 = yps/y(l — 1 P)*/i. So

—s S —(p—1 . S S 1) .
==y s ) = =T s

We can modify the equation for W — Y by adding —y**/7 + y3// without changing
its isomorphism class as a Z/p-Galois cover or its jump. The next term in the above
equation indicates that the lower jump J of the cover w” —w = f(y1,z)+g(x) equals
max{— val(y?*"~ "D —val(f(y1,z))}. (It cannot be smaller since the valuation of
f(y1,x) is mlnlmal.) So J = max{ps — j(p — 1), j2}. By Herbrand’s formula, the
conductor of ¢* equals max{s, s }.
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Proposition 4.5. Suppose there exists a Z/p°-Galois cover é Y — U, of normal
connected germs of curves whose upper jumps in the ramification filtration are at the
pe-admissible sequence Y. Suppose ¥ > X is a p®-admissible sequence. Then there
exists a singular deformation gZ;Q : Y — Ugq whose generic fibre has ramification
filtration Y.

Proof. The proof is by induction on e. If e = 1, the proof follows by Proposition
3.1. If e > 1, choose A C I? to be a subgroup of order p. The P/A = P-Galois
quotient ¢ has upper jumps o4, . ..0._1. By the inductive hypothesis, there exists a
deformation ¢q, : Yo — Uq whose generic fibre is a Z/p®~!-Galois cover of normal
connected curves whose branch locus consists of only the K-point £ = &g xXq K
over which it has upper jumps o{,...,0.,_;.

By [1, X, Theorem 5.1], there exists a P-Galois cover QAS'Q dominating ¢,. Choose
q% to have minimal conductor s’ among all such covers dominating ¢o. By Lemma
4.2, ' = po’_,. The restriction of ¢}, to U, has conductor at most s'. This restriction
differs from ¢ by an element o« € Hom(m; (Uq — £q), A). By Proposition 2.7, a has
conductor at most max{s’, o.}.

Let QAﬁe be the cover 95’9 modified by a. By Proposition 2.7 and by minimality
of ¢, the conductor o of ¢, satisfies &' < 0 < max{s,0.}. Since &' > X is p*
admissible, o/ > o, and ¢/ > po._, = s’ (with p 1 0. if equality does not hold). We
apply Proposition 3.1 with s = ¢/ to increase the conductor. The conclusion is that
there exists a deformation (;BQ : ¥ — Uq whose generic fibre has inertia Z/p°® and
conductor o.,. O
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