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Hyperelliptic curves with prescribed p-torsion

Abstract. In this paper, we show that there exist families of curves (defined over an alge-
braically closed fieldk of characteristicp > 2) whose Jacobians have interestingp-torsion.
For example, for every 0≤ f ≤ g, we find the dimension of the locus of hyperelliptic curves
of genusg with p-rank at mostf . We also produce families of curves so that thep-torsion
of the Jacobian of each fibre contains multiple copies of the group schemeαp. The method
is to study curves which admit an action by(Z/2)n so that the quotient is a projective line.
As a result, some of these families intersect the hyperelliptic locusHg.

1. Introduction

When investigating abelian varieties defined over an algebraically closed fieldk
of characteristicp, it is natural to study the invariants related to theirp-torsion
such as theirp-rank ora-number. Such invariants are well-understood and have
been used to define stratifications of the moduli spaceAg of principally polarized
abelian varieties of dimensiong. There is a deep interest in understanding whether
the Torelli locus intersects such strata inAg. More generally, one can ask for the
dimension of the intersection of these strata with the image of the moduli spaces
Mg or Hg under the Torelli map. In this paper, we show that the Torelli locus
intersects several of these strata by producing families of curves so that thep-
torsion of the Jacobian of each fibre contains certain group schemes.

Recall that the group schemeµp = µp,k is the kernel of Frobenius onGm and
the group schemeαp = αp,k is the kernel of Frobenius onGa. As schemes,µp '
Spec(k[x]/(x−1)p) andαp ' Spec(k[x]/xp) over k. If Jac(X) is the Jacobian of
a k-curveX, the p-rankof X is dimFp Hom(µp,Jac(X)) and thea-numberof X is
dimk Hom(αp,Jac(X)).

LetVg, f denote the sublocus ofM g consisting of curves of genusg with p-rank
at most f . For everyg and every 0≤ f ≤ g, the locusVg, f has codimensiong− f

in M g, [1]. In Section 2, we use results from [1] to prove that there exist smooth
hyperelliptic curves of genusg with every possiblep-rank f .
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Theorem 1. For all g≥ 1 and all 0≤ f ≤ g, the locusVg, f ∩Hg is non-empty
of dimensiong−1+ f . In particular, there exists a smooth hyperelliptic curve of
genusg andp-rank f .

Let Tg,a denote the sublocus ofM g consisting of curves of genusg with a-
number at leasta. In Section 5, we show thatTg,a is non-empty under certain
conditions ong anda by producing curvesX so that Jac(X)[p] contains multi-
ple copies ofαp. Let Hg,n be the sublocus of the moduli spaceMg consisting of
smooth curves of genusg which admit an action by(Z/2)n so that the quotient is
a projective line.

Corollary 3. Supposen≥ 2 andp≥ 2n+ 1. Supposeg is such thatHg,n is non-
empty of dimension at leastn+1. Then the intersectionHg,n∩Tg,n has codimen-
sion at mostn in Hg,n. In particular, there exists a smooth curve of genusg with
a-number at leastn.

The dimension of the family in Corollary 3 is at least(g+2n−1)/2n−2−3−n.
The precise numerical conditions forg can be found in Section 5. The main interest
in this result is not only that certain group schemes occur in thep-torsion of the
Jacobians, but also that the dimension of the families is large in comparison with
the dimension ofHg,n.

For small values ofn, we further show that these families of curves intersect
the hyperelliptic locusHg, resulting in the following corollaries.

Corollary 4. Supposeg≥ 2 andp≥ 5. There exists a(g−2)-dimensional family
of smooth hyperelliptic curves of genusg whose fibres havea-number 2 andp-
rankg−2.

Corollary 5. Supposeg≥ 5 is odd andp≥ 7. There exists a(g−5)/2-dimensional
family of smooth hyperelliptic curves of genusg whose fibres havea-number at
least 3.

In Section 6, we consider the problem of constructing Jacobians whosep-
torsion contains group schemes other thanµp or αp. We prove that for allg≥ 2
there exists a smooth hyperelliptic curve of genusg whosep-torsion contains the
group scheme corresponding to a supersingular non-superspecial abelian surface.
We describe this group scheme and its covariant Dieudonné module in Section 6.
It hasa-number 1 andp-rank 0.

Our method for these results is to analyze the curves in the locusHg,n in terms
of fibre products of hyperelliptic curves. In Section 3, we extend results of Kani
and Rosen [8] to compare thep-torsion of the Jacobian of a curveX in Hg,n to the
p-torsion of the Jacobians of itsZ/2Z-quotientsup to isomorphism. We then use
Yui’s description of the branch locus of a non-ordinary hyperelliptic curve, [17].
In some cases, this reduces the study of thep-torsion of the Jacobian ofX to the
study of the intersection of some subvarieties in the configuration space of branch
points. We consider this in Section 4.
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Throughout,k is an algebraically closed field of characteristicp > 2. We as-
sumeg≥ 1 to avoid trivial cases. Without further comment, we will speak of a
fibreof a relative curve when we mean a geometric fibre.

This paper led us to pose some open questions on this topic in [2].

2. Curves with prescribedp-rank

We begin by considering thep-rank of Jacobians of hyperelliptic curves. Recall
that thep-rank, dimFp Hom(µp,Jac(X)), of a k-curveX is an integer between 0
and its genusg. The curveX is said to beordinary if it has p-rank equal tog. In
other words,X is ordinary if Jac(X)[p]∼= (Z/p⊕µp)g. LetVg, f denote the sublocus

of M g consisting of curves of genusg with p-rank at mostf .
Consider the moduli spaceHg of smooth hyperelliptic curves of genusg and its

closureH g in M g. It is known thatHg is affine of dimension 2g−1. BothHg and

H g are smooth algebraic stacks overZ[1/2] (for example, see [16, Proposition 1]).
Sincek is an algebraically closed field, this fact implies that if two subvarieties of
H g intersect then the codimension of their intersection is at most the sum of their
codimensions.

The boundaryH g−Hg consists of components∆0 and∆i for integers 1≤ i ≤
g/2. The generic point of∆i corresponds to the isomorphism class of a singular
curve with two irreducible componentsXi andXg−i intersecting in a node which we
denotePi . HereXi (resp.Xg−i) is a hyperelliptic curve of genusi (resp.g− i) and
the pointPi is fixed by the hyperelliptic involution onXi (resp.Xg−i). The generic
point of ∆0 corresponds to the isomorphism class of an irreducible hyperelliptic
curveX′

0 with a node. The normalizationX0 of X′
0 is a hyperelliptic curve of genus

g− 1, and the inverse image of the node inX′
0 consists of two distinct points in

X0 which are exchanged by the hyperelliptic involution. Note that Jac(X′
0) is a

semi-abelian variety and the toric part of itsp-torsion contains a copy of the group
schemeµp. So∆0∩Vg,0 is empty inM g.

We first show that each component ofVg,0∩H g has dimensiong−1.

Proposition 1. The locus Vg,0∩H g is pure of codimension g inH g.

Proof. We work by induction ong. The statement is true in the caseg= 1 since the
locus of supersingular elliptic curves has dimension 0. Assume that the statement
is true for allg′ < g, and consider any componentC0 of the intersectionVg,0∩Hg.

By the purity argument of [10, 1.6], the codimension ofC0 in H g is at mostg.

Furthermore,C0 intersects the boundary ofH g becauseHg is affine. SinceC0

does not intersect∆0, it must intersect∆i for some 1≤ i ≤ g/2. We fix one such∆i

and consider the dimension of the intersection.
A curve corresponding to a point in the intersection ofC0 and∆i is formed

from two hyperelliptic curvesXi andXg−i which must both havep-rank 0. Thus

Xi corresponds to a point ofVi,0∩H i and likewiseXg−i corresponds to a point of

Vg−i,0∩H g−i . By the inductive hypothesis, there is at most ani−1 (resp.g− i−1)
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dimensional family of choices forXi (resp.Xg−i). SinceXi andXg−i intersect in a
unique pointPi , this point must be fixed under the hyperelliptic involutions of the
two curves. Thus there are only finitely many choices for the pointPi . It follows
that dim(C0∩∆i)≤ (i−1)+(g− i−1)+0= g−2 and the codimension ofC0∩∆i

in H g is at leastg+1.

We can deduce that codim(C0∩∆i)≤ codim(C0)+1 in H g from the fact that

∆i has codimension 1 inH g. This implies that the codimension ofC0 in H g is

exactlyg and therefore thatVg,0∩H g is pure of codimensiong in H g.

Next we show that each component ofVg, f ∩H g has dimensiong−1+ f (for
g≥ 1).

Proposition 2. The locus Vg, f ∩H g is pure of codimension g− f in H g.

Proof. By Proposition 1, we can supposef ≥ 1. Consider a componentC0 of Vg, f ∩
H g. By [10, 1.6],C0 has codimension at mostg− f in H g and thus dimension at

leastg−1+ f . Becausep > 2, a complete subvariety ofH g−∆0 has dimension
at mostg−1, by [1, Lemma 2.6]. SoC0 intersects∆0.

A point of C0∩∆0 corresponds to a curveX′
0 self-intersecting in a nodeP0.

The normalizationX0 of X′
0 is a hyperelliptic curve of genusg−1. Since the toric

part of Jac(X′
0)[p] contains a copy of the group schemeµp, this implies that the

p-rank of X0 is at most f − 1. SoX0 corresponds to a point ofVg−1, f−1∩H g.
The choice of the nodal pointP0 is equivalent to a choice of two distinct points
of X0 which are exchanged by the hyperelliptic involution. So dim(C0∩ ∆0) =
dim(Vg−1, f−1∩H g)+1.

Furthermore, codim(C0)≥ codim(C0∩∆0)−codim(∆0) in H g. A calculation

shows that the codimension ofC0 in H g is at least the codimension ofVg−1, f−1∩
H g−1 in H g−1. Repeating this calculation, we see that the codimension ofC0 in

H g is at least the codimension ofVg− f ,0∩H g− f in H g− f , which by Proposition 1

is g− f . It follows thatVg, f ∩H g is pure of codimensiong− f in H g.

This is the main result in the paper on thep-rank of hyperelliptic curves.

Theorem 1.For all g ≥ 1 and all 0 ≤ f ≤ g, the locus Vg, f ∩Hg is non-empty
of dimension g−1+ f . In particular, there exists a smooth hyperelliptic curve of
genus g and p-rank f .

Proof. By [1, Proposition 2.7], there exists a smooth hyperelliptic curveX of
genusg andp-rank equal to zero for allg≥ 1. For 0≤ f ≤ g, let Cf be the com-

ponent ofVg, f ∩H g containingX. By Proposition 2,Cf has codimensiong− f

in H g. It follows thatCf ∩Hg has dimensiong−1+ f sinceCf is not contained

in the boundary ofHg. Now Cf−1 has codimension onlyg− f +1 in H g. So the
generic point ofCf is a smooth hyperelliptic curve withp-rank exactlyf .
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We now turn to the question of constructing Jacobians of curves with largea-
number. To do this, we first analyze the Jacobians of fibre products of hyperelliptic
curves in Section 3 and then analyze the geometry of the branch points of non-
ordinary hyperelliptic curves in Section 4. Unless specified otherwise, the results
in the next two sections are also valid in characteristic 0 (but not in characteristic
2).

3. Fibre products of hyperelliptic curves

Let G be an elementary abelian 2-group of order 2n. In this section, we describe
G-Galois coversφ : X → P1

k whereX is a smooth projectivek-curve of genusg.
For such a coverφ, we show that the Jacobian ofX decomposes into 2n−1 factors
which are Jacobians as well. We study some geometric properties of the Hurwitz
spaceHg,n which parametrizes isomorphism classes of such coversφ.

3.1. The moduli space Hg,n

We first recall a result about the coarse moduli space parametrizing isomorphism
classes ofG-Galois coversφ : X → P1

k whereX is a smooth projectivek-curve of
genusg. This description is related to the theory of Hurwitz schemes and gives
a framework to describe these covers. In particular, this framework allows one to
consider families of such covers with varying branch locus, to lift such a cover
from characteristicp to characteristic 0, or to study the locus inMg of curves with
a certain type of action byG.

To be precise, letFg,n be the contravariant functor which associates to anyk-
schemeΩ the set of isomorphism classes of(Z/2)n-Galois coversφΩ : XΩ → P1

Ω
whereX is a flatΩ-curve whose fibres are smooth projective curves of genusg and
where the branch locusB of φΩ is a simple horizontal divisor. In other words, the
branch locus consists ofΩ-points ofP1

Ω which do not intersect. Since each inertia
group is a cyclic group of order 2, the Riemann-Hurwitz formula impliesg =
2n−2|B| − 2n + 1. The following facts about the Hurwitz scheme which coarsely
represents this functor are well-known over the complex numbers.

Lemma 1. i) There exists a coarse moduli space Hg,n for the functor Fg,n which is
of finite type overZ[1/2].

ii) There is a natural morphismτ : Hg,n →Mg whose fibres have dimension three.
iii) There is a natural morphismβ : Hg,n → P|B| which is proper and́etale over

the image.

Proof. See [15, Chapter 10] for the construction ofHg,n and the morphismsτ and
β overC. The corresponding statements overZ[1/2] follow from [16, Theorem 4].

We recall some of the details about the morphismsτ andβ. The morphismτ
associates to anyΩ-point of Hg,n the isomorphism class ofXΩ, whereφΩ : XΩ →
P1

Ω is the corresponding cover ofΩ-curves. The fibres have dimension three since
XΩ is isotrivial if and only if after ańetale base change fromΩ to Ω′ there is a
projective linear transformationρ such thatρφΩ′ is constant, [12, Lemma 2.1.2].
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The morphismβ associates to anyΩ-point of Hg,n theΩ-point of the config-
uration spaceP|B| determined by the branch locus of the associated cover. More
specifically,β associates to any coverφΩ : XΩ → P1

Ω the Ω-point [a0 : . . . : a|B|]
of P|B| whereai are the coefficients of the polynomial whose roots are the branch
points ofφΩ. Note that thek-points of the image ofβ correspond to polynomials
with no multiple roots.

We denote byHg,n the imageτ(Hg,n) in Mg. Given a smooth connectedk-curve
X, thenX corresponds to a point ofHg,n if and only if there exists a subgroup
G⊂ Aut(X) with quotientX/G' P1. Note thatHg,1 is simply the locusHg of
hyperelliptic curves inMg.

It is often more useful to describe the branch locus ofφΩ directly as anΩ-point
of (P1)|B|. This can be done by considering an ordering of the branch points ofφΩ.
The branch locus of a cover corresponding to ak-point ofHg,n can be anyk-point of
(P1)|B|−∆ where∆ is the weak diagonal consisting of points having at least two
equal coordinates. In particular, for anyΩ-point (b1, . . . ,b2g+2) of (P1)2g+2−∆
there is a unique hyperelliptic coverφΩ : XΩ → P1

Ω branched at{b1, . . . ,b2g+2}.
Also the curveXΩ has genusg.

3.2. The fibres of Hg,n

We now describe some properties of aG-Galois coverφ : X → P1 corresponding
to a point ofHg,n. In fact, the coverφ arises as the fibre product ofn hyperelliptic
covers which satisfy a strong disjointness condition on their branch loci.

Consider an isomorphismι : (Z/2)n 'G. For i ∈ {1, . . . ,n}, this isomorphism
determines a natural elementsi of order 2 inG. LetHi ' (Z/2)n−1 be the subgroup
generated by allsj for j 6= i. Suppose fori ∈ {1, . . . ,n} thatBi is a non-empty finite
subset ofP1 of even cardinality. For any non-emptyS⊂ {1, . . . ,n}, denote byBS

the set of allb ∈ P1 such thatb ∈ Bi for an odd number ofi ∈ S and denote by
CS→ P1 the hyperelliptic cover branched atBS. Finally, letHS be the subgroup of
G consisting of all elements∑n

i=1aisi such that∑i∈Sai is even. Note that eachHS

is non-canonically isomorphic to(Z/2)n−1. Furthermore, whenS= {i} we have
BS = Bi andHS = Hi .

Lemma 2. Supposeφ : X→ P1 is the normalized fibre product overP1 of n smooth
hyperelliptic covers Ci → P1 with branch loci Bi . Thenφ is a G-Galois cover and
the quotient of X by HS is the hyperelliptic cover CS→ P1 branched at BS.

Proof. The coverφ : X→P1 is aG-Galois cover of (possibly disconnected) smooth
curves by the definition of the fibre product. Also by definition,Ci → P1 is the quo-
tient ofX by the subgroupHi .

The branch locusB of φ equals∪n
i=1Bi . Forb∈ B, the inertia groupIb of X →

P1 aboveb must be cyclic; thusIb ' Z/2. In fact, the generator(α1, . . . ,αn) of Ib
satisfiesαi = 1 if and only if b∈ Bi . To see this, note that ifb∈ Bi , thenCi → P1

is branched atb and soIb 6⊂ Hi ; it follows thatαi = 1 if b∈ Bi . On the other hand,
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if b 6∈ Bi , thenCi → P1 is unramified atb and soIb ⊂ Hi ; it follows thatαi = 0 if
b 6∈ Bi .

SinceHS' (Z/2)n−1, the quotientX/HS→ P1 is hyperelliptic; it remains to
show that the branch locus of this cover isBS. For b ∈ B, the coverX/HS→ P1

is branched atb if and only if Ib 6⊂ HS, which is equivalent to(α1, . . . ,αn) 6∈ HS.
SoX/HS→ P1 is branched atb if and only if Σi∈Sαi is odd. Now,Σi∈Sαi ≡ #{i ∈
S|b∈ Bi} mod 2, so this number is odd if and only ifb∈ Bi for an odd number of
i ∈ S. ThusX/HS is branched atBS by definition.

In Section 5, we construct coversφ : X → P1 corresponding to points ofHg,n

for which X is also hyperelliptic. For example, whenn = 2, supposeφ is the nor-
malized fibre product of two hyperelliptic coversφ1 and φ2. The curveX will
also be hyperelliptic if its quotientC1,2 = X/H1,2 is isomorphic toP1. This occurs
wheng1 = g2 andB1 andB2 overlap in all but one point; or wheng2 = g1 +1 and
B1 ⊂ B2. The other extreme is considered in [14] where Stepanov uses the fibre
product of two hyperelliptic curves whose branch loci intersect in a single point to
construct Goppa codes.

We say that the collection{Bi}n
i=1 is strongly disjointif the following two con-

ditions are satisfied: first, the setsBS are distinct for all non-emptyS⊂ {1, . . . ,n};
second,B = ∪n

i=1Bi is a simple horizontal divisor. In other words, ifb1,b2 ∈ B are
two Ω-points ofP1

Ω for some schemeΩ, then the second condition insures that
eitherb1 = b2 or thatb1 andb2 do not intersect inP1

Ω.

Lemma 3. A coverφ : X → P1 corresponds to a point of Hg,n if and only if X has
genus g andφ : X → P1 is isomorphic to the normalized fibre product overP1 of n
smooth hyperelliptic covers Ci → P1 whose branch loci Bi form a strongly disjoint
set.

Proof. If φ : X → P1 is the normalized fibre product ofn hyperelliptic covers with
branch lociBi , then it is clear thatφ is aG-Galois cover andX is projective. Fur-
thermore,Cj → P1 is disjoint from the normalized fibre product of allCi → P1 for
i ≤ j; otherwise, by Lemma 2,Cj → P1 would be isomorphic toCS→ P1 for some
{ j} 6= S⊂ {1, . . . ,n}. This would implyBS = B j for someS 6= { j} which would
contradict the fact that{Bi} form a strongly disjoint set. Since these covers are
disjoint overP1, it follows thatX is connected. AlsoX is a smooth relative curve
sinceB = ∪n

i=1Bi is a simple horizontal divisor. By hypothesis,X has genusg and
soφ corresponds to a point ofHg,n.

Conversely, ifφ : X → P1 corresponds to a point ofHg,n, thenX has genusg
by definition. Consider the quotientsCi → P1

k of φ by the subgroupsHi of G for
i = 1, . . . ,n. These covers are clearly smooth and hyperelliptic. By the universal
property of fibre products, there is a morphism fromX to the normalized fibre
product of the coversCi → P1. This morphism must be an isomorphism since
both X and the normalized fibre product have degree 2n over P1. Also, φ : X →
P1 dominates the fibre product of any two of the quotientsCS→ P1 with branch
locusBS, by Lemma 2. SinceX is connected, these quotientsCS→ P1 must all
be disjoint; in other words, the setsBS must all be distinct. Also,∪n

i=1Bi is the
branch locusB of φ; by definition,B is a simple horizontal divisor. Thus{Bi} form
a strongly disjoint set.
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Corollary 1. For n ≥ 2, the locusHg,n has dimension(g+ 2n− 1)/2n−2− 3 if
g≡ 1 mod 2n−2 and is empty otherwise. In particular, the dimension of the locus
Hg,2 is g.

Proof. The dimension ofHg,n is equal to the dimension of(P1)|B|, namely the
number of branch points|B| of the corresponding covers. By the Riemann-Hurwitz
formula,|B|= (g+2n−1)/2n−2. By Lemma 1, the dimension ofHg,n is three less
than the dimension ofHg,n, which simplifies tog whenn = 2.

3.3. Decomposition of the Jacobian

We will now describe the isogeny class of the Jacobian for any curveX for which
there exists a coverφ : X→P1

k corresponding to ak-point ofHg,n. Fori ∈{1, . . . ,n},
supposeφi : Ci → P1

k is a smooth hyperelliptic cover with branch locusBi . Suppose
{Bi}n

i=1 form a strongly disjoint set and letB = ∪n
i=1Bi .

Proposition 3. Supposeφ : X → P1
k is the normalization of the fibre product ofφi

for i = 1, . . . ,n. ThenJac(X) is isogenous to∏(Jac(CS)) where the product is taken
over all non-empty S⊂ {1, . . . ,n}.

Proof. Note thatX/HS is the hyperelliptic curveCS by Lemma 2. Thus the re-
sult follows directly from [8, Theorem C] if genus(X) = ΣSgenus(CS). By the
Riemann-Hurwitz formula, genus(CS) = −1+ |BS|/2. SinceB = ∪n

i=1Bi is the
branch locus ofX → P1

k, it follows that genus(X) = 2n−2|B| −2n + 1. The proof
follows by showing thatΣS|BS|= 2n−1|B| by the inclusion-exclusion principle.

The isogeny between Jac(X) and∏(Jac(CS)) is not sufficient to study thea-
number ofX since thea-number is not an isogeny invariant. For this reason, we
now generalize Proposition 3 by showing that the de Rham cohomology group
H1

dR(X) also decomposes. Equivalently, one could work with the crystalline coho-
mology groupH1

crys(X) evaluated atk, [6, 1.3.6]. We thank Kani [7] for helping us
with the proof of Proposition 4. LetN = 2n−1.

Proposition 4. Supposechar(k) 6= 2. Then H1
dR(X) is isomorphic to⊕SH1

dR(CS) as
k[G]-modules, where the sum is taken over all non-empty S⊂ {1, . . . ,n}.

Proof. Since char(k) 6= 2, there exists an idempotentεS corresponding to the sub-
groupHS in the group ringk[G] for every nonempty subsetS⊂{1, . . . ,n}. Namely,
εS = ∑h/2n−1, where the sum ranges over allh ∈ HS. Let εG be the idempo-
tent ∑h/2n, where the sum ranges over allh ∈ G. By Lemma 2,CS is the quo-
tient of X by HS, soH1

dR(CS) ∼= (H1
dR(X))HS ∼= εSH1

dR(X). Furthermore, note that
0 = H1

dR(P1
k)∼= (H1

dR(X))G ∼= εGH1
dR(X) and therefore thatεGx = 0 for all x.

If SandT are distinct subsets thenεSεT = 22−2n ∑hsht where the sum ranges
over all hs ∈ HS andht ∈ HT . For eachg ∈ G, we see thatgh−1

s ∈ HT for half
of the values ofhs ∈ HS. So g appears 2n−2 times in∑hsht . Thus, 22n−2εSεT =
2n−2 ∑g∈Gg and we obtain thatεSεT = εG. Similarly, one can show for all subsets
S thatεSεS = εS andεSεG = εG.
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We construct an explicit homomorphismγ from⊕SH1
dR(CS) to H1

dR(X):

γ(x1,x2, . . . ,xN) =
N

∑
i=1

xi .

If ψ is the homomorphism fromH1
dR(X) to⊕SH1

dR(CS) given by

ψ(y) = (ε1y,ε2y, . . . ,εNy)

then one can check thatψ ◦ γ = γ ◦ψ = Id. Thusγ is an isomorphism ofk-vector
spaces. In fact,γ is ak[G]-module isomorphism since everyg∈G commutes with
εS and thus withγ.

The following corollary will be used throughout the remainder of the paper.

Corollary 2. Supposechar(k) > 2. There is an isomorphism betweenJac(X)[p]
and ∏S(Jac(CS)[p]) as group schemes where the product is taken over all non-
empty S⊂{1, . . . ,n}. In particular,Jac(X) and∏S(Jac(CS)) have the same p-rank
and a-number.

Proof. By Proposition 4, there is an isomorphism ofk-vector spaces between
H1

dR(X) and⊕SH1
dR(CS). By the functoriality of the Frobenius and Verschiebung

morphisms,F andV commute with the action ofg∈G and thus with the idempo-
tentsεS. It follows thatH1

dR(X) and⊕SH1
dR(CS) are naturally isomorphic ask[V,F ]-

modules. SinceX andCS are smooth curves, [5, 3.11.2] implies thatH1
dR(Jac(X))

and⊕SH1
dR(Jac(CS)) are isomorphic ask[V,F ]-modules. By [9, 5.11],H1

dR(Jac(X))
is canonically isomorphic to the contravariant Dieudonné module associated to
Jac(X)[p]. Likewise,H1

dR(Jac(CS))) is canonically isomorphic to the contravari-
ant Dieudonńe module associated to Jac(CS)[p]. So the Dieudonńe module of
Jac(X)[p] is isomorphic to the direct sum of the Dieudonné modules of Jac(CS)[p].
It follows, from the equivalence of categories between finite commutative group
schemes overk and their contravariant Dieudonné modules, that the group schemes
Jac(X)[p] and∏S(Jac(CS)[p]) are isomorphic.

4. Configurations of non-ordinary hyperelliptic curves

The results in this section will be used to find curvesX having interestingp-power
torsion, as measured in terms of invariants such as thep-rank anda-number. Corol-
lary 2 shows that when a coverφ : X → P1 corresponds to a point ofHg,n then such
invariants forX can be determined by the corresponding invariants of itsZ/2-
quotients. Since these quotients are all hyperelliptic, one can apply results of Yui
[17]. The main difficulty is to control thep-torsion of all of the curvesCS in terms
of the p-torsion of the curvesCi .

LetC be a smooth hyperelliptic curve of genusg defined over an algebraically
closed fieldk of characteristicp > 2. Recall thatC admits aZ/2-Galois cover
φ1 : C → P1

k with 2g+ 2 distinct branch points. Without loss of generality, we
supposeφ1 is branched at∞ and choose an equation for this cover of the form

9



y2 = f (x), where f (x) is a polynomial of degree 2g+ 1. We denote the roots of
f (x) by {λ1, . . . ,λ2g+1}.

Denote bycr the coefficient ofxr in the expansion off (x)(p−1)/2. Then

cr = (−1)r−(p−1)/2∑
(

(p−1)/2
a1

)
. . .

(
(p−1)/2

a2g+1

)
λa1

1 . . .λa2g+1
2g+1 (1)

where the sum ranges over all 2g+ 1-tuples(a1, . . . ,a2g+1) of integers such that
0≤ ai ≤ (p− 1)/2 for all i and∑ai = (2g+ 1)(p− 1)/2− r. Note thatcr can
be viewed as a polynomial ink[λ1, . . . ,λ2g+1] which is homogeneous of degree
(2g+1)(p−1)/2− r and which is of degree(p−1)/2 in each variable.

Let Ag be theg×g matrix whosei j th entry iscip− j . The determinant ofAg de-
fines a polynomial ink[λ1, . . . ,λ2g+1] which we denote by Detg(λ1, . . . ,λ2g+1) =
Detg(λ2g+1). This polynomial is of degree at mostg(p− 1)/2 in eachλi and
is homogeneous of total degreeg2(p− 1)/2. It is invariant under the action of
S2g+1 on the variablesλi . We denote byDg ⊂ (A1

k)
2g+1 the hypersurface of points

λ2g+1 = (λ1, . . . ,λ2g+1) for which Detg(λ2g+1) = 0.
In [17], Yui gives the following characterization of non-ordinary hyperelliptic

curves. Recall that∆ is the weak diagonal consisting of points with at least two
equal coordinates.

Theorem 2. (Yui [17]) Suppose C is a smooth hyperelliptic curve of genus g. Then
C is non-ordinary if and only if there is aZ/2-Galois coverφ : C→ P1

k branched
at ∞ and at2g+1 distinct pointsλi ∈ A1

k such thatλ2g+1 ∈ Dg.

We now find some results on the geometry of the hypersurfaceDg which will
be used in Sections 5 and 6 to construct curves inHg,n whosep-torsion has pre-
scribed invariants. In Lemma 4 and Lemma 5, we show that Detg(λ2g+1) is gener-
ically a polynomial of degreed = g(p−1)/2 in the variableλ2g+1 whose roots are
not contained in{λ1, . . . ,λ2g}. We expect for a generic choice ofλ1, . . . ,λ2g that
this polynomial will haved distinct roots. Showing this seems to be related to the
question of whether the hyperelliptic locus is transversal (in the strict geometric
sense) to the locusVg,g−1 of nonordinary curves. So in Proposition 5, we instead
prove the weaker statement that this polynomial has at least(p− 1)/2 distinct
roots.

Lemma 4. The determinantDetg(λ2g+1) is a polynomial of degree d= g(p−1)/2
in the variableλ2g+1.

Proof. As we observed above, the degree of Detg(λ2g+1) in λ2g+1 is at mostd. We
claim that the coefficient ofλd

2g+1 is a non-zero polynomial ink[λ1, . . . ,λ2g]. In

particular, one term of this polynomial is(−1)g(p−1)/2λd
2g+1 ∏2g

i=1 λ(g−di/2e)(p−1)/2
i .

To see this, we note first from Equation 1 that the total degree ofcgp− j is

(2g+ 1)(p− 1)/2− (gp− j) = (p− 1)/2+ ( j − g). So if j < g then λ(p−1)/2
2g+1

cannot appear incgp− j . Furthermore, the coefficient ofλ(p−1)/2
2g+1 in cgp−g is exactly

(−1)(p−1)/2. Because the degree ofλ2g+1 in cr is at most(p− 1)/2 for all r, a
monomial in Detg(λ2g+1) will be divisible by λd

2g+1 only if it is the product of
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matrix entries which are each divisible byλ(p−1)/2
2g+1 . Thuscgp−g is the only entry

in the bottom row ofAg which contributes to the terms of Detg(λ2g+1) which are
divisible byλd

2g+1.
Similarly, in the penultimate row ofAg, the total degree ofc(g−1)p− j will be

3(p−1)/2+( j− (g−1)). Therefore, ifj < g−1 then(λ1λ2λ2g+1)(p−1)/2 cannot
dividec(g−1)p− j . Because the degree ofλ1 for all cr in Ag is at most(p−1)/2, only
the last two entries of the penultimate row contribute to the terms of Detg(λ2g+1)
which are divisible byλ(g−1)(p−1)/2

1 . Also the coefficient of(λ1λ2λ2g+1)(p−1)/2 in
c(g−1)p−(g−1) is (−1)(p−1)/2.

Continuing, we see that only terms which are on or above the diagonal can
contribute to the desired term of Detg(λ2g+1). It follows that the only term of

Detg(λ2g+1) which involves the monomialλd
2g+1 ∏2g

i=1 λ(g−di/2e)(p−1)/2
i comes from

the product of elements of the diagonal. The coefficient of this monomial is the
product ofgcoefficients which each equal(−1)(p−1)/2, so it is equal to(−1)g(p−1)/2.

Lemma 5. The image ofDetg(λ2g+1) in k[λ1, . . . ,λ2g+1]/(λ2g+1−λ1) is non-constant.

Proof. The proof is similar to that of Lemma 4. It is sufficient to show that at
least one of the coefficients of Detg(λ1, . . . ,λ2g,λ1) is non-zero. The coefficient of

the monomialλg(p−1)/2
1 ∏2g

i=1 λ(g−di/2e)(p−1)/2
i is 2(−1)g(p−1)/2 as this monomial

appears exactly twice as the product of terms in the diagonal of the Hasse-Witt
matrix and does not appear again in the expansion of the determinant.

Suppose exactly two branch points of a smooth hyperelliptic cover specialize
together. The resulting curve is singular and consists of a hyperelliptic curveC′ of
genusg−1 self-intersecting in a point. The geometric interpretation of the next
lemma is that this singular curve will be ordinary if and only ifC′ is ordinary.

Lemma 6. Detg(λ1, . . . ,λ2g−1,0,0)= (−λ1 · · ·λ2g−1)(p−1)/2Detg−1(λ1, . . . ,λ2g−1).

Proof. Supposeλ2g = λ2g+1 = 0. Then the only nonzero terms in the sum defining
cr are those wherea2g = a2g+1 = 0. If r = p−1, then the only term in this sum
that does not vanish is the one whereai = (p− 1)/2 for 1≤ i ≤ 2g− 1. Thus
cp−1 = (−λ1 · · ·λ2g−1)(p−1)/2. If r < p−1, then all of the terms in the sum are zero,
and thuscr = 0. Supposer > p−1 andr = ip− j. Then the termcr occuring in
the ith row andjth column ofAg equals the termcr−(p−1) occuring in the(i−1)st
row and( j −1)st column ofAg−1. By expanding the determinant along the first
row, we see that Detg(λ1, . . . ,λ2g−1,0,0) = cp−1Det(Ag−1).

For fixedλ2g = (λ1, . . . ,λ2g) ⊂ (A1
k)

2g, denote byL(λ2g) the line consisting
of points(λ1, . . . ,λ2g,λ2g+1) ⊂ (A1

k)
2g+1 (where only the last coordinate varies).

Generically, the intersection ofL(λ2g) andDg consists ofd = g(p−1)/2 points
when counted with multiplicity. To see this, consider Det(λ2g+1) as a polynomial
in R[λ2g+1] whereR = k[λ1, . . . ,λ2g]. The coefficient ofλd

2g+1 in Det(λ2g+1) is
non-zero inR by Lemma 4. Sincek is an algebraically closed field, for anyλ2g =
(λ1, . . . ,λ2g) not in the Zariski closed set of(A1

k)
2g defined by this coefficient,

Det(λ2g+1) has degreed and thusd roots ink when counted with multiplicity. The
next proposition gives a lower bound on the number of distinct roots.
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Proposition 5. Let Ug ⊂ (A1
k)

2g be the set of points(λ1, . . . ,λ2g) for which L(λ2g)
intersects Dg in at least(p−1)/2 non-zero distinct points of(A1

k)
2g+1\∆. Then Ug

is a nonempty Zariski open subset of(A1
k)

2g.

Proof. The proof is by induction ong. A result of Igusa [4] states that there are
exactly(p−1)/2 distinct valuesλ so that the elliptic curve branched at{0,1,∞,λ}
is non-ordinary. It follows that the result is true wheng = 1.

Suppose thatUg−1 is a nonempty Zariski open subset of(A1
k)

2g−2. First we
show that for a generic choice of(λ1, . . . ,λ2g) there are at least(p− 1)/2 dis-
tinct choices ofλ2g+1 so that Detg(λ1, . . . ,λ2g,λ2g+1) = 0. It will suffice to con-
struct a single choice of(λ1, . . . ,λ2g) for which this result holds, as the generic
case will have at least as many distinct roots as any specialized case. It follows
from Lemma 6 that for non-zeroλ3, . . . ,λ2g, the non-zero values ofλ2g+1 so that
Detg(0,0,λ3, . . . ,λ2g,λ2g+1) = 0 and Detg−1(λ3, . . . ,λ2g+1) = 0 are the same. By
the inductive hypothesis, for the generic choice of(λ3, . . . ,λ2g) there are at least
(p−1)/2 non-zero distinct values ofλ2g+1 with this property.

Next we show that generically these(p− 1)/2 intersection points ofL(λ2g)
andDg are not contained in∆. By Lemma 5 and by symmetry, for each 1≤ i ≤ 2g,
the valueλi is a root of the polynomial Detg(λ1, . . . ,λ2g+1) ∈ R[λ2g+1] only when
(λ1, . . . ,λ2g) is in a Zariski closed subset of(A1)2g. So for the generic choice
of (λ1, . . . ,λ2g), the rootλ2g+1 will not be contained in{λ1, . . . ,λ2g}. It follows
that for the generic choice of(λ1, . . . ,λ2g) the lineL(λ2g) intersectsDg in at least
(p− 1)/2 non-zero distinct points of(A1

k)
2g+1\∆. SoUg is a nonempty Zariski

open subset of(A1
k)

2g.

Proposition 6. Let Ug ⊆ (A1
k)

2g be defined as in Proposition 5. Then we have that
Ug∩ (Dg−1×A1

k) has codimension 1 in(A1
k)

2g.

Proof. SinceDg−1×A1
k has codimension 1 in(A1)2g andUg is open by Propo-

sition 5, it is sufficient to show that no componentV of Dg−1×A1
k is contained

in the complementWg of Ug. Note that the complement ofUg is a Zariski closed
subset defined by equations which are each symmetric in the variablesλ1, . . . ,λ2g.
On the other hand, any componentV of Dg−1×A1

k is defined by equations that do
not involveλ2g. Since the ideal ofWg is not contained in the ideal ofV, it follows
thatV is not contained inWg.

5. Curves with prescribeda-number

We now consider thea-number of Jacobians of curves with commuting involu-
tions. Recall that thea-number, dimk Hom(αp,Jac(X)), of a k-curveX is an inte-
ger between 0 andg. Hereαp is the kernel of Frobenius onGa. A generic curve
is ordinary and thus hasa-number equal to zero. A supersingular elliptic curve
E hasa-number equal to one and in this case there is a non-split exact sequence
0→ αp → E[p]→ αp → 0. There is a unique isomorphism type of group scheme
for the p-torsion of a supersingular elliptic curve, which we denoteM. In this sec-
tion we construct curvesX so that Jac(X)[p] contains multiple copies of the group
schemeM and thus has largea-number.
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Let Tg,a denote the sublocus ofM g consisting of curves of genusg with a-
number at leasta. The codimension ofTg,a in Mg is at leasta sinceTg,a ⊂Vg,g−a.
It is not known whether (for allg and all 0≤ a≤ g) there exists a curve of genus
g with a-number equal toa. The results in this section give some evidence for a
positive answer to this question.

We note that these results can be viewed as a generalization of [11, Section
5]. In that paper, Oort considers curvesX of genusg = 3 with a group action by
G = (Z/2)2 so that the threeZ/2-quotients ofX are all elliptic curves. He shows
that there exist (nonhyperelliptic) curves of genus 3 witha-number 3 for all primes
p≥ 3 as well as hyperelliptic supersingular curves of genus 3 witha-number 3 for
all p≡ 3 mod 4.

Lemma 7. The generic geometric point of the hyperelliptic locusHg has a-number
equal to0. The non-ordinary locus has codimension one inHg and its generic
geometric point has a-number1 and p-rank g−1.

Proof. This is immediate from Theorem 1 and the fact that a curve withp-rank
g−1 hasa-number 1.

The next theorem will lead immediately to Corollary 3 which is the main result
in this paper on thea-number of curves.

Theorem 3.Suppose n≥ 2 and p≥ 2n+1. Suppose g is such that g≡ 1 mod 2n−2

and g≥ (n−1)2n−2 + 1. There exists a family of smooth curves X of genus g of
dimension at least(g+2n−1)/2n−2−3−n so thatJac(X)[p] contains the group
scheme Mn.

For the proof of Theorem 3, we will construct a fibre productφ : X → P1 of n
hyperelliptic coversφi so that the disjoint union of any two of the branch lociBi

will consist of exactly two points. It follows that the curvesCi, j will have genus
zero.

Proof. Write g = 1+ `2n−2. If ` 6≡ n mod 2, letg1 = (` + 3− n)/2. Note that
g1≥ 1. By Proposition 5 and Lemma 7, as long asn≤ (p−1)/2, there is a Zariski
open subsetUg1 of (A1

k)
2g1 with the following property: there are at leastn choices

η1, . . . ,ηn for λ2g1+1 such that the corresponding hyperelliptic curveCi is non-
ordinary. By Theorem 1, after replacingUg1 with a smaller Zariski open subset of
(A1

k)
2g1, we can further suppose that the curvesC1, . . . ,Cn will have p-rankg1−1.

Thus Jac(Ci)[p] containsM.
Let φi : Ci → P1 for 1≤ i ≤ n be the hyperellipticUg1-curves corresponding to

these choices. Letφ : X→P1 be the normalization of the fibre product of the covers
φi . Note thatX is branched atB = {∞,λ1, . . . ,λ2g1,η1, . . . ,ηn}. By Proposition 3,
the genus ofX will be 2n−2(2g1 +1+n)−2n +1 = g. By Corollary 2, Jac(X)[p]
contains⊕n

i=1Jac(Ci)[p] which contains⊕n
i=1M. The dimension of this family of

curves is 2g1−2 = |B|−3−n which equals(g+2n−1)/2n−2−3−n. Note that
the p-rank ofX is at leastn(g1−1).

Alternatively, if `≡ n mod 2, letg1 = (`+2−n)/2 and noteg1≥ 1. By Propo-
sition 6, the locusUg1+1∩ (Dg1 ×A1

`) has codimension 1 in(A1
k)

2g1+2. In other
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words, as long asn≤ 1+(p−1)/2, for any(λ1, . . . ,λ2g1+2) in a codimension 1
subsetZ of (A1

k)
2g1+2, it is true that(λ1, . . . ,λ2g1+1) ∈ Dg1 and there are at least

n−1 choicesηi of λ2g1+3 with (λ1, . . . ,λ2g1+3) ∈ Dg1+1. Let φn : Cn → P1 be the
hyperelliptic cover branched at(λ1, . . . ,λ2g1+1). For 1≤ i ≤ n−1, letφi : Ci → P1

be the hyperelliptic cover branched at(λ1, . . . ,λ2g1+2,ηi). ThenCn has genusg1

andCi has genusg1 + 1 for 1≤ i ≤ n− 1. By Theorem 1, after restricting to a
Zariski open subset ofZ, we can further suppose thatCn (resp.Ci) has p-rank
g1−1 (resp.g1). Thus Jac(Ci)[p] containsM for 1≤ i ≤ n.

Let φ : X → P1 be the normalization of the fibre product ofφi for 1≤ i ≤ n.
Note thatφ is branched atB = {∞,λ1, . . . ,λ2g1+2,η1, . . . ,ηn−1}. As above,X has
genus 2n−2(2g1 +2+n)−2n +1 = g and Jac(X)[p] containsMn. By Proposition
6, the locusZ has dimension 2g1 + 1. The corresponding family of curves has
dimension 2g1− 1 = |B| − 3− n which again equals(g+ 2n− 1)/2n−2− 3− n.
Note that thep-rank ofX is at leastng1−1.

Corollary 3. Suppose n≥ 2 and p≥ 2n+ 1. Suppose g is such thatHg,n is non-
empty of dimension at least n+1. Then the intersectionHg,n∩Tg,n has codimension
at most n inHg,n. In particular, there exists a smooth curve of genus g with a-
number at least n.

Proof. By Corollary 1, the condition thatHg,n is non-empty is equivalent tog≡
1 mod 2n−2 and the condition thatHg,n has dimension at leastn+1 is equivalent
to g≥ (n−1)2n−2 +1. The family constructed in Theorem 3 has dimension(g+
2n−1)/2n−2−3−n and thus codimensionn in Hg,n. For any fibreX in this family,
Jac(X)[p] containsMn and soX hasa-number at leastn. So this family is contained
in Hg,n∩Tg,n.

Whenn = 2 or n = 3, then the curves found in Theorem 3 are in fact hyperel-
liptic.

Corollary 4. Suppose g≥ 2 and p≥ 5. There exists a(g−2)-dimensional family
of smooth hyperelliptic curves of genus g whose fibres have a-number2 and p-rank
g−2.

The family in Corollary 4 has codimension 2 inHg,2.

Proof. This follows immediately from Theorem 3 once we show that the curveX is
hyperelliptic whenn= 2. If g is even, note that the branch loci ofφ1 andφ2 differ in
only one point. The third quotientC1,2 of X by Z/2 is branched at only two points
η1 andη2. So the coverX →C1,2 is hyperelliptic. Likewise, ifg is odd, then the
third quotientC1,2 of X by Z/2 is branched at only two pointsλ2g1+2 andη1 so the
coverX→C1,2 is hyperelliptic. In both cases, Jac(X)[p]' Jac(C1)[p]⊕Jac(C2)[p]
and so the fibres ofX havea-number 2 andp-rankg−2.

Corollary 5. Suppose g≥ 5 is odd and p≥ 7. There exists a(g−5)/2-dimensional
family of smooth hyperelliptic curves X of genus g so thatJac(X)[p] contains M3

and thus has a-number at least3.

The family in Corollary 5 has codimension 3 inHg,3.
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Proof. It is sufficient to show that the fibres of the family constructed in Theorem 3
are hyperelliptic whenn= 3. In both cases of the construction, ifS= {1,2}, {1,3},
or {2,3}, then the quotientCS→ P1 of X by HS' (Z/2)2 is branched at only two
points and soCS has genus 0. Consider the quotientX′ of X by the subgroup
H ′ ' Z/2 generated byh = (1,1,1). Note thatX′ dominatesCS if S= {1,2},
{1,3}, or {2,3}, sinceh∈HS. It follows thatX′ has genus zero sinceX′→ P1 is a
(Z/2)2-cover having threeZ/2-quotients of genus zero. It follows thatX → X′ is
hyperelliptic.

Remark 1.One would like to strengthen Corollary 5 by producing curves with
a-number exactly 3. The difficulty is to determine thea-number ofC{1,2,3}. For
example, to construct a curve of genusg = 5 anda-number exactly 3 with this
method, one would need to guarantee that there are supersingular valuesλ1, λ2

andλ3 so that the hyperelliptic curve of genus two branched at{0,1,∞,λ1,λ2,λ3}
is ordinary.

Remark 2.In the above results, some restriction onp is unavoidable. By Proposi-
tion 3.1 of [13], there does not exist a hyperelliptic curve of genus 2 anda-number
2 whenp = 3 or of genus 3 anda-number 3 whenp = 3 or 5. Also, there does not
exist a hyperelliptic curve witha-number 4 wheng= 4 andp= 3,5 or wheng= 5
andp = 3.

We now produce curves of every genus witha-number at least 4 using this
method. (One can also produce curves of every genus witha-number at least 3 and
count the dimension of these families). The curves constructed in this way will
most likely not be hyperelliptic. This makes it difficult to produce a curve of every
genus with every possiblea-number using induction and fibre products.

Corollary 6. Suppose g≥ 7 and p≥ 5. There exists a curve of genus g with a-
number at least4.

Proof. If g is even, letg1 = g/2. Note thatg1− 2≥ 2. From Corollary 4, there
exists a hyperelliptic curve of genusg1−2 anda-number 2. Consider the corre-
sponding hyperelliptic coverφ1 branched at{λ1, . . . ,λ2g1−3,∞}. Consider a hyper-
elliptic coverφ2 branched at{η1, . . . ,η5,∞} which hasa-number 2. After modi-
fying φ2 by an affine linear transformation, one can suppose that{ηi}∩ {λi} is
empty. The cardinality of(B1∪B2)\(B1∩B2) is (2g1−2)+ 6−2 = 2g1 + 2. It
follows from Proposition 3 that the fiber product ofφ1 andφ2 yields a curve with
genus(g1−2)+g1 +2 = g anda-number at least 4.

If g is odd, letg1 = (g−1)/2. Note thatg1−1≥ 2. By Corollary 4, there exists
a hyperelliptic curve of genusg1−1 anda-number 2. Consider the corresponding
hyperelliptic coverφ1 branched at{λ1, . . . ,λ2g1−2,0,∞}. Consider a hyperelliptic
coverφ2 branched at{η1, . . . ,η4,0,∞} which hasa-number 2. After modifyingφ2

by a scalar transformation, one can suppose that{ηi}∩{λi} is empty. The cardi-
nality of (B1∪B2)\(B1∩B2) is 2g1 +6−4 = 2g1 +2. It follows from Proposition
3 that the fiber product ofφ1 andφ2 yields a curve with genus(g1−1)+g1+2= g
anda-number at least 4.

15



6. Curves with prescribedp-torsion

The methods of the previous sections can also be used to construct Jacobians
whosep-torsion contains group schemes other thanµp or αp. In this section, we
illustrate this for two particular isomorphism types of group scheme, namely the
p-torsion of a supersingular abelian surface which is not superspecial and of a
supersingular abelian variety of dimension 3 witha-number 1.

Section 3 allows one to describe thep-torsion of the Jacobian of a curve
X which corresponds to a point ofHg,n. Specifically, Proposition 4 states that
Jac(X)[p] is the direct sum of Jac(CS)[p] whereCS is the quotient ofX by HS

andS ranges over the 2n−1 nonempty subsets of{1, . . . ,n}. With this method, it
is only possible to construct Jacobians so that Jac(X)[p] is decomposable into (at
least two) group schemes each of which occurs as thep-torsion of a hyperelliptic
curve.

Via thep-rank, we have already considered the group scheme for thep-torsion
of an ordinary elliptic curve, namelyZ/p⊕µp. Using thea-number, we have al-
ready studied the group schemeM of thep-torsion of a supersingular elliptic curve.

Not many other group schemes are known to occur as thep-torsion of a hy-
perelliptic curve. There are four possibilities of group scheme which occur among
curves of genus 2 (which are automatically hyperelliptic). The first three(Zp⊕
µp)2, (Z/p⊕µp)⊕M, andM2 are decomposable. We will focus on the most inter-
esting of the four, namely the group schemeN for the p-torsion of a supersingular
abelian surface which is not superspecial. A curveX with Jac(X)[p]'N has genus
2 and is thus hyperelliptic.

By [3, Example A.3.15], there is a filtrationH1 ⊂ H2 ⊂ N whereH1 ' αp,
H2/H1 ' αp⊕αp andN/H2 ' αp. Moreover, the kernelG1 of Frobenius and the
kernel G2 of Verschiebung are contained inH2 and there is an exact sequence
0→ H1 →G1⊕G2 → H2 → 0.

The group schemeN is perhaps easier to describe in terms of its covariant
Dieudonńe module. Consider the non-commutative ringE = W(k)[F,V] with the
Frobenius automorphismσ : W(k) →W(k) and the relationsFV = VF = p and
Fλ = λσF andλV = Vλσ for all λ ∈W(k). Recall that there is an equivalence of
categories between finite commutative group schemesG overk (with orderpr ) and
finite left E-modulesD(G) (having lengthr as aW(k)-module), see for example
[3, A.5]. By [3, Example A.5.1-5.4],D(µp) = k/k(V,1−F), D(αp) = k/k(F,V),
andD(N) = k/k(F3,V3,F2−V2).

The p-rank of a curveX with Jac(X)[p] ' N is zero. To see this, note that
Hom(µp,N) = 0 or thatF andV are both nilpotent onD(N). Thea-number of a
curveX with Jac(X)[p] ' N is one. (It is at least one since thep-rank is 0 and at
most one since the abelian surface is not superspecial.) This also follows from the
structure of the group scheme or from the fact thatN[F ]∩N[V] = H1 ' αp.

Lemma 8. There is a one-dimensional family of smooth curves X of genus two
with Jac(X)[p]' N.

Proof. The dimension inA2 of supersingular (resp. superspecial) abelian surfaces
is one (resp. zero). It follows that the locus of abelian surfaces withp-torsionN is
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exactly one. The generic point of this one-dimensional family must be in the image
of the Torelli morphism sinceM 2 andA2 have the same dimension. So there is
a one-dimensional family of curves of genus two withp-rank 0 anda-number 1.
The fibres of this family are all smooth since the family cannot intersect either of
the boundary components∆0 or ∆1.

Lemma 9. There exists a one-dimensional family of smooth hyperelliptic curves X
of genus3 with Jac(X)[p]' N⊕ (Z/p⊕µp).

Proof. By Lemma 8, there is a one-dimensional family of smooth curvesX of
genus two with Jac(X)[p] ' N. This yields a family of hyperelliptic covers ofP1

branched at six points. For some subset of four of these points, the family of elliptic
curves branched at these points must have varyingj-invariant and so its fibres are
generically ordinary. The fibre product of these two families of covers yields a
family of smooth hyperelliptic curves of genus 3 withp-torsionN⊕ (Z/p⊕µp)
by Corollary 2.

The following proposition will be used to generalize Lemma 9 forg≥ 4.

Proposition 7. Suppose there exists an r-dimensional family of smooth hyperellip-
tic curves C of genus g′ with Jac(C)[p] ' G for some group schemeG. Suppose
s≥ 1 and g= 2g′−1+s. Then there exists an(r +s)-dimensional family of smooth
curves X inHg,2 so thatJac(X)[p] containsG.

Proof. For each curveC in the original family with Jac(C)[p] ' G and branch
locusB0 = {λ1, . . . ,λ2g′+2}, we will construct ans-dimensional family of smooth
curvesX so that Jac(X)[p] containsG. By Proposition 3 and Lemma 2, it will
suffice to construct hyperelliptic curvesC1 andC2 whose branch lociB1 andB2

are of even cardinality with|B1∩B2|= s andB0 = (B1∪B2)\(B1∩B2).
If s= 2m is even, thenB1 = B0∪{η1, . . . ,η2m} andB2 = {η1, . . . ,η2m} sat-

isfy these restrictions and there are 2m= s choices for the pointsηi . Similarly, if
s= 2m+1 is odd, then we can setB1 = {λ1, . . . ,λ2g′+1,η1, . . . ,η2m+1} andB2 =
{λ2g′+2,η1, . . . ,η2m+1} satisfy these restrictions. There are 2m+1 = schoices for
ηi . The Jacobian of the normalized fibre productX of C1 andC2 contains Jac(C).

This is the main result of the section.

Corollary 7. Let N be the p-torsion of a supersingular abelian surface which is
not superspecial. For all g≥ 2, there exists a smooth hyperelliptic curve X so that
Jac(X)[p] contains N.

Proof. The statement will follow from induction. Assume for allg′ such that 2n ≤
g′ < 2n+1 that there exists a smooth hyperelliptic curveXg′ so that Jac(Xg′)[p]
containsN. This is true forn = 1 by Lemma 8 and Lemma 9. If 2n+1 ≤ g <
2n+2, theng = 2g′ or g = 2g′ + 1 for someg′ such that 2n ≤ g′ < 2n+1. Using
Proposition 7 withs= 1 or s= 2 allows one to construct a curveXg of genusg so
that Jac(Xg)[p] containsN. If s= 1 or s= 2 in Proposition 7, thenB2 consists of
exactly two points soXg is also hyperelliptic.
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Similarly, one can consider the group schemeQ of the p-torsion of a super-
singular abelian variety of dimension three witha-number 1. A curveX with
Jac(X)[p] = Q has p-rank 0. Also,D(Q) = k[F,V]/k(F4,V4,F3−V3). The re-
striction ong in the next corollary could be removed if there exists a smooth hy-
perelliptic curveX of genus 4 so that Jac(X)[p] containsQ.

Corollary 8. Let Q be the p-torsion of a supersingular abelian variety of dimen-
sion three with a-number1. Suppose g≥ 3 is not a power of two. Then there exists
a smooth hyperelliptic curve X of genus g so thatJac(X)[p] contains Q.

Proof. The proof parallels that of Corollary 7. One starts with the supersingular
hyperelliptic curveX of genus 3 anda-number 1 (and thus Jac(X)[p] ' Q) from
[11] and works inductively using Proposition 7.

It is natural to ask whether Corollary 7 could be strengthened to state that
Jac(X)[p]' N⊕ (Z/p⊕µp)g−2. This raises the following geometric question.

Question 1.Given any choice ofΛ = {λ1, . . . ,λ2r}, does there existµ∈A1
k−Λ so

that the hyperelliptic curve branched at{λ1, . . . ,λ2r ,µ,∞} is ordinary?

For a generic choice ofΛ, the answer to Question 1 is yes by Lemma 4. This
question will have an affirmative answer if the hypersurfaceDr does not contain
any coordinate lineL(λ2r). The question is equivalent to asking whether, given a
hyperelliptic coverφ : X → P1

k, it is always possible to deformX to an ordinary
curve by moving only one branch point.

An affirmative answer to Question 1 would allow one to strengthen Proposition
7 to state that Jac(X)[p]'G⊕(Z/p⊕µp)g′−1+s. This is because the curvesC1 and
C2 in the proof can be generically chosen to be ordinary. So an affirmative answer
to Question 1 would imply that for allg≥ 4 there exists a smooth hyperelliptic
curve X with Jac(X)[p] ' N⊕ (Z/p⊕ µp)g−2. If this is true, then Jac(X)[p] '
N⊕ (Z/p⊕µp)g−2 whenX is the generic geometric point ofHg∩Vg,g−2.
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École Norm. Sup. (4), 2:63–135, 1969.
[10] F. Oort. Subvarieties of moduli spaces.Invent. Math., 24:95–119, 1974.
[11] F. Oort. Hyperelliptic supersingular curves. InArithmetic algebraic geometry (Texel,

1989), volume 89 ofProgr. Math., pages 247–284. Birkhäuser Boston, Boston, MA,
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