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Hyperelliptic curves with prescribed p-torsion

Abstract. In this paper, we show that there exist families of curves (defined over an alge-
braically closed fielk of characteristiqp > 2) whose Jacobians have interestmtprsion.

For example, for every & f < g, we find the dimension of the locus of hyperelliptic curves
of genusg with p-rank at mostf. We also produce families of curves so that fheorsion

of the Jacobian of each fibre contains multiple copies of the group schgnige method

is to study curves which admit an action /2)" so that the quotient is a projective line.

As aresult, some of these families intersect the hyperelliptic lggus

1. Introduction

When investigating abelian varieties defined over an algebraically closedfield
of characteristicp, it is natural to study the invariants related to thpitorsion
such as theip-rank ora-number. Such invariants are well-understood and have
been used to define stratifications of the moduli spagef principally polarized
abelian varieties of dimensian There is a deep interest in understanding whether
the Torelli locus intersects such stratadg. More generally, one can ask for the
dimension of the intersection of these strata with the image of the moduli spaces
My or Hy under the Torelli map. In this paper, we show that the Torelli locus
intersects several of these strata by producing families of curves so that the
torsion of the Jacobian of each fibre contains certain group schemes.

Recall that the group scheng = i,k is the kernel of Frobenius oy, and
the group schemep = a, is the kernel of Frobenius ofi;. As schemesg), ~
Speck[x]/(x—1)P) andap ~ Speck[x]/xP) overk. If JaqX) is the Jacobian of
ak-curveX, the p-rankof X is dimg, Hom(lp, JagX)) and thea-numberof X is
dimg Hom(ap, JagXx)).

LetVy + denote the sublocus 6f 4 consisting of curves of genigswith p-rank
at mostf. For everyg and every O< f < g, the locusvy ¢ has codimensiog — f
in Mg, [1]. In Section 2, we use results from [1] to prove that there exist smooth
hyperelliptic curves of genugwith every possiblg-rank f.
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Theorem 1.For allg > 1 and all 0< f < g, the locusVy N Hg is non-empty
of dimensiong— 1+ f. In particular, there exists a smooth hyperelliptic curve of
genusg andp-rank f.

Let Tqa denote the sublocus d¥/ 4 consisting of curves of genuswith a-
number at leasé. In Section 5, we show thaly 4 is non-empty under certain
conditions ong anda by producing curve so that JacX)[p] contains multi-
ple copies of,. Let Hyp, be the sublocus of the moduli spagé, consisting of
smooth curves of gengswhich admit an action byZ/2)" so that the quotient is
a projective line.

Corollary 3. Supposen > 2 andp > 2n+ 1. Suppos@ is such thatHg,, is non-
empty of dimension at least+ 1. Then the intersectioftig, N Tgn has codimen-
sion at mosh in Hy . In particular, there exists a smooth curve of geguwsith
a-number at least.

The dimension of the family in Corollary 3 is at leggt- 2" —1)/2"2 -3 —n.
The precise numerical conditions fgcan be found in Section 5. The main interest
in this result is not only that certain group schemes occur inptharsion of the
Jacobians, but also that the dimension of the families is large in comparison with
the dimension offg .

For small values of, we further show that these families of curves intersect
the hyperelliptic locusHy, resulting in the following corollaries.

Corollary 4. Supposeg > 2 andp > 5. There exists &g — 2)-dimensional family
of smooth hyperelliptic curves of gengswhose fibres hava-number 2 andp-
rankg— 2.

Corollary 5. Supposey > 5is odd andh > 7. There exists gg— 5) /2-dimensional
family of smooth hyperelliptic curves of gengswvhose fibres hava-number at
least 3.

In Section 6, we consider the problem of constructing Jacobians whose
torsion contains group schemes other tipgror a,. We prove that for aly > 2
there exists a smooth hyperelliptic curve of gegushosep-torsion contains the
group scheme corresponding to a supersingular non-superspecial abelian surface.
We describe this group scheme and its covariant Dieuglomodule in Section 6.
It hasa-number 1 ang-rank 0.

Our method for these results is to analyze the curves in the tegusn terms
of fibre products of hyperelliptic curves. In Section 3, we extend results of Kani
and Rosen [8] to compare tipetorsion of the Jacobian of a cur¥ein #g, to the
p-torsion of the Jacobians of iB/27Z-quotientsup to isomorphismWe then use
Yui's description of the branch locus of a non-ordinary hyperelliptic curve, [17].
In some cases, this reduces the study ofghersion of the Jacobian of to the
study of the intersection of some subvarieties in the configuration space of branch
points. We consider this in Section 4.



Throughoutk is an algebraically closed field of characterigtic- 2. We as-
sumeg > 1 to avoid trivial cases. Without further comment, we will speak of a
fibre of a relative curve when we mean a geometric fibre.

This paper led us to pose some open questions on this topic in [2].

2. Curves with prescribed p-rank

We begin by considering thp-rank of Jacobians of hyperelliptic curves. Recall
that thep-rank, dim:, Hom(ip, JagX)), of ak-curve X is an integer between 0
and its genug). The curveX is said to beordinary if it has p-rank equal tag. In
other wordsX is ordinary if Ja¢X) [p] = (Z/p® Hp)9. LetVy ¢ denote the sublocus
of M 4 consisting of curves of gengpwith p-rank at mostf.

Consider the moduli spack of smooth hyperelliptic curves of gengsind its
closure#y in M. It is known that# is affine of dimension @— 1. Both #y and
# 4 are smooth algebraic stacks ol /2| (for example, see [16, Proposition 1]).
Sincek is an algebraically closed field, this fact implies that if two subvarieties of
#Hgq intersect then the codimension of their intersection is at most the sum of their
codimensions.

The boundaryH 4 — #y consists of components andA; for integers 1< i <
g/2. The generic point ofy; corresponds to the isomorphism class of a singular
curve with two irreducible componentsandXy_ intersecting in a node which we
denoteR. HereX; (resp.Xgi) is a hyperelliptic curve of genugresp.g—i) and
the pointR, is fixed by the hyperelliptic involution ok; (resp.Xy_i). The generic
point of Ag corresponds to the isomorphism class of an irreducible hyperelliptic
curveXy with a node. The normalizatioX of X is a hyperelliptic curve of genus
g—1, and the inverse image of the nodeXficonsists of two distinct points in
Xo which are exchanged by the hyperelliptic involution. Note thatXgcis a
semi-abelian variety and the toric part of figorsion contains a copy of the group
schemalp. SoAgN Vg is empty inM g.

We first show that each componeni\gfo N #H 4 has dimensiog — 1.

Proposition 1. The locus o N # g is pure of codimension g ifify.

Proof. We work by induction ory. The statement is true in the cage 1 since the
locus of supersingular elliptic curves has dimension 0. Assume that the statement
is true for allg’ < g, and consider any compone®y of the intersectioiVg o N H.
By the purity argument of [10, 1.6], the codimension@fin #g is at mostg.
FurthermoreCo intersects the boundary offy becausef{ is affine. SinceCy
does not intersed, it must intersecs; for some 1< i < g/2. We fix one sucl;
and consider the dimension of the intersection.
A curve corresponding to a point in the intersectionCgfand 4; is formed
from two hyperelliptic curves( andXy_j which must both havg-rank 0. Thus
X; corresponds to a point & o N #; and likewiseXy_; corresponds to a point of

Vg-i0 ﬂ?[g,i. By the inductive hypothesis, there is at most afl (respg—i—1)



dimensional family of choices foX; (resp.Xg_i). SinceX; andXg_; intersect in a
unique point?, this point must be fixed under the hyperelliptic involutions of the
two curves. Thus there are only finitely many choices for the pgainit follows
that dimCoN4j) < (i—1)+(g—i—1)+0=g—2 and the codimension G N A
in #H g is at leasg + 1.

We can deduce that cod{@ N 4;) < codim(Cp) +1 in ﬁg from the fact that
A\ has codimension 1 ir?{g. This implies that the codimension &% in ?[g is
exactlyg and therefore thaly o N # g is pure of codimensiog in #.

Next we show that each componentf ﬂ?[g has dimensiog— 1+ f (for
g=>1).

Proposition 2. The locus \t N # is pure of codimension-g f in #.

Proof. By Proposition 1, we can suppo$e> 1. Consider a compone@g of Vg ¢ N
#Hgy. By [10, 1.6],Co has codimension at mogt- f in # 4 and thus dimension at

leastg— 1+ f. Becausep > 2, a complete subvariety oy — Ag has dimension
at mostg— 1, by [1, Lemma 2.6]. S€ intersectd\o.

A point of CoNAg corresponds to a cun; self-intersecting in a nodg.
The normalizationX of X; is a hyperelliptic curve of genus— 1. Since the toric
part of Ja¢Xj)[p] contains a copy of the group schemg this implies that the

p-rank of Xg is at mostf — 1. SoXy corresponds to a point &fy_1 11 ﬂ?[g.
The choice of the nodal poify is equivalent to a choice of two distinct points
of Xp which are exchanged by the hyperelliptic involution. So @smM Ag) =

dim(Vg_1.t-1N Hg) + 1.

Furthermore, codiriCo) > codim(Co N Ag) — codim(Ag) in Hg. A calculation
shows that the codimension G§ in ?[g is at least the codimension ¥§_1 s 1N
Hgq 1in Hy 1. Repeating this calculation, we see that the codimensi@ af
Hgis at least the codimension#§_ 0N Hg_¢ in Hg_ ¢, which by Proposition 1
is g— f. It follows thatVg s N Hq is pure of codimensiog — f in H.

This is the main result in the paper on theank of hyperelliptic curves.

Theorem 1.For all g > 1 and all 0 < f < g, the locus Yt N #Hy is non-empty
of dimension g- 1+ f. In particular, there exists a smooth hyperelliptic curve of
genus g and p-rank f.

Proof. By [1, Proposition 2.7], there exists a smooth hyperelliptic cuxvef
genusg and p-rank equal to zero for atf > 1. For 0< f < g, letCs be the com-

ponent ofVy ¢ ﬂ?[g containingX. By Proposition 2C¢ has codimensiog — f
in Hg. It follows thatCr N Hy has dimensioy — 1+ f sinceCs is not contained

in the boundary O%. Now Cs_1 has codimension onlg— f + 1 in ?[g. So the
generic point ofZs is a smooth hyperelliptic curve witp-rank exactlyf.



We now turn to the question of constructing Jacobians of curves with #&rge
number. To do this, we first analyze the Jacobians of fibre products of hyperelliptic
curves in Section 3 and then analyze the geometry of the branch points of non-
ordinary hyperelliptic curves in Section 4. Unless specified otherwise, the results
in the next two sections are also valid in characteristic O (but not in characteristic
2).

3. Fibre products of hyperelliptic curves

Let G be an elementary abelian 2-group of ord@r |2 this section, we describe
G-Galois coversp: X — IP’& whereX is a smooth projectiv&-curve of genug.

For such a covep, we show that the Jacobian Xfdecomposes into"2- 1 factors
which are Jacobians as well. We study some geometric properties of the Hurwitz
spaceHy » which parametrizes isomorphism classes of such capers

3.1. The moduli spacedd

We first recall a result about the coarse moduli space parametrizing isomorphism
classes of5-Galois coversp: X — IP’& whereX is a smooth projectivi-curve of
genusg. This description is related to the theory of Hurwitz schemes and gives
a framework to describe these covers. In particular, this framework allows one to
consider families of such covers with varying branch locus, to lift such a cover
from characteristi to characteristic 0, or to study the locusiy of curves with

a certain type of action b.

To be precise, lefy, be the contravariant functor which associates to lany
schemeQ the set of isomorphism classes(@/2)"-Galois coversp, : Xq — P4,
whereX is a flatQ-curve whose fibres are smooth projective curves of ggraunl
where the branch locuB of ¢, is a simple horizontal divisor. In other words, the
branch locus consists 6f-points of P}, which do not intersect. Since each inertia
group is a cyclic group of order 2, the Riemann-Hurwitz formula imptes
2"-2|B| — 2"+ 1. The following facts about the Hurwitz scheme which coarsely
represents this functor are well-known over the complex numbers.

Lemma 1. i) There exists a coarse moduli spacgdor the functor k5, which is
of finite type ovef[1/2).
ii) There is a natural morphism: Hg , — My whose fibres have dimension three.
i) There is a natural morphisn : Hgn — PIBl which is proper ancetale over
the image.

Proof. See [15, Chapter 10] for the constructionHf,, and the morphisms and

B overC. The corresponding statements o¥¢t/2] follow from [16, Theorem 4].
We recall some of the details about the morphignasd 3. The morphisnt

associates to an@-point of Hg , the isomorphism class &g, wheregqg : Xg —

]P’}2 is the corresponding cover &f-curves. The fibres have dimension three since

Xq is isotrivial if and only if after arétale base change frof to Q' there is a

projective linear transformatign such thapgq is constant, [12, Lemma 2.1.2].



The morphisnf3 associates to an@-point of Hy , the Q-point of the config-
uration spacé/Bl determined by the branch locus of the associated cover. More
specifically, associates to any covep : Xqo — IP’gl2 the Q-point[ap : ... : ag|]
of PIBl wherea; are the coefficients of the polynomial whose roots are the branch
points ofgg. Note that thek-points of the image o8 correspond to polynomials
with no multiple roots.

We denote by, the imager(Hg n) in Mg. Given a smooth connectéeturve
X, thenX corresponds to a point offy,, if and only if there exists a subgroup
G C Aut(X) with quotientX /G ~ P1. Note that#; is simply the locus of
hyperelliptic curves irMg.

It is often more useful to describe the branch locug®tiirectly as a2-point
of (P1)/Bl. This can be done by considering an ordering of the branch poinis.of
The branch locus of a cover corresponding kegint of Hg , can be ank-point of
(Pl)‘B‘ — A whereA is the weak diagonal consisting of points having at least two
equal coordinates. In particular, for a@¢point (by,...,bpg.2) of (P1)20+2 — A
there is a unique hyperelliptic cover : Xo — PL branched afby,...,byg 2}
Also the curveXqg has genus.

3.2. The fibres of jh

We now describe some properties ofaGalois coverp: X — P! corresponding
to a point ofHg n. In fact, the cover arises as the fibre product nthyperelliptic
covers which satisfy a strong disjointness condition on their branch loci.

Consider an isomorphism (Z/2)" ~ G. Fori € {1,...,n}, this isomorphism
determines a natural elemebf order 2 inG. LetH; ~ (Z/2)"~* be the subgroup
generated by a$jj for j #i. Suppose fore {1,...,n} thatB; is a non-empty finite
subset ofP! of even cardinality. For any non-emp8/C {1,...,n}, denote byBs
the set of allb € P such thatb € B; for an odd number of € S and denote by
Cs — P! the hyperelliptic cover branched Bg. Finally, letHs be the subgroup of
G consisting of all elements] ; ais such thaty;.sa; is even. Note that eadtg
is non-canonically isomorphic t/2)"~*. Furthermore, whe®= {i} we have
Bs=Bj andHs=H; .

Lemma 2. Suppose: X — P! is the normalized fibre product ovBt of n smooth
hyperelliptic covers C— P! with branch loci B. Thengis a G-Galois cover and
the quotient of X by Hlis the hyperelliptic cover €— P! branched at B.

Proof. The coverp: X — P! is aG-Galois cover of (possibly disconnected) smooth
curves by the definition of the fibre product. Also by definitién— P! is the quo-
tient of X by the subgroug;.

The branch locuB of @ equalsJ_,B;. Forb € B, the inertia groupy, of X —
P! aboveb must be cyclic; thus, ~ Z/2. In fact, the generatday, ..., ap) of I,
satisfiesn; = 1 if and only ifb € B;. To see this, note that if € B;, thenC; — P!
is branched abb and sdy, ¢ H;; it follows thata; = 1 if b € B;. On the other hand,



if b ¢ B;, thenC; — P! is unramified ab and sol, C H;; it follows thata; = 0 if
b¢B;.

SinceHs ~ (Z/2)"1, the quotientX /Hs — P! is hyperelliptic; it remains to
show that the branch locus of this coverBis. Forb € B, the coverX/Hs — Pl
is branched ab if and only if I, ¢ Hs, which is equivalent tqay,...,an) € Hs.
SoX/Hs — P! is branched ab if and only if Zjcsa;j is odd. Now,Zjcsaj = #{i €
Slb € Bj} mod 2, so this number is odd if and onlykife B; for an odd number of
i € S ThusX/Hsis branched aBs by definition.

In Section 5, we construct covegs X — P! corresponding to points Gfgn
for which X is also hyperelliptic. For example, when= 2, suppose& is the nor-
malized fibre product of two hyperelliptic covegs and ¢,. The curveX will
also be hyperelliptic if its quotier@; » = X /Hy 2 is isomorphic tdP!. This occurs
wheng; = g andB; andB, overlap in all but one point; or whegp = g; +1 and
B; C By. The other extreme is considered in [14] where Stepanov uses the fibre
product of two hyperelliptic curves whose branch loci intersect in a single point to
construct Goppa codes.

We say that the collectiofB;}]_, is strongly disjointf the following two con-
ditions are satisfied: first, the sddg are distinct for all non-emptgC {1,...,n};
secondB = U}' ; B; is a simple horizontal divisor. In other wordshif, b, € B are
two Q-points of P, for some schem&, then the second condition insures that
eitherby = by or thatb; andb, do not intersect i

Lemma 3. A cover@: X — P! corresponds to a point of 4 if and only if X has
genus g and: X — P is isomorphic to the normalized fibre product orof n
smooth hyperelliptic covers G- P! whose branch loci Bform a strongly disjoint
set.

Proof. If ¢: X — P! is the normalized fibre product afhyperelliptic covers with
branch lociB;, then it is clear thafp is aG-Galois cover ani is projective. Fur-
thermoreC;j — P is disjoint from the normalized fibre product of &l — P* for
i < j; otherwise, by Lemma Z; — P! would be isomorphic t€s — P* for some
{i} #Sc {1,...,n}. This would implyBs = Bj for someS+# {j} which would
contradict the fact tha{B;} form a strongly disjoint set. Since these covers are
disjoint overP?, it follows thatX is connected. AlsX is a smooth relative curve
sinceB = U} ; B; is a simple horizontal divisor. By hypothesk has genug and
so@corresponds to a point ¢fg .

Conversely, ifgp: X — P! corresponds to a point ¢y n, thenX has genug
by definition. Consider the quotien® — Pﬁ of ¢ by the subgroupsi; of G for
i =1,...,n. These covers are clearly smooth and hyperelliptic. By the universal
property of fibre products, there is a morphism frétrto the normalized fibre
product of the cover€; — PL. This morphism must be an isomorphism since
both X and the normalized fibre product have degrBever P*. Also, ¢: X —
P! dominates the fibre product of any two of the quotigd¢s— P* with branch
locusBs, by Lemma 2. Sinc& is connected, these quotier@ts — P! must all
be disjoint; in other words, the seBs must all be distinct. Also,J! ;B; is the
branch locus of ¢; by definition,B is a simple horizontal divisor. Thys; } form
a strongly disjoint set.



Corollary 1. For n > 2, the locus#g, has dimensior{g + 2" — 1)/2"2 — 3 if
g= 1 mod 2-2 and is empty otherwise. In particular, the dimension of the locus

Hyois Q.

Proof. The dimension oHg,, is equal to the dimension qiP?)/Bl, namely the
number of branch point8| of the corresponding covers. By the Riemann-Hurwitz
formula,|B| = (g+2"—1)/2"-2. By Lemma 1, the dimension Ot , is three less
than the dimension dfly n, which simplifies tog whenn = 2.

3.3. Decomposition of the Jacobian

We will now describe the isogeny class of the Jacobian for any cifiee which
there exists a covey: X — Pﬁ corresponding to k-point ofHg . Fori € {1,...,n},
supposep :Ci — IP’& is a smooth hyperelliptic cover with branch lodsjs Suppose
{Bi}{.; form a strongly disjoint set and &= U} ; B;.

Proposition 3. Supposep: X — ]P’ﬁ is the normalization of the fibre product @f
fori=1,...,n. ThenJagX) is isogenous t¢](JagCs)) where the product is taken
over all non-empty & {1,...,n}.

Proof. Note thatX /Hs is the hyperelliptic curvé€s by Lemma 2. Thus the re-
sult follows directly from [8, Theorem C] if gen(¥) = Zsgenug$Cs). By the
Riemann-Hurwitz formula, gen(Ss) = —1+ |Bg|/2. SinceB = U] ;B; is the
branch locus oX — P{, it follows that genugX) = 2"?|B| — 2" + 1. The proof
follows by showing thaks|Bs| = 2"~1|B| by the inclusion-exclusion principle.

The isogeny between Ja¢) and[](JadCs)) is not sufficient to study the-
number ofX since thea-number is not an isogeny invariant. For this reason, we
now generalize Proposition 3 by showing that the de Rham cohomology group
H(}R(X) also decomposes. Equivalently, one could work with the crystalline coho-
mology groumclrys(x) evaluated ak, [6, 1.3.6]. We thank Kani [7] for helping us
with the proof of Proposition 4. Létl = 2" — 1.

Proposition 4. Supposehar(k) # 2. Then Hi(X) is isomorphic tapsH1z(Cs) as
k[G]-modules, where the sum is taken over all non-emputy$, ..., n}.

Proof. Since chafk) # 2, there exists an idempotegy corresponding to the sub-
groupHsin the group ring[G] for every nonempty subs8tc {1,...,n}. Namely,
€s = zh/Z“‘l, where the sum ranges over &lle Hs. Let eg be the idempo-
tent S h/2", where the sum ranges over hle G. By Lemma 2,Cs is the quo-
tient of X by Hs, SOHIz(Cs) = (Hi5(X))Ms =2 esHJx(X). Furthermore, note that
0= HJx(P}) = (HIr(X))C = eHJr(X) and therefore thaggx = 0 for all x.

If SandT are distinct subsets theger = 22*2”zhsht where the sum ranges
over allhs € Hs andhy € Hr. For eachg € G, we see thaghg® € Hy for half
of the values ohs € Hs. Sog appears 22 times iny hshy. Thus, 2" 2eger =
2n-2 Y gec 9 and we obtain thaser = €. Similarly, one can show for all subsets
S thateses = €s andeseg = 6.



We construct an explicit homomorphispfrom @sHig(Cs) to Hiz(X):

N

VX1, %2, ..., XN) = ) X
2,

If  is the homomorphism frordlJ5(X) to &sHJz(Cs) given by

P(y) = (e1y,€2Y,. .., ENY)

then one can check thatoy = yo y = Id. Thusy is an isomorphism ok-vector
spaces. In facy is ak[G]-module isomorphism since evegye G commutes with
€sand thus withy.

The following corollary will be used throughout the remainder of the paper.

Corollary 2. Supposechark) > 2. There is an isomorphism betwedadX)|[p]

and [s(Jad¢Cs)[p]) as group schemes where the product is taken over all non-
empty SC {1,...,n}. In particular, JagX) and[]s(Ja¢Cs)) have the same p-rank
and a-number.

Proof. By Proposition 4, there is an isomorphism lofvector spaces between
Hi:(X) and@sHiR(Cs). By the functoriality of the Frobenius and Verschiebung
morphismsF andV commute with the action aj € G and thus with the idempo-
tentses. It follows thatHz(X) andesHJx(Cs) are naturally isomorphic dgV, F|-
modules. Sinc& andCs are smooth curves, [5, 3.11.2] implies thégs(JagX))
and@sH1;(JadCs)) are isomorphic aklV, F]-modules. By [9, 5.11} jz(Jag X))

is canonically isomorphic to the contravariant Dieudenmodule associated to
JadX)[p]. Likewise, Hiz(JadCs))) is canonically isomorphic to the contravari-
ant Dieudond module associated to J&g)[p]. So the Dieudon@ module of
Jag X)[p] is isomorphic to the direct sum of the Dieud@modules of J4€s)[p].

It follows, from the equivalence of categories between finite commutative group
schemes ovécand their contravariant Dieudo@modules, that the group schemes
JadgX)[p] and[]s(JadCs)[p]) are isomorphic.

4. Configurations of non-ordinary hyperelliptic curves

The results in this section will be used to find curi¥elaving interestingp-power
torsion, as measured in terms of invariants such ap-tamk anda-number. Corol-

lary 2 shows that when a cover X — P! corresponds to a point &fy n then such
invariants forX can be determined by the corresponding invariants oZjt8-
guotients. Since these quotients are all hyperelliptic, one can apply results of Yui
[17]. The main difficulty is to control th@-torsion of all of the curve€sin terms

of the p-torsion of the curve§.

Let C be a smooth hyperelliptic curve of gengidefined over an algebraically
closed fieldk of characteristicp > 2. Recall thatC admits aZ/2-Galois cover
¢ :C— ]P’& with 2g+ 2 distinct branch points. Without loss of generality, we
supposap; is branched ato and choose an equation for this cover of the form



y? = f(x), wheref(x) is a polynomial of degreeg?- 1. We denote the roots of
f(x) by {A1,..., Aogi1}.
Denote byc; the coefficient o' in the expansion of (x)(P~1/2, Then

G = (_1)r*(p71)/22 ((p— 1)/2> ((p— 1)/2>)\:111. A220+1 )

LA
a Azg+1 ot

where the sum ranges over alj 2 1-tuples(ay, ..., ayg1) of integers such that
0<@g < (p—-1)/2foralliandya = (2g+1)(p—1)/2—r. Note thatc, can
be viewed as a polynomial iK[A1,...,A2q+1] which is homogeneous of degree
(294+1)(p—1)/2—r and which is of degregp— 1)/2 in each variable.

Let Ay be theg x g matrix whoséi jth entry iscip_ ;. The determinant ofiy de-
fines a polynomial irk[A1, . ..,A2g.1] which we denote by DgtA1,...,Axg1) =
Dety(A2g+1). This polynomial is of degree at mogt{p —1)/2 in eachA; and
is homogeneous of total degreé(p — 1)/2. It is invariant under the action of
Sg+1 0N the variabled;. We denote bypg C (A})?9+1 the hypersurface of points
}\2g+l =(Aq,... 7)\29_,_1) for which Deg()\ng) =0.

In [17], Yui gives the following characterization of non-ordinary hyperelliptic
curves. Recall thah is the weak diagonal consisting of points with at least two
equal coordinates.

Theorem 2. (Yui[17]) Suppose C is a smooth hyperelliptic curve of genus g. Then
C is non-ordinary if and only if there is &/2-Galois coverp: C — IP’& branched
at oo and at2g+ 1 distinct points\; € A& such that\ g1 € Dy.

We now find some results on the geometry of the hypersuiigoghich will
be used in Sections 5 and 6 to construct curve#jR whosep-torsion has pre-
scribed invariants. In Lemma 4 and Lemma 5, we show thaj(®gf,1) is gener-
ically a polynomial of degred = g(p—1)/2 in the variablé\og, 1 whose roots are
not contained in{A1,...,A2g}. We expect for a generic choice df, ..., Ayg that
this polynomial will haved distinct roots. Showing this seems to be related to the
guestion of whether the hyperelliptic locus is transversal (in the strict geometric
sense) to the locudy 41 of nonordinary curves. So in Proposition 5, we instead
prove the weaker statement that this polynomial has at lgast1)/2 distinct
roots.

Lemma 4. The determinanDety(A2g.1) is a polynomial of degree & g(p—1)/2
in the variableAyg, 1.

Proof. As we observed above, the degree ofdDeig. 1) in Axg, 1 is at mosd. We
claim that the coefficient okd 1 IS a non-zero polynomial ik[Ag,...,Ag]. In

29+ _
particular, one term of this polynomial {s-1)9(P-1/2\g, | 1179, A& 1VZD(P-2/2

To see this, we note first from Equation 1 that the Itatal degregypf; is
(20+1)(p—1)/2- (g~ 1) = (P~ 1)/2+ (1~ 9). So if | < g thenr(f )2
cannot appear iogp_ j. Furthermore, the coefficient hﬁgj)/ Zin Cgp—g IS exactly
(—1)(P-1/2, Because the degree bq.1 in ¢ is at most(p—1)/2 for allr, a

monomial in De§(Azg11) will be divisible by)\ggJrl only if it is the product of
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matrix entries which are each divisible h\é}éj)/z. Thuscgp_g is the only entry
in the bottom row ofAy which contributes to the terms of Qéhog, 1) which are
divisible byAg ;.

Similarly, in the penultimate row oy, the total degree ofg_1),_; will be
3(p—1)/2+(j— (g—1)). Therefore, ifj < g— 1 then(A1AzAzq+1) P~/ cannot
dividec(g_y)pj- Because the degreef for all ¢, in Agis at most(p—1)/2, only
the last two entries of the penultimate row contribute to the terms qf(Bgt 1)
which are divisible b\ @72 Also the coefficient 0fAA2hag41) P~2/2 in
Clg-1p-(g-1) IS (~1)PH/2, _ _

Continuing, we see that only terms which are on or above the diagonal can

contribute to the desired term of Qekog,1). It follows that the only term of

Dety(A2g:1) which involves the monomialg, , , N2, A9 172DP~1/2 comes from

the product of elements of the diagonal. The goefficient of this monomial is the
product ofg coefficients which each equiat1)(P-1/2, so itis equal tg—1)9(P-1)/2,

Lemma 5. The image oDetg(Azgy1) iN KA1, ..., A2g41]/(A2g+1 —A1) is non-constant.

Proof. The proof is similar to that of Lemma 4. It is sufficient to show that at
least one of the coefficients of Q€A1 ...,A2g,A1) iS non-zero. The coefficient of

the monomiald'P~1/2 2, \(9-1V/2D(P=1/2 5 5 1)a(P-1/2 as this monomial
appears exactly twice as the product of terms in the diagonal of the Hasse-Witt
matrix and does not appear again in the expansion of the determinant.

Suppose exactly two branch points of a smooth hyperelliptic cover specialize
together. The resulting curve is singular and consists of a hyperelliptic e
genusg — 1 self-intersecting in a point. The geometric interpretation of the next
lemma is that this singular curve will be ordinary if and onlgffis ordinary.

Lemma 6. Delg()\l, .., A2g9-1,0, 0)=(—A1-- -Azgfl)(pfl)/z Deﬁ‘;,l()\l, ... ,)\2971).

Proof. Supposeé\og = Aoy 1 = 0. Then the only nonzero terms in the sum defining
cr are those wherayg = axg,1 = 0. If r = p— 1, then the only term in this sum
that does not vanish is the one whete= (p—1)/2 for 1 <i < 2g— 1. Thus
Cp-1=(—A1---Ayg_1)P~V/2If r < p—1, then all of the terms in the sum are zero,
and thusc; = 0. Supposé > p— 1 andr = ip — j. Then the ternt, occuring in
theith row andjth column ofAg equals the term, _, 1) occuring in the(i — 1)st
row and(j — 1)st column ofAg_1. By expanding the determinant along the first
row, we see that DgfA1,...,A2q-1,0,0) = cp_1 Det(Ag_1).

For fixedAzg = (A1,...,Azg) C (A})29, denote byl (Ay) the line consisting
of points (A1, ..., Azg,A2g+1) C (A})2*L (where only the last coordinate varies).
Generically, the intersection @f(A>g) andDg consists ofd = g(p—1)/2 points
when counted with multiplicity. To see this, consider D, 1) as a polynomial
in RA2g4+1] whereR = k[A1,...,Ayg]. The coefficient 01‘)\‘39+1 in Det(Azgy1) is
non-zero inR by Lemma 4. Sincé& is an algebraically closed field, for anyy =
(A1,...,Azg) Not in the Zariski closed set dfA})? defined by this coefficient,
Det(A2g11) has degred and thugd roots ink when counted with multiplicity. The
next proposition gives a lower bound on the number of distinct roots.
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Proposition 5. Let Uy C (A})? be the set of pointé\y, ..., Azg) for which L(Azg)
intersects [ in at least(p— 1) /2 non-zero distinct points ¢f\})29+1\A. Then Y
is a nonempty Zariski open subset(Aﬁ)zg.

Proof. The proof is by induction omg. A result of Igusa [4] states that there are
exactly(p—1)/2 distinct valued\ so that the elliptic curve branched{dt 1, A}
is non-ordinary. It follows that the result is true whgs- 1.

Suppose thatly_1 is @ nonempty Zariski open subset @f})%9-2. First we
show that for a generic choice 0&1,...,Ax) there are at leagtp—1)/2 dis-
tinct choices of\yg1 SO that Dej(A1, . ..,A2g,A2g+1) = 0. It will suffice to con-
struct a single choice ofA1,...,Azq) for which this result holds, as the generic
case will have at least as many distinct roots as any specialized case. It follows
from Lemma 6 that for non-zems, ..., Azg, the non-zero values @iy 1 so that
Delg(O, 0,A3,... a>\297)\29+1) =0 and D%,l(Ag, ... ,)\29+1) = 0 are the same. By
the inductive hypothesis, for the generic choicgXy, ..., Axg) there are at least
(p—1)/2 non-zero distinct values @by, 1 with this property.

Next we show that generically thegp — 1)/2 intersection points of (Ag)
andDg are not contained iA. By Lemma 5 and by symmetry, for eackli < 2g,
the value); is a root of the polynomial DgfA1, ..., A2+ 1) € RA2g41] only when
(M,...,Azg) is in a Zariski closed subset ¢f\1)29. So for the generic choice
of (A1,...,A2g), the rootAg, 1 will not be contained infA1,...,Axg}. It follows
that for the generic choice @iy, ...,Azg) the lineL(Ayg) intersectdy in at least
(p—1)/2 non-zero distinct points afAt)?9t1\A. SoUy is a nonempty Zariski
open subset ofA})%.

Proposition 6. Let Uy C (A})? be defined as in Proposition 5. Then we have that
UgN (Dg-1 x A}) has codimension 1 ifA})%.

Proof. SinceDg_1 x A} has codimension 1 iGA1)2 andUy is open by Propo-
sition 5, it is sufficient to show that no componantof Dg_1 x Al is contained
in the complemerii\yy of Ug. Note that the complement bk is a Zariski closed
subset defined by equations which are each symmetric in the varlables Aog.
On the other hand, any compon&hof Dg_1 x A& is defined by equations that do
not involveAzy. Since the ideal of\y is not contained in the ideal &f; it follows
thatV is not contained iW.

5. Curves with prescribeda-number

We now consider thea-number of Jacobians of curves with commuting involu-
tions. Recall that the-number, dimHom(ap,JagX)), of ak-curveX is an inte-

ger between 0 and. Herea, is the kernel of Frobenius of,. A generic curve

is ordinary and thus hag-number equal to zero. A supersingular elliptic curve

E hasa-number equal to one and in this case there is a non-split exact sequence
0— ap — E[p] — ap — 0. There is a unique isomorphism type of group scheme
for the p-torsion of a supersingular elliptic curve, which we deridteln this sec-

tion we construct curveX so that JagX)[p] contains multiple copies of the group
schemeM and thus has large-number.

12



Let Tqa denote the sublocus @¥/ 4 consisting of curves of genuswith a-
number at leash. The codimension 0Ty 5 in A is at least sinceTga C Vg g-a-
It is not known whether (for alfy and all 0< a < g) there exists a curve of genus
g with a-number equal t@. The results in this section give some evidence for a
positive answer to this question.

We note that these results can be viewed as a generalization of [11, Section
5]. In that paper, Oort considers cunof genusg = 3 with a group action by
G = (Z/2)? so that the thre& /2-quotients ofX are all elliptic curves. He shows
that there exist (nonhyperelliptic) curves of genus 3 waithumber 3 for all primes
p > 3 as well as hyperelliptic supersingular curves of genus 3 avitamber 3 for
all p=3 mod 4.

Lemma 7. The generic geometric point of the hyperelliptic loctfshas a-number
equal to0. The non-ordinary locus has codimension one#ig and its generic
geometric point has a-numbérand p-rank g- 1.

Proof. This is immediate from Theorem 1 and the fact that a curve yithnk
g— 1 hasa-number 1.

The next theorem will lead immediately to Corollary 3 which is the main result
in this paper on the-number of curves.

Theorem 3. Suppose & 2 and p> 2n+ 1. Suppose g is such thatgl mod 22

and g> (n—1)2"2 4 1. There exists a family of smooth curves X of genus g of
dimension at leasfg+ 2" — 1) /2"~2 — 3— n so thatJad X)[p] contains the group
scheme M.

For the proof of Theorem 3, we will construct a fibre prodgcX — P! of n
hyperelliptic coversp so that the disjoint union of any two of the branch 18¢i
will consist of exactly two points. It follows that the curv€s; will have genus
zero.

Proof. Write g = 1+ ¢2"2. If £ # nmod 2, letg; = (¢ +3—n)/2. Note that
01 > 1. By Proposition 5 and Lemma 7, as longes (p—1)/2, there is a Zariski
open subsdly, of (A&)Zgl with the following property: there are at leasthoices
N1,...,Nn for Agg,+1 such that the corresponding hyperelliptic cuGeis non-
ordinary. By Theorem 1, after replacikly, with a smaller Zariski open subset of
(A})%, we can further suppose that the cur@s. . .,C, will have p-rankg; — 1.
Thus JaC;)[p|] containsM.

Let@ :C — Pl for 1<i<nbethe hyperelliptitJg, -curves corresponding to
these choices. Lei: X — P! be the normalization of the fibre product of the covers
@. Note thatX is branched aB = {oo,A1,...,A2g;,N1,...,Nn}. By Proposition 3,
the genus oX will be 2"-?(2g; +1+n) — 2"+ 1 = g. By Corollary 2, JatX)[p]
containsdi! ; Ja¢Ci)[p] which containsp! ;M. The dimension of this family of
curves is g — 2 = |B| — 3— nwhich equalgg+2" —1)/2"~? — 3—n. Note that
the p-rank of X is at leash(g; — 1).

Alternatively, if ¢ =nmod 2, letg; = (/+2—n)/2 and notey; > 1. By Propo-
sition 6, the locusJg, 1N (Dg, x A}) has codimension 1 iGA})291+2, In other

13



words, as long as < 1+ (p—1)/2, for any(Aq,...,A2g,4+2) in @ codimension 1
subsetZ of (A})21+2 it is true that(Aq,...,Axg,+1) € Dg, and there are at least
n— 1 choicesi of Ay, +3 With (A1,...,A2g,13) € Dg,+1. Let @y : Cy — P be the
hyperelliptic cover branched &k1,...,A2g,+1). For 1<i<n-1, letg : G — P!
be the hyperelliptic cover branched @t ...,A2q, +2,Ni). ThenCy, has genug)
andC; has genug; + 1 for 1<i < n-—1. By Theorem 1, after restricting to a
Zariski open subset af, we can further suppose th@ (resp.C;) has p-rank
01— 1 (resp.gi). Thus Ja¢Ci)[p] containsM for 1 <i <n.

Let @: X — P! be the normalization of the fibre product @ffor 1 <i < n.
Note thatgis branched aB = {o,A1,...,A2g,4+2,N1,...,Nn-1}. As above X has
genus 272(2g; + 2+ n) — 2"+ 1 = g and Ja¢X)[p] containsM". By Proposition
6, the locusZ has dimension @ + 1. The corresponding family of curves has
dimension 8; — 1 = |B| — 3— n which again equalég+ 2" — 1)/2"2 -3 —n.
Note that thep-rank of X is at leashg; — 1.

Corollary 3. Suppose > 2 and p> 2n+ 1. Suppose g is such thay, is non-
empty of dimension at leas#l. Then the intersectiofiy , N Ty n has codimension

at most n in#g,. In particular, there exists a smooth curve of genus g with a-
number at least n.

Proof. By Corollary 1, the condition thatfy, is non-empty is equivalent tg=
1 mod 22 and the condition that{yn has dimension at leaat+ 1 is equivalent
tog > (n—1)2""2+ 1. The family constructed in Theorem 3 has dimengips
2"—1)/2"-2 - 3—nand thus codimensiamin %y ,. For any fibreX in this family,
JagX)[p] containdV" and saX hasa-number at least. So this family is contained

|n %n ngn

Whenn = 2 orn = 3, then the curves found in Theorem 3 are in fact hyperel-
liptic.

Corollary 4. Suppose @ 2 and p> 5. There exists &g — 2)-dimensional family
of smooth hyperelliptic curves of genus g whose fibres have a-nialper p-rank
g-—2

The family in Corollary 4 has codimension 2 fi ».

Proof. This follows immediately from Theorem 3 once we show that the crige
hyperelliptic whem = 2. If gis even, note that the branch loci@fandg, differ in
only one point. The third quotied; » of X by Z/2 is branched at only two points
n1 andnz. So the coveX — C; » is hyperelliptic. Likewise, ifg is odd, then the
third quotientCy » of X by Z/2 is branched at only two poingg, ;> andnz so the
coverX — Cy 2 is hyperelliptic. In both cases, Ja©)[p] ~ JadC1)[p] & JadC,)[p]
and so the fibres of havea-number 2 ang-rankg — 2.

Corollary 5. Suppose ¢ 5is odd and p> 7. There exists &g— 5) /2-dimensional
family of smooth hyperelliptic curves X of genus g so trzatX)[p] contains M
and thus has a-number at lec&t

The family in Corollary 5 has codimension 3 iy 3.
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Proof. Itis sufficient to show that the fibres of the family constructed in Theorem 3
are hyperelliptic when = 3. In both cases of the constructionSiE {1,2}, {1,3},

or {2,3}, then the quotients — P! of X by Hs ~ (Z/2)? is branched at only two
points and sdCs has genus 0. Consider the quotietitof X by the subgroup

H' ~ 7/2 generated byr = (1,1,1). Note thatX’ dominateCs if S= {1,2},
{1,3}, or {2,3}, sinceh € Hs. It follows thatX’ has genus zero sin¢€ — Plis a
(Z/2)?-cover having thre& /2-quotients of genus zero. It follows thét— X’ is
hyperelliptic.

Remark 10One would like to strengthen Corollary 5 by producing curves with
a-number exactly 3. The difficulty is to determine taenumber ofCy; 5 3. For
example, to construct a curve of gergis= 5 anda-number exactly 3 with this
method, one would need to guarantee that there are supersingular ¥alies
andA3 so that the hyperelliptic curve of genus two branchefDat, o, A1, A2, A3}

is ordinary.

Remark 2In the above results, some restriction pis unavoidable. By Proposi-
tion 3.1 of [13], there does not exist a hyperelliptic curve of genus 2andmber
2 whenp = 3 or of genus 3 and-number 3 wherp = 3 or 5. Also, there does not
exist a hyperelliptic curve with-number 4 wheilg =4 andp = 3,5 or wheng=5
andp=3.

We now produce curves of every genus wétmumber at least 4 using this
method. (One can also produce curves of every genusawitimber at least 3 and
count the dimension of these families). The curves constructed in this way will
most likely not be hyperelliptic. This makes it difficult to produce a curve of every
genus with every possibEnumber using induction and fibre products.

Corollary 6. Suppose @ 7 and p> 5. There exists a curve of genus g with a-
number at leas4.

Proof. If gis even, letg; = g/2. Note thatg; — 2 > 2. From Corollary 4, there
exists a hyperelliptic curve of gengg — 2 anda-number 2. Consider the corre-
sponding hyperelliptic covep; branched afA1,..., Az, —3,%}. Consider a hyper-
elliptic cover@, branched afns,...,ns,~} which hasa-number 2. After modi-
fying @ by an affine linear transformation, one can suppose {hatn {A} is
empty. The cardinality ofB; UB2)\(B1NBy) is (201 —2)+6—-2=2g; + 2. It
follows from Proposition 3 that the fiber productgf andg, yields a curve with
genus(gs — 2) + g1 + 2= g anda-number at least 4.

If gis odd, letg; = (g—1)/2. Note thaty; — 1 > 2. By Corollary 4, there exists
a hyperelliptic curve of genugy — 1 anda-number 2. Consider the corresponding
hyperelliptic coverp, branched afAq, ... Az, —2,0,0}. Consider a hyperelliptic
cover@, branched afnsi,...,n4,0, 0} which hasa-number 2. After modifyingp,
by a scalar transformation, one can suppose{hagtn {Ai} is empty. The cardi-
nality of (B1UB,)\(B1NBy) is 291 + 6 — 4 = 2g; + 2. It follows from Proposition
3 that the fiber product af; andg, yields a curve with genug; —1)+091+2=g
anda-number at least 4.
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6. Curves with prescribed p-torsion

The methods of the previous sections can also be used to construct Jacobians
whosep-torsion contains group schemes other thigror ap. In this section, we
illustrate this for two particular isomorphism types of group scheme, namely the
p-torsion of a supersingular abelian surface which is not superspecial and of a
supersingular abelian variety of dimension 3 wathumber 1.

Section 3 allows one to describe tipetorsion of the Jacobian of a curve
X which corresponds to a point ofy . Specifically, Proposition 4 states that
JagX)[p| is the direct sum of J4€s)[p] whereCs is the quotient ofX by Hs
andSranges over the™- 1 nonempty subsets L, ...,n}. With this method, it
is only possible to construct Jacobians so thatX#e] is decomposable into (at
least two) group schemes each of which occurs agpituesion of a hyperelliptic
curve.

Via the p-rank, we have already considered the group scheme fqr-thesion
of an ordinary elliptic curve, namelii/ p & pp. Using thea-number, we have al-
ready studied the group scheMeof the p-torsion of a supersingular elliptic curve.

Not many other group schemes are known to occur apitwesion of a hy-
perelliptic curve. There are four possibilities of group scheme which occur among
curves of genus 2 (which are automatically hyperelliptic). The first thZged
up)z, (Z/p®pp) &M, andM? are decomposable. We will focus on the most inter-
esting of the four, namely the group schelhéor the p-torsion of a supersingular
abelian surface which is not superspecial. A citweith JagX)[p] ~ N has genus
2 and is thus hyperelliptic.

By [3, Example A.3.15], there is a filtratioH; C H» C N whereH; ~ oy,
Ho/Hy ~ ap @ ap andN/H, ~ a,. Moreover, the kerndb; of Frobenius and the
kernel G, of Verschiebung are contained ky and there is an exact sequence
0—H -G &Gy, —Hy,— 0.

The group schema@l is perhaps easier to describe in terms of its covariant
Dieudonré module. Consider the non-commutative riag= W(k)[F,V] with the
Frobenius automorphism : W(k) — W(k) and the relation&V =VF = p and
FA =A°F andAV =VA° for all A € W(k). Recall that there is an equivalence of
categories between finite commutative group schethegerk (with orderp’) and
finite left E-modulesD(G) (having lengthr as aw/(k)-module), see for example
[3, A.5]. By [3, Example A.5.1-5.4]D(up) = k/k(V,1—F), D(ap) = k/k(F,V),
andD(N) = k/k(F3,V3,F2-V?),

The p-rank of a curveX with JagX)[p] ~ N is zero. To see this, note that
Hom(pp,N) = 0 or thatF andV are both nilpotent oid(N). Thea-number of a
curveX with JagX)[p] ~ N is one. (It is at least one since tiperank is 0 and at
most one since the abelian surface is not superspecial.) This also follows from the
structure of the group scheme or from the fact thgt] "N[V] = H1 ~ a,.

Lemma 8. There is a one-dimensional family of smooth curves X of genus two
with JagX)[p] ~ N.

Proof. The dimension im, of supersingular (resp. superspecial) abelian surfaces
is one (resp. zero). It follows that the locus of abelian surfaces pvithrsionN is
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exactly one. The generic point of this one-dimensional family must be in the image
of the Torelli morphism sincél(, and 4, have the same dimension. So there is
a one-dimensional family of curves of genus two witliank 0 anda-number 1.

The fibres of this family are all smooth since the family cannot intersect either of
the boundary components or A;.

Lemma 9. There exists a one-dimensional family of smooth hyperelliptic curves X
of genus3 with JagX)[p] ~ N® (Z/p@ Wp).

Proof. By Lemma 8, there is a one-dimensional family of smooth cuiXesf
genus two with Ja)[p] ~ N. This yields a family of hyperelliptic covers @
branched at six points. For some subset of four of these points, the family of elliptic
curves branched at these points must have varjiimgariant and so its fibres are
generically ordinary. The fibre product of these two families of covers yields a
family of smooth hyperelliptic curves of genus 3 wightorsionN @ (Z/p @ Hp)

by Corollary 2.

The following proposition will be used to generalize Lemma 9dor 4.

Proposition 7. Suppose there exists an r-dimensional family of smooth hyperellip-
tic curves C of genus’gvith JagC)[p] ~ G for some group schem@. Suppose
s>1land g=2g —1+s. Then there exists dn+s)-dimensional family of smooth
curves X inHg» so thatJagX)[p| containsG.

Proof. For each curve€ in the original family with Ja@C)[p] ~ G and branch
locusBp = {A1,..., A2y 2}, we will construct ars-dimensional family of smooth
curvesX so that JagX)[p| containsG. By Proposition 3 and Lemma 2, it will
suffice to construct hyperelliptic curv€3 andC, whose branch locB; and B,
are of even cardinality witfB; N B,| = sandBp = (B1 UB3)\(B1 N By).

If s=2mis even, therB; =BoU{n41,...,N2m} andBz = {ng,...,N2m} sat-
isfy these restrictions and there ama 2 s choices for the pointg;. Similarly, if
s=2m+1is odd, then we can sB = {A1,...,A2y41,N1,-..,N2my1} @ndBy =
{A2g42,N1,-..,N2my 1} Satisfy these restrictions. There ara-2 1 = schoices for
ni. The Jacobian of the normalized fibre prod¥adf C; andC; contains JaC).

This is the main result of the section.

Corollary 7. Let N be the p-torsion of a supersingular abelian surface which is
not superspecial. For all g 2, there exists a smooth hyperelliptic curve X so that
JagX)[p| contains N.

Proof. The statement will follow from induction. Assume for gllsuch that 2 <
g < 2" that there exists a smooth hyperelliptic cuXg so that JalXy)[p]
containsN. This is true forn = 1 by Lemma 8 and Lemma 9. 1f"2! < g <
2"2 theng = 2¢’ or g = 2¢' + 1 for someg such that 2 < ¢’ < 2"1. Using
Proposition 7 withs= 1 or s= 2 allows one to construct a cur¥g of genusg so
that Ja¢Xg)[p] containsN. If s=1 ors= 2 in Proposition 7, theB, consists of
exactly two points s is also hyperelliptic.
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Similarly, one can consider the group sche@ef the p-torsion of a super-
singular abelian variety of dimension three wialmumber 1. A curveX with
JadX)[p] = Q hasp-rank 0. Also,D(Q) = k[F,V]/k(F4 V4 F3—-V3). The re-
striction ong in the next corollary could be removed if there exists a smooth hy-
perelliptic curveX of genus 4 so that J&)[p] containsQ.

Corollary 8. Let Q be the p-torsion of a supersingular abelian variety of dimen-
sion three with a-numbek. Suppose ¢ 3is not a power of two. Then there exists
a smooth hyperelliptic curve X of genus g so thaX)[p] contains Q.

Proof. The proof parallels that of Corollary 7. One starts with the supersingular
hyperelliptic curveX of genus 3 ané-number 1 (and thus JexX)[p| ~ Q) from
[11] and works inductively using Proposition 7.

It is natural to ask whether Corollary 7 could be strengthened to state that
JagX)[p] ~ N@ (Z/p® Hp)?~2. This raises the following geometric question.

Question 1Given any choice of\ = {A1,...,A2 }, does there exigt € Aﬁ —/A\so
that the hyperelliptic curve branched{@t, ..., Ax, |, o} is ordinary?

For a generic choice ok, the answer to Question 1 is yes by Lemma 4. This
guestion will have an affirmative answer if the hypersurfB¢edoes not contain
any coordinate lind (A2 ). The question is equivalent to asking whether, given a
hyperelliptic coverp: X — P}, it is always possible to deforiX to an ordinary
curve by moving only one branch point.

An affirmative answer to Question 1 would allow one to strengthen Proposition
7 to state that J&X)[p] ~ G @ (Z/p®p)? ~17S. This is because the curves and
C, in the proof can be generically chosen to be ordinary. So an affirmative answer
to Question 1 would imply that for afj > 4 there exists a smooth hyperelliptic
curve X with JadX)[p] ~ N @ (Z/p® up)9~2. If this is true, then JaX)[p] ~
N @ (Z/p@ Hp)92 whenX is the generic geometric point 6y NV g 2.
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helpful comments.

References

[1] C. Faber and G. van der Geer. Complete subvarieties of moduli spaces and the Prym
map.J. Reine Angew. Math573:117-137, 2004.

[2] D. Glass and R. Pries. Questions pitorsion of hyperelliptic curves. Workshop on
automorphisms of curves, Leiden, August 2004.

[3] E. Goren. Lectures on Hilbert modular varieties and modular formrslume 14
of CRM Monograph SeriesAmerican Mathematical Society, Providence, RI, 2002.
With the assistance of Marc-Hubert Nicole.

[4] J.-l. Igusa. Class number of a definite quaternion with prime discrimirmot. Nat.
Acad. Sci. U.S.A44:312-314, 1958.

18



[5] L. lllusie. Complexe de de Rham-Witt et cohomologie cristallirdnn. Sci.Ecole
Norm. Sup. (4)12(4):501-661, 1979.

[6] L. lllusie. Crystalline cohomology. IMotives (Seattle, WA, 1991yolume 55 of
Proc. Sympos. Pure Matlpages 43—70. Amer. Math. Soc., Providence, RI, 1994.

[7] E. Kani. Personal communication.

[8] E. Kani and M. Rosen. Idempotent relations and factors of Jacobidliash. Ann,
284(2):307-327, 1989.

[9] T. Oda. The first de Rham cohomology group and Dieu@ommodules. Ann. Sci.
Ecole Norm. Sup. (42:63-135, 1969.

[10] F. Oort. Subvarieties of moduli spacésvent. Math, 24:95-119, 1974.

[11] F. Oort. Hyperelliptic supersingular curves. Anthmetic algebraic geometry (Texel,
1989) volume 89 ofProgr. Math, pages 247—-284. Birktuser Boston, Boston, MA,
1991.

[12] R. Pries. Families of wildly ramified covers of curve&mer. J. Math.124(4):737—
768, 2002.

[13] R. Re. The rank of the Cartier operator and linear systems on cudveslgebra
236(1):80-92, 2001.

[14] S. Stepanov. Fibre products, character sums, and geometric Goppa cadambar
theory and its applications (Ankara, 199&plume 204 ofLecture Notes in Pure and
Appl. Math, pages 227—-259. Dekker, New York, 1999.

[15] H. Volklein. Groups as Galois groupsolume 53 ofCambridge Studies in Advanced
Mathematics Cambridge University Press, Cambridge, 1996.

[16] S. Wewers. Construction of Hurwitz spaces. Thesis.

[17] N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic
p> 2. J. Algebra 52(2):378-410, 1978.

19



