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We study the sublocus Hg,n of Mg whose points correspond to curves
which are (Z/2Z)n covers of the projective line. In the case that n = 2,
we describe a set of irreducible components of Hg,2 and all of the inter-
sections between these components. Unlike the case of the hyperelliptic
locus Hg,1 which is well-known to be connected, we show that Hg,n is
not connected when n = 2 and g ≥ 4 or when n = 3 and g ≥ 5.

1. Introduction

In this paper, we study the locus of smooth projective curves of genus g

which have multiple commuting involutions. More precisely, we study the
sublocus Hg,n of Mg whose points correspond to curves which are (Z/2Z)n

covers of the projective line. This locus is a generalization of the hyper-
elliptic locus Hg. In the case that n = 2, we describe a set of irreducible
components ofHg,2 and Theorem 9 describes all of the intersections between
these components. Unlike the case of Hg (n = 1) which is well-known to be
connected, we show that Hg,n is not connected when n = 2 and g ≥ 4 or
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when n = 3 and g ≥ 5, Propositions 6 and 14. In particular, Hg,n ∩ Hg is
a proper non-empty connected component of Hg,n in these cases.

This paper can be viewed as part of a larger project to understand the
sublocus Sg of the moduli space Mg of smooth curves of genus g whose
points correspond to curves with automorphisms. For g ≥ 4, Sg is the singu-
lar locus of Mg, [8]. In [2], Cornalba describes the irreducible components
of Sg. The generic point of one of these components corresponds to a curve
whose automorphism group is cyclic of prime order.

It is not known in general how the irreducible components of Sg inter-
sect. One approach is to describe all Hurwitz loci and the inclusions between
them using algorithms that measure the action of the braid group, see for
example [6], [7]. The approach in this paper is complementary in that we
restrict to one choice of automorphism group and search for results which
are true for all genera.

We would like to thank T. Shaska for inviting us to contribute to this
volume.

2. Hurwitz Spaces

Let k be an algebraically closed field of characteristic p where p = 0 or
p > 2. Let G be an elementary abelian 2-group of order 2n. In Section 2.1,
we recall results on the moduli space Hg,n parametrizing G-Galois covers
f : X → P1

k where X is a smooth projective k-curve of genus g. In Section
2.2, we describe the connected components of Hg,n.

2.1. Background

Let Fg,n be the contravariant functor which associates to any k-scheme Ω
the set of isomorphism classes of (Z/2)n-Galois covers fΩ : XΩ → P1

Ω where
X is a flat Ω-curve whose fibres are smooth projective curves of genus g

and where the branch locus B of fΩ is a simple horizontal divisor. In other
words, the branch locus consists of Ω-points of P1

Ω which do not intersect.
Since each inertia group is a cyclic group of order 2, the Riemann-Hurwitz
formula [4, IV.2.4] implies g = 2n−2|B| − 2n + 1. We assume that g ≥ 1.

It is well-known that there exists a coarse moduli space Hg,n for the
functor Fg,n which is of finite type over Z[1/2]. (For example, see [10, Chap-
ter 10] when k = C and [11, Theorem 4] when p > 2.) There is a natural
morphism τ : Hg,n → Mg whose fibres have dimension three. The mor-
phism τ associates to any Ω-point of Hg,n the isomorphism class of XΩ,
where fΩ : XΩ → P1

Ω is the corresponding cover of Ω-curves. The fibres
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have dimension three since XΩ is isotrivial if and only if after an étale base
change from Ω to Ω′ there is a projective linear transformation ρ such that
ρfΩ′ is constant.

We denote byHg,n the image τ(Hg,n) inMg. Given a smooth connected
k-curve X, then X corresponds to a point ofHg,n if and only if G ⊂ Aut(X)
with quotient X/G ' P1

k. In particular, Hg,1 is simply the locus Hg of
hyperelliptic curves in Mg.

There is also a natural morphism β : Hg,n → P|B| which is proper and
étale over the image. The morphism β associates to any Ω-point of Hg,n

the Ω-point of P|B| determined by the branch locus of the associated cover.
More specifically, β associates to any cover fΩ : XΩ → P1

Ω the Ω-point
[c0 : . . . : c|B|] of P|B| where ci are the coefficients of the polynomial whose
roots are the branch points of fΩ. The k-points of the image of β correspond
to polynomials with no multiple roots.

It is often more useful to describe the branch locus of fΩ directly as
an Ω-point of (P1)|B|. This can be done by considering an ordering of the
branch points of fΩ. The branch locus of a cover corresponding to a k-point
of Hg,n can be any k-point of (P1)|B| − ∆ where ∆ is the weak diagonal
consisting of points having at least two equal coordinates. In particular, for
any Ω-point (b1, . . . , b2g+2) of (P1)2g+2 −∆ there is a unique hyperelliptic
cover fΩ : XΩ → P1

Ω branched at {b1, . . . , b2g+2} and the curve XΩ has
genus g.

In [3, Section 3.2], we proved several results about the points of Hg,n.
First, by [3, Lemma 3.3], a cover f : X → P1 corresponds to a point of Hg,n

if and only if X has genus g and f : X → P1 is isomorphic to the normalized
fibre product over P1 of n smooth hyperelliptic covers Ci → P1 whose
branch loci Bi satisfy a strong disjointedness condition. In the case n = 2,
this condition merely says that B1 6= B2. Second, suppose f : X → P1

is the normalized fibre product over P1 of n smooth hyperelliptic covers
Ci → P1 with branch loci Bi. If H ⊂ G has order 2n−1, in [3, Lemma
3.2] we described the branch locus of the hyperelliptic cover X/H → P1 in
terms of the branch loci Bi. For example, in the case n = 2, the quotient of
X by the third involution of Z/2 × Z/2 is a hyperelliptic cover of P1 with
branch locus (B1 ∪B2)\(B1 ∩B2).

We will frequently refer to the following consequence of a theorem of
Kani and Rosen. For example, it indicates that if X ∈ Hg,2 then g(X) =
g(X/α1) + g(X/α2) + g(X/α1α2) where α1, α2, and α1α2 denote the three
involutions of Z/2× Z/2.
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Theorem 1: Suppose X is a smooth projective curve of genus g and G ⊂
Aut(X). Suppose Hi ⊂ G for 1 ≤ i ≤ w are subgroups of G for which
∪w

i=1Hi = G and Hi∩Hj = {Id} for i 6= j. Then (w−1)g(X)+|G|g(X/G) =∑w
i=1 |Hi|g(X/Hi).

Proof: This follows immediately from [5], in which the authors prove that
(w − 1) Jac(X) + |G| Jac(X/G) is isogenous to

∑w
i=1 |Hi| Jac(X/Hi).

2.2. Irreducible components of Hg,n

This section contains some remarks on the components of Hg,n and Hg,n.
Let N = 2n − 1. We fix an ordering of the N subgroups H1, . . . , HN of G

of order 2n−1 so that G =
∏n

i=1 Hi.

Proposition 2: The Hurwitz space Hg,n is the disjoint union of irreducible
schemes Hg,n,~g indexed by tuples ~g = (g1, . . . , gN ) with gi ∈ N and ΣN

i=1gi =
g.

By [3, Corollary 3.4], for n ≥ 2 the locus Hg,n is empty unless g ≡
1 mod 2n−2. If g ≡ 1 mod 2n−2, then the dimension of each non-empty
irreducible component Hg,n,~g is the same number (g + 2n − 1)/2n−2. We
note that some of the components Hg,n,~g can be empty.

Proof: A point of Hg,n corresponds to a cover f : X → P1 along with
an isomorphism between G and a subgroup of Aut(X). The cover f has
N hyperelliptic quotients C1 → P1, . . . , CN → P1 which are ordered by
the fixed choice of ordering of the subgroups of index two of G. Let ~g =
(g1, . . . , gN ) be the genera of C1, . . . , CN . Using [3, Lemma 3.2], one can
show that ΣN

i=1gi = g. For any tuple ~g with gi ∈ N and ΣN
i=1gi = g, let

Hg,n,~g denote the locus of isomorphism classes of covers f : X → P1 in
Hg,n whose hyperelliptic quotients have genera ~g. The intersection of two
of the strata Hg,n,~g is empty since the tuple corresponding to the cover
f : X → P1 is well-defined.

To show Hg,n,~g is connected, it is sufficient to show that its fibre over
C is connected by [11, Theorem 4]. By GAGA [9], it is sufficient to work in
the topological category. Consider two covers f : X → P1 and f ′ : X ′ → P1

corresponding to points in Hg,n,~g. Let B (resp. B′) be the branch locus of f

(resp. f ′). The chosen ordering of the subgroups of index two of G yields a
well-defined bijection between the hyperelliptic quotients Ci → P1 of f and
C ′

i → P1 of f ′ for 1 ≤ i ≤ N . Since f and f ′ are in the same locus Hg,n,~g,
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the genus of Ci and the genus of C ′
i are equal. This implies that there is a

bijection ι : B → B′ so that b is a branch point of Ci → P1 if and only if
ι(b) is a branch point of C ′

i → P1 for 1 ≤ i ≤ N .
There is a morphism δ : [0, 1] → (P1

C)|B| − ∆ so that: B is the set of
coordinates of δ(0); B′ is the set of the coordinates of δ(1); b ∈ B is the jth
coordinate of δ(0) if and only if ι(b) is the jth coordinate of δ(1); and the
image of δ avoids ∆.

Consider the composition δ1 of δ with the natural morphism (P1)|B| →
P|B|. Since β is étale, δ1 lifts to a unique morphism δ̃ : [0, 1] → (Hg,n)C
with δ̃(0) = f . In fact, the image of δ̃ is in (Hg,n,~g)C. To see this, note that
the lifting δ̃ yields a deformation of f which must preserve the size of the
branch locus and the genus of each hyperelliptic quotient of f .

The fact that G =
∏n

i=1 Hi implies that f (resp. f ′) is the normalized
fibre product of the hyperelliptic covers Ci → P1 (resp. C ′

i → P1) for
1 ≤ i ≤ n, see [3, Lemma 3.3]. It follows that δ̃(1) = f ′ since f ′ is the unique
fibre product of hyperelliptic covers with branch loci B′

i for 1 ≤ i ≤ n. Since
(Hg,n,~g)C is path connected, it is also connected.

The components Hg,n,~g are smooth since β is an étale cover of a smooth
variety. It follows that the components Hg,n,~g are irreducible.

We will now concentrate on the irreducible components of Hg,n rather
than Hg,n. The dimension of Hg,n equals dim(Hg,n)−3. For example, Hg,2

is non-empty of dimension g for all g and Hg,3 has dimension (g + 1)/2 if
g is odd and is empty if g is even.

Suppose ξ ∈ Hg,n and let X be the corresponding curve which admits
an action by G. The fibre τ−1(ξ) ∈ Hg,n corresponds to the set of G-Galois
covers f : X → P1. There is a natural action of Aut(G) = GLn(Z/2) on
this fibre. The action of Aut(G) permutes the components Hg,n,~g of Hg,n

since it permutes the hyperelliptic quotients of X. On the other hand, a
permutation of the ordered set of hyperelliptic quotients of X by an element
of GLn(Z/2) yields a permutation of this fibre. The irreducible components
of Hg,n are indexed by the orbits of the tuples ~g by this action of Aut(G).
In particular, when n = 2, Aut(G) ' S3 and thus the components of
Hg,2 are indexed by unordered triples {g1, g2, g3} such that gi ∈ N and
g1 + g2 + g3 = g.

3. The geometry of Hg,2

In this section, we restrict to the case n = 2 and investigate the geometry
of the locus Hg,2. We note that Hg,2 is the union of irreducible components
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Hg,2,p = τ(Hg,2,~g) where p ranges over the partitions {g1, g2, g3} of g. We
assume without loss of generality that g1 ≤ g2 ≤ g3. A priori, these com-
ponents of Hg,2 can intersect since the automorphism group of a curve X

may contain several copies of (Z/2)2. In Section 3.3, we show that this in
fact rarely happens.

3.1. Number of irreducible components

Lemma 3: If g is even (resp. odd) then the number of non-empty irre-
ducible components of Hg,2 is [(g+6)2/48] (resp. [(g+3)2/48]+b(g+3)/4c).

Here [x] denotes the integer closest to x and one can check that the
fractional parts of the expressions in Lemma 3 do not equal 1/2.

Proof: Let Ng denote the number of non-empty irreducible components
Hg,2,p of Hg,2. These components are indexed by partitions p = {g1, g2, g3}
of g. In the next paragraph, we show that Ng equals the number of such
partitions p so that g3 ≤ g1 + g2 + 1.

Suppose p is a partition so that Hg,2,p is non-empty and let f : X → P1

denote a (Z/2)2-cover corresponding to a point of Hg,2,p. By [3, Lemma
3.2], the branch loci of the three Z/2-quotients of f satisfy B3 = (B1 ∪
B2)\(B1 ∩ B2). It follows that |B3| ≤ |B1|+ |B2| and so g3 ≤ g1 + g2 + 1.
Conversely, if p = {g1, g2, g3} is a partition of g so that g1 ≤ g2 ≤ g3 and
g3 ≤ g1 + g2 + 1, then Hg,2,p is non-empty. Namely, Hg,2,p contains a point
corresponding to the fibre product of two hyperelliptic covers f1 and f2

whose branch loci are chosen with the following restrictions: |B1| = 2g1 +2,
|B2| = 2g2 + 2, and |B1 ∩B2| = 2e where e = g1 + g2 + 1− g3.

If g is even, then g3 ≤ g1 + g2 + 1 implies that g3 ≤ g1 + g2. Thus Ng

equals the number of (possibly degenerate) triangles with perimeter g and
sides of integer length. By [1], Ng = [(g + 6)2/48] when g is even.

If g is odd, then g3 6= g1 + g2 and there are two cases to consider. If
g3 ≤ g1 + g2− 1 then 1 ≤ g1 ≤ g2 ≤ g3. There is a bijective correspondence
between these partitions of g and the partitions {a1, a2, a3} of g − 3 with
a1 ≤ a2 ≤ a3 and a3 ≤ a1 + a2 (by taking ai = gi− 1). It follows that these
partitions correspond to the number of (possibly degenerate) triangles with
sides of integer length and perimeter g − 3. By [1], there are [(g + 3)2/48]
such partitions. In the other case, g3 = g1 + g2 + 1. The number of these
partitions equals the number of pairs 0 ≤ g1 ≤ g2 so that g = 2g1 +2g2 +1.
There are b(g + 3)/4c such pairs.
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When n > 2, it is more difficult to count the number of nonempty strata,
as the interactions between the numbers gi pose additional restrictions on
the partitions.

3.2. Intersection of Components

Suppose g is odd. Let p1 = {1, (g − 1)/2, (g − 1)/2} and p′1 = {1, (g −
3)/2, (g+1)/2}. These are the only two partitions {1, x, y} of g satisfying the
constraint x ≤ y ≤ x + 2. They correspond to two irreducible components
of Hg,2. In this section we show that these two components intersect. In
Section 3.3, we show that the irreducible components corresponding to p1

and p′1 are the only irreducible components of Hg,2 which intersect.
Recall that the dihedral group D2c has presentation 〈s, r |s2 = rc =

1, srs = r−1〉. Suppose G = D2c × Z/2 where r and s generate D2c as
above and τ is a generator of Z/2.

Lemma 4: Suppose c, d ∈ N+ with c even and d odd. Suppose G = D2c ×
Z/2. There exists a (d+1)-dimensional family of curves X having an action
by G so that g(X) = 1+ cd, g(X/G) = g(X/〈s, τ〉) = g(X/〈sr, τ〉) = 0, and
g(X/s) 6= g(X/sr).

Proof: Let B = {0,∞, 1, λ′, λ1, . . . , λd} be a set of 4 + d distinct points
in P1. Let γ0 = γ∞ = s, γ′′ = sr, γ′ = srτ , and γi = τ for 1 ≤ i ≤ d.
We note that γ0γ∞γ′′γ′Πd

i=1γi = 1 and that these elements generate G. By
Riemann’s Existence Theorem [10, Theorem 2.13], there exists a D2c×Z/2
cover f : X → P1

k branched at B so that γi is the canonical generator of
inertia at a point in the fibre above λi (resp. γ0 above 0, γ∞ above ∞, γ′′

above 1, and γ′ above λ′). Above 0 and∞, the fibre of f consists of 2c points;
for 1 ≤ j ≤ c/2, there are four points in this fibre with inertia group 〈sr2j〉.
Above 1 (resp. λ′), the fibre of f consists of 2c points; for 1 ≤ j ≤ c/2, there
are four points in this fibre with inertia group 〈sr2j−1〉 (resp. 〈sr2j−1τ〉).
For 1 ≤ i ≤ d, the fibre of f consists of 2c points each of which has inertia
〈τ〉. By the Riemann-Hurwitz formula [4, IV.2.4], g(X) = 1 + cd.

Suppose σ has order 2 in G. Let Fσ = {P ∈ X|σ(P ) = P}. By the
Riemann-Hurwitz formula, g(X/σ) = (g(X)+1)/2−|Fσ|/4. We calculate:

σ s sτ sr srτ τ

|Fσ| 8 0 4 4 2cd

g(X/σ) (g(X)− 3)/2 (g(X) + 1)/2 (g(X)− 1)/2 (g(X)− 1)/2 1

It follows that g(X/s) 6= g(X/sr). The fact that g(X) = g(X/s) +
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g(X/τ) + g(X/sτ) implies that g(X/〈s, τ〉) = 0, [5]. One shows that
g(X/〈sr, τ〉) = 0 similarly.

We note that the group D2c acts on the quotient X/τ which has genus
1. The element r acts on X/τ via translation by a point of order c while s

is the hyperelliptic involution.

Proposition 5: Let g be odd. The irreducible components Hg,2,p1 and
Hg,2,p′1

intersect.

Proof: Let g − 1 = cd where d is an odd number and c is a power of 2.
Applying Lemma 4, there exists a family of dimension d + 1 of curves X of
genus g whose automorphism group contains two copies of the Klein four
group (namely 〈sr, τ〉 and 〈s, τ〉) so that the two sets of quotients yield the
two partitions p1 and p′1.

We note that if g ≡ 3 mod 4, then Hg,2,p1 ∩Hg,2,p′1
contains a family of

dimension (g + 1)/2 whose generic point has automorphism group (Z/2)3.

3.3. Nonintersection of Components

In this section, we prove the converse of Proposition 5: the irreducible com-
ponents corresponding to p1 and p′1 are the only irreducible components
of Hg,2 which intersect. We use this to count the number of connected
components of Hg,2.

To begin, we study the intersection of Hg,2 with Hg in order to show
that Hg,2 is not connected for g > 3. Let p0 = {0, g/2, g/2} if g is even and
p0 = {0, (g − 1)/2, (g + 1)/2} if g is odd. Then p0 is the unique partition
of g of the form {0, x, y} where x ≤ y ≤ x + 1. As such, it corresponds to a
non-empty irreducible component Hg,2,p0 of Hg,2.

Proposition 6: The component Hg,2,p0 equals Hg,2∩Hg. It is a connected
component of Hg,2 for g > 3. The sublocus Hg,2 of Mg is connected if and
only if g ≤ 3.

Proof: By definition, Hg,2,p0 ⊂ Hg,2 ∩ Hg. Conversely, suppose X cor-
responds to a point of Hg,2 ∩ Hg. Then Aut(X) contains a hyperelliptic
involution σ as well as another involution τ . Also 〈σ, τ〉 ' (Z/2)2 since σ is
in the center of Aut(X). It follows that X → X/〈σ, τ〉 is a Klein four cover
of the projective line with a Z/2-quotient of genus 0. Thus X corresponds
to a point of Hg,2,p0 and Hg,2,p0 = Hg,2 ∩Hg.
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Next we show that Hg,2,p0 is a connected component of Hg,2 for g > 3
by showing that it does not intersect any other component of Hg,2. Suppose
X is a curve corresponding to a point of Hg,2,p0 ∩ Hg,2,p for some p 6= p0.
We write p = {a, b, c} with 0 < a ≤ g/3. Let σ (resp. τ) be the involution
of X such that X/〈σ〉 has genus 0 (resp. such that X/〈τ〉 has genus a). As
above, X → X/〈σ, τ〉 is a (Z/2)2-cover of the projective line. This implies
that X also corresponds to a point ofHg,2,p′ with partition p′ = {0, a, g−a}.
Then p′ = p0 since p0 is the unique partition for Hg,2 which contains 0.
The conditions a ∈ {(g − 1)/2, g/2, (g + 1)/2} and a ≤ g/3 imply that
such a curve X can exist only if g ≤ 3. It follows that the intersection
Hg,2,p0 ∩Hg,2,p is empty for g ≥ 4 and p 6= p0.

If g ≤ 2, then Hg,2,p0 is the unique component of Hg,2. If g = 3, then the
two components of Hg,2 intersect by Lemma 4. For g > 3, Hg,2 has at least
one pair of non-intersecting components. It follows that Hg,2 is connected
if and only if g ≤ 3.

We now consider the intersection of other components of Hg,2.

Hypotheses: Suppose p 6= p̃ are two partitions of g so that Hg,2,p ∩
Hg,2,p̃ 6= ∅. Let X be a curve corresponding to a point of the inter-
section. Let H1 ⊂ Aut(X) and H2 ⊂ Aut(X) be the two Klein four
groups which yield the partitions p and p̃. In particular, H1 6= H2 and
g(X/H1) = g(X/H2) = 0. We write H1 = 〈α1, α2〉 and H2 = 〈σ1, σ2〉 where
g(X/α1) ≤ g(X/α2) ≤ g(X/α1α2) and g(X/σ1) ≤ g(X/σ2) ≤ g(X/σ1σ2).

Lemma 7: Under the hypotheses above, either α1 = σ1 or α1σ1 = σ1α1.

Proof: By hypothesis, g(X/α1) ≤ g(X)/3 and g(X/σ1) ≤ g(X)/3. In fact,
if g ≡ 0 mod 3 (resp. g ≡ 1 mod 3), then g(X/α1) and g(X/σ1) cannot
both equal g/3 (resp. (g − 1)/3). The reason is that, if g ≡ 0 mod 3 (resp.
g ≡ 1 mod 3), there is only one partition whose smallest entry is g/3 (resp.
(g− 1)/3) and the partitions p and p̃ are different by hypothesis. It follows
that g(X/α1) + g(X/σ1) ≤ 2g(X)/3 − 1. Let m be the order of α1σ1. If
Y = X/〈α1, σ1〉, then g(X) + mg(Y ) = g(X/α1) + g(X/σ1) + g(X/α1σ1),
[5]. Thus, g(X/α1σ1) ≥ g(X) + mg(Y )− (2g(X)/3− 1) ≥ g(X)/3 + 1. By
the Riemann-Hurwitz formula, g(X/α1σ1) ≤ (g(X)+m−1)/m. Combining
the two inequalities, along with the fact that m must be an integer, yields
that m ≤ 2 which implies that α1 = σ1 or α1σ1 = σ1α1.
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Let X be a curve with an action by G. If γ1 and γ2 are conjugate
in G, then the function fields of X/γ1 and X/γ2 are conjugate and so
g(X/γ1) = g(X/γ2). Recall that if c is odd, then all involutions in D2c are
conjugate. If c is even, then sri and srj are conjugate in D2c if and only if
i and j have the same parity.

Lemma 8: Let X be a curve with an action by G = D2c × Z/2 where
c ≥ 2 is even. Suppose that g(X/G) = 0. Then g(X/τ) = g(X/〈τ, r〉) +
g(X/〈τ, s〉) + g(X/〈τ, sr〉).

Proof: Consider the action of D2c on X/τ . Any element of D2c is in one
of the subgroups 〈r〉 or 〈sri〉 for some 0 ≤ i < c. The intersection of any
two of these subgroups has order 1. Applying Theorem 1 to the curve X/τ

and using the fact that g((X/τ)/D2c) = 0, we see that

cg(X/τ) = cg(X/〈r, τ〉) +
c−1∑
i=0

2g(X/〈τ, sri〉)

Using the conjugacy relationships described above, this simplifies to
g(X/τ) = g(X/〈r, τ〉) + g(X/〈τ, s〉) + g(X/〈τ, sr〉).

Theorem 9: The intersection of Hg,2,p and Hg,2,p̃ is nonempty for p 6= p̃

if and only if 1 ∈ p ∩ p̃.

Proof: The reverse implication is true by Proposition 5. For the forward
implication, suppose that Hg,2,p ∩ Hg,2,p̃ is nonempty for some p 6= p̃ and
let X be a curve corresponding to a point of the intersection. This situation
satisfies the hypotheses above. By Lemma 7, either α1 = σ1 or α1σ1 = σ1α1.

Suppose α1 = σ1. Then G = H1H2 is isomorphic to D2c×Z/2 for some
c, under the identification σ2 = s, α2 = sr, and α1 = τ . If c is odd, then
g(X/α2) = g(X/σ2) which contradicts the hypothesis that p 6= p̃; so c is
even. Note that by hypothesis g(X/H1) = g(X/H2) = 0 and so g(X/G) =
0. It follows from Lemma 8 that g(X/α1) = g(X/〈α1, α2σ2〉). This implies
that g(X/α1) ≤ 1 by the Riemann-Hurwitz formula. By Proposition 6,
g(X/α1) 6= 0. Thus 1 ∈ p ∩ p̃.

Now suppose α1σ1 = σ1α1. Consider the group G1 = 〈σ1, α2, α1〉 which
is isomorphic to D2c1 × Z/2 and the group G2 = 〈α1, σ2, σ1〉 which is
isomorphic to D2c2×Z/2. Here c1 (resp. c2) is the order of σ1α2 (resp. σ2α1).
If c1 is odd, then g(X/σ1) = g(X/α2). If c2 is odd, then g(X/σ2) = g(X/α1).
Since p 6= p̃, it follows that c1 and c2 are not both odd.
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Without loss of generality, we suppose that g(X/σ1) ≤ g(X/α1). If c1 is
odd, then g(X/σ1) = g(X/α2). By hypothesis, g(X/α2) ≥ g(X/α1) which
implies g(α1) = g(σ1) in this case. The implication of this is that (after
possibly switching the roles of H1 and H2) we can simultaneously suppose
that c1 is even and g(X/σ1) ≤ g(X/α1). Then g(σ1) ≤ (g(X)− 2)/3 by the
hypothesis that p 6= p̃. Let ` = c1/2.

Consider the automorphism r = α2σ1. Let H be the subgroup of Aut(X)
generated by involutions α1, α2, and r`. Then H ' (Z/2)3 and g(X/H) = 0.
It follows from [3, Corollary 3.4] that g(X) is odd. By hypothesis, g(X) =
g(α1)+ g(α2)+ g(α1α2). The Kani-Rosen theorem [5] applied to the action
of H on X implies that 3g(X) =

∑
σ∈H∗ g(X/σ). After simplifying, we see

that

2g(X) = g(X/r`) + g(X/r`α1) + g(X/r`α2) + g(X/r`α1α2).

By the Riemann-Hurwitz formula, each of the terms on the righthand side
of this equation is at most (g(X) + 1)/2. It follows that g(X/r`α2) +
g(X/r`α1α2) ≥ g(X)− 1 and that g(α2r

`) ≥ (g(X)− 3)/2.
Suppose ` is even. In this case, r`α2 and α2 are conjugate in D2c1 . Then

g(X) = g(α1)+g(X/r`α2)+g(X/r`α1α2). It follows that g(σ1) ≤ g(α1) ≤ 1.
By Proposition 6, 1 ∈ p ∩ p̃

Suppose ` is odd. In this case, σ1 and r`α2 are conjugate in D2c1 . Thus
(g(X) − 2)/3 ≥ g(σ1) ≥ (g(X) − 3)/2. This is only possible if g(X) ≤ 5.
The statement of the theorem is vacuous if g = 1 or g = 3. If g = 5, the
only partitions are p0, p1 and p′1 and so 1 ∈ p ∩ p̃ by Proposition 6.

The following small generalization of Theorem 9 shows that any curve
satisfying the hypotheses above is part of the family constructed in Lemma
4.

Corollary 10: Suppose X ∈ Hg,2,p∩Hg,2,p̃ for some p 6= p̃ and let H1 and
H2 be the two corresponding Klein four sugroups of Aut(X). Then H1∩H2

contains an involution σ1, the subgroup H1H2 is of the form D2c×Z/2 for
some even c, and g(X/σ1) = 1.

Proof: By earlier work in this section, the result will follow if σ1 = α1. By
Theorem 9, g(X/α1) = g(X/σ1) = 1. Strengthening the equations in the
proof of Lemma 7, we see that (g(X)+m− 1)/m ≥ g(X/α1σ1) ≥ g(X)− 2
where m is the order of α1σ1. If g(X) > 5, then this implies m = 1 and
so σ1 = α1. If g(X) ≤ 5, the result follows from the approach of [6]. When
g = 3, H1H2 = (Z/2)3 and when g = 5, H1H2 = D8 × Z/2.
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Corollary 11: The number of non-empty connected components of Hg,2

equals [(g + 6)2/48] if g is even and equals [(g + 3)2/48] + b(g − 1)/4c) if g

is odd.

Proof: Theorem 9 implies that if g is even then no pair of irreducible
components of Hg,2 intersect and if g is odd then there is exactly one pair
of irreducible components which intersect. The proof is then immediate
from Lemma 3.

4. The geometry of Hg,3

In this section, we prove that Hg,3 is not connected for g odd and g ≥ 5.
Recall that Hg,3 is empty if g is even, [3,Corollary 3.4]. Again the method
is to show that Hg,3 ∩Hg is a connected component of Hg,3. We note that
this approach will not work for n ≥ 4 due to the following lemma.

Lemma 12: The intersection Hg,n ∩Hg is empty for n ≥ 4.

Proof: Suppose X is a curve corresponding to a point of Hg,n ∩ Hg. Let
σ be a hyperelliptic involution of X. Since σ is in the center of Aut(X),
it follows that there exists H ' (Z/2Z)n ⊂ Aut(X) so that σ ∈ H. Thus,
X/σ ∈ Hg,n−1 and 0 = g(X/σ) ≡ 1 mod 2n−3 by [3, Corollary 3.4]. This is
a contradiction unless n ≤ 3.

The irreducible components of Hg,3 correspond to equivalence classes of
ordered tuples (g1, . . . , g7) with gi ∈ N and

∑7
i=1 gi, under a natural action

of Aut((Z/2)3) = GL3(Z/2). Without loss of generality, we reorder the
subgroups Hi of order 4 in (Z/2)3 so that g1 = g(X/H1) = min{gi}7i=1 and
g2 = g(X/H2) = min{gi}7i=2. Then there is a unique third subgroup H3 of
order 4 in (Z/2)3 so that H1∩H2 ⊂ H3 and we suppose that g3 = g(X/H3).
Finally, we suppose that g4 = min{gi}7i=4. There is a unique representative
of each equivalence class satisfying these conditions which we denote by
the partition 〈g1, . . . , g7〉. Let p′0 = 〈0, 0, 0, j, j, j, j + 1〉 if g = 4j + 1 and
p′0 = 〈0, 0, 0, j, j + 1, j + 1, j + 1〉 if g = 4j + 3.

Lemma 13: The component Hg,3,p′0
is non-empty and equals Hg,3 ∩Hg.

Proof: First, note that Hg,3 ∩ Hg is non-empty. In particular, consider
three hyperelliptic covers with branch loci B1 = {0,∞}, B2 = {0, 1}, and
B3 so that | ∪3

i=1 Bi| = (g + 7)/2. The normalized fibre product of these
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covers yields a curve in Hg,3∩Hg. It remains to show that the only partition
p of g for which Hg,3,p contains hyperelliptic curves is p′0.

Suppose that X corresponds to a point of Hg,3 ∩ Hg and let p be its
partition. Let σ be such that g(X/σ) has genus 0. There exists a subgroup
H ' (Z/2)3 ⊂ Aut(X) containing σ. There are three hyperelliptic quotients
of X → X/H dominated by X/σ. Each of these must have genus 0. Thus
p = 〈0, 0, 0, g4, g5, g6, g7〉 with

∑7
i=4 gi = g. Note that gi ≤ (g + 3)/4 by the

Riemann-Hurwitz formula.
Let Y → X/H be a Klein four quotient of X → X/H. Since Y → X/H

is not disjoint from X/σ → X/H, it follows that Y corresponds to a point
of Hg(Y ),2 ∩ Hg(Y ). By Proposition 6, the three hyperelliptic quotients of
Y → X/H have genera {0, x, y} where x ≤ y ≤ x + 1. The numerical
constraints then imply that p = p′0.

Proposition 14: The locus Hg,3,p′0
is a connected component of Hg,3. The

sublocus Hg,3 of Mg is connected if and only if g ≤ 5.

Proof: Suppose X corresponds to a point of Hg,3,p′0
and let σ be such that

g(X/σ) = 0. Recall that σ is in the center of Aut(X). By Lemma 12, Hg,4

is empty. Thus there does not exist a subgroup H ' (Z/2)3 ⊂ Aut(X)
which is disjoint from σ. It follows that X does not correspond to a point
of Hg,3,p for any p 6= p′0.

For g = 1 and g = 3, p′0 is the only partition for which Hg,3,p is non-
empty. It follows that H1,3 and H3,3 are connected.

It now suffices to show for g ≥ 5 that there exists a partition p other than
p′0 for which Hg,3,p is non-empty. Let X ′ be the normalized fibre product
of the three hyperelliptic curves branched at B1, B2, and B3 as follows. If
g = 4j+1, let B1 = {0, 1}, and B2 = {∞, µ}, and B3 = {λ1, . . . , λ2j , 0,∞}.
Then X ′ corresponds to a point of Hg,3,p with p = 〈0, 0, 1, j, j, j, j〉. If g =
4j + 3, let B1 = {0,∞}, B2 = {0, 1, µ1, µ2}, and B3 = {0, 1, λ1, . . . , λ2j}.
Then X ′ corresponds to a point of Hg,3,p with p = 〈0, 1, 1, j, j, j, j + 1〉.
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9. J.-P. Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier,
Grenoble, 6:1–42, 1955–1956.

10. H. Völklein. Groups as Galois groups, volume 53 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1996.

11. S. Wewers. Construction of Hurwitz spaces. Thesis.


