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We study the sublocus Hg,n of My whose points correspond to curves
which are (Z/2Z)" covers of the projective line. In the case that n = 2,
we describe a set of irreducible components of Hy 2 and all of the inter-
sections between these components. Unlike the case of the hyperelliptic
locus Hg,1 which is well-known to be connected, we show that Hy r is
not connected when n = 2 and g > 4 or when n = 3 and g > 5.

1. Introduction

In this paper, we study the locus of smooth projective curves of genus g
which have multiple commuting involutions. More precisely, we study the
sublocus H, ., of M, whose points correspond to curves which are (Z/2Z)"
covers of the projective line. This locus is a generalization of the hyper-
elliptic locus H,. In the case that n = 2, we describe a set of irreducible
components of H, 2 and Theorem 9 describes all of the intersections between
these components. Unlike the case of Hy (n = 1) which is well-known to be
connected, we show that H, , is not connected when n = 2 and g > 4 or
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when n = 3 and g > 5, Propositions 6 and 14. In particular, Hy , NHy is
a proper non-empty connected component of H, ,, in these cases.

This paper can be viewed as part of a larger project to understand the
sublocus S, of the moduli space M, of smooth curves of genus g whose
points correspond to curves with automorphisms. For g > 4, S is the singu-
lar locus of M, [8]. In [2], Cornalba describes the irreducible components
of Sy4. The generic point of one of these components corresponds to a curve
whose automorphism group is cyclic of prime order.

It is not known in general how the irreducible components of S, inter-
sect. One approach is to describe all Hurwitz loci and the inclusions between
them using algorithms that measure the action of the braid group, see for
example [6], [7]. The approach in this paper is complementary in that we
restrict to one choice of automorphism group and search for results which
are true for all genera.

We would like to thank T. Shaska for inviting us to contribute to this
volume.

2. Hurwitz Spaces

Let k& be an algebraically closed field of characteristic p where p = 0 or
p > 2. Let GG be an elementary abelian 2-group of order 2". In Section 2.1,
we recall results on the moduli space H , parametrizing G-Galois covers
f: X — P} where X is a smooth projective k-curve of genus g. In Section
2.2, we describe the connected components of H .

2.1. Background

Let Fj, be the contravariant functor which associates to any k-scheme {2
the set of isomorphism classes of (Z/2)"-Galois covers fq : Xq — P, where
X is a flat Q-curve whose fibres are smooth projective curves of genus g
and where the branch locus B of fq is a simple horizontal divisor. In other
words, the branch locus consists of Q-points of P, which do not intersect.
Since each inertia group is a cyclic group of order 2, the Riemann-Hurwitz
formula [4, IV.2.4] implies g = 2"~2|B| — 2" + 1. We assume that g > 1.
It is well-known that there exists a coarse moduli space Hy , for the
functor F}, ,, which is of finite type over Z[1/2]. (For example, see [10, Chap-
ter 10] when & = C and [11, Theorem 4] when p > 2.) There is a natural
morphism 7 : H,, — M, whose fibres have dimension three. The mor-
phism 7 associates to any 2-point of H,, the isomorphism class of Xq,
where fo @ Xq — P}, is the corresponding cover of Q-curves. The fibres
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have dimension three since X is isotrivial if and only if after an étale base
change from €2 to €’ there is a projective linear transformation p such that
pfar is constant.

We denote by H, ,, the image 7(H, ) in M. Given a smooth connected
k-curve X, then X corresponds to a point of H, ,, if and only if G C Aut(X)
with quotient X/G ~ Pji. In particular, H,; is simply the locus H, of
hyperelliptic curves in M.

There is also a natural morphism 5 : H, , — PIBI which is proper and
étale over the image. The morphism [ associates to any {2-point of Hy ,,
the Q-point of PIB! determined by the branch locus of the associated cover.
More specifically, 3 associates to any cover fo : Xq — P§ the Q-point
[co:...:¢p|] of PIB| where ¢; are the coefficients of the polynomial whose
roots are the branch points of fg. The k-points of the image of 3 correspond
to polynomials with no multiple roots.

It is often more useful to describe the branch locus of fq directly as
an Q-point of (P1)!Bl. This can be done by considering an ordering of the
branch points of fo. The branch locus of a cover corresponding to a k-point
of H,, can be any k-point of (P!)/Pl — A where A is the weak diagonal
consisting of points having at least two equal coordinates. In particular, for
any Q-point (by,...,bag12) of (P1)29%2 — A there is a unique hyperelliptic
cover fq : Xq — P§, branched at {b1,...,by42} and the curve Xq has
genus g.

In [3, Section 3.2], we proved several results about the points of Hy .
First, by [3, Lemma 3.3], a cover f : X — P! corresponds to a point of Hy ,,
if and only if X has genus g and f : X — P! is isomorphic to the normalized
fibre product over P! of n smooth hyperelliptic covers C; — P! whose
branch loci B; satisfy a strong disjointedness condition. In the case n = 2,
this condition merely says that B; # B,. Second, suppose f : X — P!
is the normalized fibre product over P! of n smooth hyperelliptic covers
C; — P! with branch loci B;. If H C G has order 2"~ !, in [3, Lemma
3.2] we described the branch locus of the hyperelliptic cover X/H — P! in
terms of the branch loci B;. For example, in the case n = 2, the quotient of
X by the third involution of Z/2 x Z/2 is a hyperelliptic cover of P! with
branch locus (B; U B2)\(B1 N By).

We will frequently refer to the following consequence of a theorem of
Kani and Rosen. For example, it indicates that if X € Hy o then g(X) =
9(X/a1) + g(X/as) + g(X/ajas) where ay, as, and ajas denote the three
involutions of Z/2 x Z/2.
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Theorem 1: Suppose X is a smooth projective curve of genus g and G C
Aut(X). Suppose H; C G for 1 < ¢ < w are subgroups of G for which
U¥  H; = G and H;NH; = {Id} for i # j. Then (w—1)g(X)+|G|g(X/G) =
Z;lj:l |Hilg(X/H;).

Proof: This follows immediately from [5], in which the authors prove that
(w — 1) Jac(X) + |G| Jac(X/G) is isogenous to > | |H;| Jac(X/H;). DO

2.2. Irreducible components of Hg ,,

This section contains some remarks on the components of Hg, and Hg .
Let N = 2" — 1. We fix an ordering of the NV subgroups Hy,..., Hy of G
of order 2" so that G =[]}, H;.

Proposition 2: The Hurwitz space Hg ,, is the disjoint union of irreducible
schemes H, ,, 7 indexed by tuples § = (g1,...,9n) with gi € N and ¥ ,g; =
g.

By [3, Corollary 3.4], for n > 2 the locus H,, is empty unless g =
1mod 2" 2. If ¢ = 1mod 2" 2, then the dimension of each non-empty
irreducible component Hy, ,, ; is the same number (g + 2" — 1)/2""2. We
note that some of the components Hy ,, 7 can be empty.

Proof: A point of H, corresponds to a cover f : X — P! along with
an isomorphism between G and a subgroup of Aut(X). The cover f has
N hyperelliptic quotients C; — P',..., Cnx — P! which are ordered by
the fixed choice of ordering of the subgroups of index two of G. Let g =
(91,---,9n) be the genera of Cy,...,Cy. Using [3, Lemma 3.2], one can
show that XY ,g; = g. For any tuple § with g; € N and ¥ ,g; = g, let
H, ,, 7 denote the locus of isomorphism classes of covers f : X — P! in
H, ., whose hyperelliptic quotients have genera g. The intersection of two
of the strata H,, 7 is empty since the tuple corresponding to the cover
f: X — P! is well-defined.

To show H, , 7 is connected, it is sufficient to show that its fibre over
C is connected by [11, Theorem 4]. By GAGA [9], it is sufficient to work in
the topological category. Consider two covers f : X — P! and f/ : X’ — P!
corresponding to points in Hy ,, . Let B (resp. B’) be the branch locus of f
(resp. f’). The chosen ordering of the subgroups of index two of G yields a
well-defined bijection between the hyperelliptic quotients C; — P! of f and
C! — P! of f/ for 1 <i < N. Since f and f’ are in the same locus Hy ,, 7,
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the genus of C; and the genus of C! are equal. This implies that there is a
bijection ¢+ : B — B’ so that b is a branch point of C; — P! if and only if
¢(b) is a branch point of C/ — P! for 1 <i < N.

There is a morphism ¢ : [0,1] — (P)/Pl — A so that: B is the set of
coordinates of §(0); B’ is the set of the coordinates of 6(1); b € B is the jth
coordinate of §(0) if and only if ¢(b) is the jth coordinate of §(1); and the
image of 0 avoids A.

Consider the composition &; of § with the natural morphism (P')I5l —
PIBI Since 3 is étale, 4 lifts to a unique morphism 6 :[0,1] — (Hyn)c
with 6(0) = f. In fact, the image of ¢ is in (H, ,, 7)c. To see this, note that
the lifting & yields a deformation of f which must preserve the size of the
branch locus and the genus of each hyperelliptic quotient of f.

The fact that G = [[;—, H; implies that f (resp. f’) is the normalized
fibre product of the hyperelliptic covers C; — P! (resp. C/ — P!) for
1 < i < mn,see [3, Lemma 3.3]. Tt follows that 6(1) = f’ since f’ is the unique
fibre product of hyperelliptic covers with branch loci B} for 1 < ¢ < n. Since
(Hgn,g)c is path connected, it is also connected.

The components H, ,, 7 are smooth since 3 is an étale cover of a smooth
variety. It follows that the components H, , 57 are irreducible. O

We will now concentrate on the irreducible components of H, ,, rather
than Hy ,,. The dimension of H, ,, equals dim(H, ) — 3. For example, Hg o
is non-empty of dimension g for all g and H, 3 has dimension (g + 1)/2 if
g is odd and is empty if g is even.

Suppose £ € H, , and let X be the corresponding curve which admits
an action by G. The fibre 771(¢) € H, ,, corresponds to the set of G-Galois
covers f : X — P! There is a natural action of Aut(G) = GL,(Z/2) on
this fibre. The action of Aut(G) permutes the components Hy ,, g of Hy p,
since it permutes the hyperelliptic quotients of X. On the other hand, a
permutation of the ordered set of hyperelliptic quotients of X by an element
of GL,,(Z/2) yields a permutation of this fibre. The irreducible components
of H,.,, are indexed by the orbits of the tuples ¢ by this action of Aut(G).
In particular, when n = 2, Aut(G) ~ S3 and thus the components of
Hg.2 are indexed by unordered triples {g1, g2, g3} such that g; € N and
g1+g2+g3=g.

3. The geometry of H, 2

In this section, we restrict to the case n = 2 and investigate the geometry
of the locus Hy 2. We note that H, o is the union of irreducible components
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Hgo,p = 7(Hg2g) where p ranges over the partitions {g1, g2, g3} of g. We
assume without loss of generality that g1 < go < g3. A priori, these com-
ponents of H, 2 can intersect since the automorphism group of a curve X
may contain several copies of (Z/2)2. In Section 3.3, we show that this in
fact rarely happens.

3.1. Number of irreducible components

Lemma 3: If g is even (resp. odd) then the number of non-empty irre-
ducible components of Hg. is [(g+6)2 /48] (resp. [(g+3)%/48]+ [ (g+3)/4]).

Here [z] denotes the integer closest to & and one can check that the
fractional parts of the expressions in Lemma 3 do not equal 1/2.

Proof: Let N, denote the number of non-empty irreducible components
Hg,2,p of Hg 2. These components are indexed by partitions p = {g1, g2, 93}
of g. In the next paragraph, we show that N, equals the number of such
partitions p so that g3 < g1 + g2 + 1.

Suppose p is a partition so that Hg 2, is non-empty and let f: X — P!
denote a (Z/2)?-cover corresponding to a point of Hy2,. By [3, Lemma
3.2], the branch loci of the three Z/2-quotients of f satisfy Bs = (B; U
Bs)\(B1 N By). It follows that |Bs| < |By| + |Bz| and so g3 < g1 + g2 + 1.
Conversely, if p = {g1,92,93} is a partition of g so that g1 < g2 < g3 and
93 < g1+ g2 + 1, then H, 2, is non-empty. Namely, H, 2, contains a point
corresponding to the fibre product of two hyperelliptic covers f; and fo
whose branch loci are chosen with the following restrictions: |Bq| = 2¢1 + 2,
|B2| = 2g2 + 2, and | By N By| = 2e where e = g1 + g2 + 1 — g3.

If g is even, then g3 < g1 + g2 + 1 implies that g3 < g1 + g2. Thus NN,
equals the number of (possibly degenerate) triangles with perimeter g and
sides of integer length. By [1], N, = [(g + 6)?/48] when g is even.

If g is odd, then g3 # g1 + g2 and there are two cases to consider. If
g3 < g1+g2—1then 1< gy < go < g3. There is a bijective correspondence
between these partitions of g and the partitions {a1, as,as} of g — 3 with
a1 < ag < ag and az < ay +ag (by taking a; = ¢g; — 1). It follows that these
partitions correspond to the number of (possibly degenerate) triangles with
sides of integer length and perimeter g — 3. By [1], there are [(g + 3)2/48]
such partitions. In the other case, g3 = g1 + g2 + 1. The number of these
partitions equals the number of pairs 0 < g1 < go so that g = 291 +2g2 + 1.
There are |(g + 3)/4] such pairs. O
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When n > 2, it is more difficult to count the number of nonempty strata,
as the interactions between the numbers g; pose additional restrictions on
the partitions.

3.2. Intersection of Components

Suppose ¢ is odd. Let p; = {1,(9 — 1)/2,(¢ — 1)/2} and p} = {1,(g —
3)/2,(g+1)/2}. These are the only two partitions {1, z, y} of g satisfying the
constraint z < y < x 4 2. They correspond to two irreducible components
of Hy 2. In this section we show that these two components intersect. In
Section 3.3, we show that the irreducible components corresponding to p;
and p} are the only irreducible components of H, o which intersect.

Recall that the dihedral group Ds. has presentation (s,r |s? = r¢ =
1, srs = r~1). Suppose G = Dy. x Z/2 where r and s generate Do. as
above and T is a generator of Z/2.

Lemma 4: Suppose c,d € NT with ¢ even and d odd. Suppose G = Dy, x
Z/2. There ezists a (d+1)-dimensional family of curves X having an action
by G so that g(X) = 1+cd, g(X/G) = g(X/(s, 7)) = g(X/(sr,7)) =0, and
9(X/s) # g(X/sr).

Proof: Let B = {0,00,1, X, A1,..., g} be a set of 4 + d distinct points
in P!. Let 0 = Yoo = 5, 7' = sr, ¥ = srr,and y; = 7 for 1 < i < d.
We note that 7070771 ,7; = 1 and that these elements generate G. By
Riemann’s Existence Theorem [10, Theorem 2.13], there exists a Da. X Z/2
cover f: X — IP’,lC branched at B so that ~; is the canonical generator of
inertia at a point in the fibre above \; (resp. vy above 0, v, above oo, v”
above 1, and 4" above \). Above 0 and oo, the fibre of f consists of 2¢ points;
for 1 < j < ¢/2, there are four points in this fibre with inertia group (sr?7).
Above 1 (resp. \'), the fibre of f consists of 2¢ points; for 1 < j < ¢/2, there
are four points in this fibre with inertia group (sr?=1) (resp. (sr¥=17)).
For 1 <14 < d, the fibre of f consists of 2¢ points each of which has inertia
(7). By the Riemann-Hurwitz formula [4, IV.2.4], g(X) =1+ cd.

Suppose o has order 2 in G. Let F, = {P € X|o(P) = P}. By the
Riemann-Hurwitz formula, g(X/o) = (¢(X)+1)/2 — |F,|/4. We calculate:

g S ST ST STT T

|Fs | 8 0 4 4 2cd
9(X/0)|(9(X) = 3)/2](¢(X) + 1)/2|(9(X) = 1)/2|(9(X) = 1)/2| 1
It follows that g(X/s) # g(X/sr). The fact that g(X) = g(X/s) +
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g(X/7) + g(X/sT) implies that ¢g(X/(s,7)) = 0, [5]. One shows that
g(X/(sr,7)) = 0 similarly. O

We note that the group Da. acts on the quotient X /7 which has genus
1. The element r acts on X /7 via translation by a point of order ¢ while s
is the hyperelliptic involution.

Proposition 5: Let g be odd. The irreducible components Hy2,, and
Hg,2,py intersect.

Proof: Let g — 1 = cd where d is an odd number and ¢ is a power of 2.
Applying Lemma 4, there exists a family of dimension d 4 1 of curves X of
genus g whose automorphism group contains two copies of the Klein four
group (namely (sr,7) and (s, 7)) so that the two sets of quotients yield the
two partitions p; and pj. ]

We note that if g = 3 mod 4, then Hy 2y, NH, 2 1 contains a family of
dimension (g + 1)/2 whose generic point has automorphism group (Z/2)3.

3.3. Nonintersection of Components

In this section, we prove the converse of Proposition 5: the irreducible com-
ponents corresponding to p; and p; are the only irreducible components
of Hy 2 which intersect. We use this to count the number of connected
components of Hy .

To begin, we study the intersection of H, > with H, in order to show
that H, 2 is not connected for g > 3. Let po = {0, g/2, g/2} if ¢ is even and
po ={0,(g — 1)/2,(g + 1)/2} if g is odd. Then py is the unique partition
of g of the form {0, z,y} where 2 <y < x+ 1. As such, it corresponds to a
non-empty irreducible component Hg 2, of Hg 2.

Proposition 6: The component Hy 2., equals HyoN'Hy. It is a connected
component of Hg o for g > 3. The sublocus Hy 2 of Mg is connected if and
only if g < 3.

Proof: By definition, Hgy 2, C Hg2 N Hy. Conversely, suppose X cor-
responds to a point of Hyo N H,. Then Aut(X) contains a hyperelliptic
involution o as well as another involution 7. Also (o, 7) ~ (Z/2)? since o is
in the center of Aut(X). It follows that X — X/(o, 1) is a Klein four cover
of the projective line with a Z/2-quotient of genus 0. Thus X corresponds
to a point of Hy 2, and Hyop, = Hg2 N Hy.
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Next we show that Hy 2, is a connected component of H, o for g > 3
by showing that it does not intersect any other component of H, ». Suppose
X is a curve corresponding to a point of Hy 2 p, N Hy 2, for some p # po.
We write p = {a,b,c} with 0 < a < g/3. Let o (resp. 7) be the involution
of X such that X /(o) has genus 0 (resp. such that X/(r) has genus a). As
above, X — X/(0,7) is a (Z/2)?-cover of the projective line. This implies
that X also corresponds to a point of Hg 2, with partition p’ = {0, a, g—a}.
Then p’ = po since pg is the unique partition for Hy o which contains 0.
The conditions a € {(¢g — 1)/2,9/2,(g + 1)/2} and a < g/3 imply that
such a curve X can exist only if ¢ < 3. It follows that the intersection
Hg2,p0 N Hg,2,p is empty for g > 4 and p # po.

If g <2, then Hy 2 p, is the unique component of Hy ». If g = 3, then the
two components of H, o intersect by Lemma 4. For g > 3, H, 2 has at least
one pair of non-intersecting components. It follows that H, o is connected
if and only if g < 3. D

We now consider the intersection of other components of H, 5.

Hypotheses: Suppose p # p are two partitions of g so that Hgo, N
Hyos 7# 0. Let X be a curve corresponding to a point of the inter-
section. Let Hy C Aut(X) and Hy C Aut(X) be the two Klein four
groups which yield the partitions p and p. In particular, H; # Hy and
g9(X/Hy) = g(X/Hz) = 0. We write Hy = (o, ag) and Hy = (01, 02) where
9(X/on) < g(X/az) < g(X/oaz) and g(X/o1) < g(X/02) < g(X/0102).

Lemma 7: Under the hypotheses above, either oy = o1 or o1 = o101 .

Proof: By hypothesis, g(X/a1) < g(X)/3 and g(X/01) < g(X)/3. In fact,
if g = 0mod 3 (resp. ¢ = 1 mod 3), then g(X/a;) and g(X/o1) cannot
both equal ¢g/3 (resp. (g — 1)/3). The reason is that, if g = 0 mod 3 (resp.
g = 1 mod 3), there is only one partition whose smallest entry is g/3 (resp.
(g —1)/3) and the partitions p and p are different by hypothesis. It follows
that g(X/a1) + g(X/o1) < 2g(X)/3 — 1. Let m be the order of ajoy. If
Y = X/(ou,01), then g(X) + mg(Y) = g(X/on) + g(X/01) + g(X/on01),
5. Thus, g(X/a101) > g(X) +mg(Y) — (29(X)/3 — 1) > g(X)/3 + 1. By
the Riemann-Hurwitz formula, g(X/a101) < (9(X)+m—1)/m. Combining
the two inequalities, along with the fact that m must be an integer, yields
that m < 2 which implies that oy = 01 or a1 = o101 ]
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Let X be a curve with an action by G. If v; and v, are conjugate
in G, then the function fields of X/~; and X/, are conjugate and so
9(X/71) = g(X/72). Recall that if ¢ is odd, then all involutions in Dy, are
conjugate. If ¢ is even, then sr? and sr’ are conjugate in D, if and only if
i and j have the same parity.

Lemma 8: Let X be a curve with an action by G = Dy, X Z/2 where
¢ > 2 is even. Suppose that g(X/G) = 0. Then g(X/7) = g(X/{T,7)) +
9(X/(1,8)) + g(X/(T, 7).

Proof: Consider the action of Dy, on X/7. Any element of Dy, is in one
of the subgroups (r) or (sr’) for some 0 < i < ¢. The intersection of any
two of these subgroups has order 1. Applying Theorem 1 to the curve X/7
and using the fact that g((X/7)/Da.) = 0, we see that

cq(X/7) = eg(X/ () + 3 20(X/ (. 5r°))

=0

Using the conjugacy relationships described above, this simplifies to
9(X/7) = g(X/(r, 7)) + 9(X/(7,5)) + g(X/ (T, s7)). O

Theorem 9: The intersection of Hy 2, and H,, o 5 is nonempty for p # p
if and only if 1 € pN p.

Proof: The reverse implication is true by Proposition 5. For the forward
implication, suppose that Hy 2, NH, 25 is nonempty for some p # p and
let X be a curve corresponding to a point of the intersection. This situation
satisfies the hypotheses above. By Lemma 7, either a; = 01 or ajo1 = 010

Suppose a1 = o1. Then G = Hy Hs is isomorphic to Ds. X Z/2 for some
¢, under the identification oo = s, g = sr, and oy = 7. If ¢ is odd, then
g(X/as) = g(X/o2) which contradicts the hypothesis that p # p; so c is
even. Note that by hypothesis g(X/H;) = g(X/Hs) = 0 and so g(X/G) =
0. It follows from Lemma 8 that g(X/a1) = g(X/{a1,az02)). This implies
that g(X/a1) < 1 by the Riemann-Hurwitz formula. By Proposition 6,
g(X/a1) #0. Thus 1 € pNp.

Now suppose a101 = o1a1. Consider the group Gy = {01, ag, 1) which
is isomorphic to Ds., x Z/2 and the group Gy = (a1,02,01) which is
isomorphic to Dy, XZ/2. Here ¢; (resp. ¢2) is the order of o1 ag (resp. oaa).
If ¢; is odd, then g(X/o1) = g(X/a2). If ¢ is odd, then g(X/o3) = g(X/an).
Since p # p, it follows that ¢; and ¢z are not both odd.
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Without loss of generality, we suppose that g(X/o1) < g(X/aq). If ¢1 is
odd, then g(X/o1) = g(X/as). By hypothesis, g(X/az2) > g(X/a1) which
implies g(a1) = g(o1) in this case. The implication of this is that (after
possibly switching the roles of H; and Hs) we can simultaneously suppose
that ¢; is even and g(X/o1) < g(X/aq). Then g(o1) < (9(X) —2)/3 by the
hypothesis that p # p. Let £ = ¢;/2.

Consider the automorphism r = as01. Let H be the subgroup of Aut(X)
generated by involutions a1, a, and rf. Then H ~ (Z/2)% and g(X/H) = 0.
It follows from [3, Corollary 3.4] that g(X) is odd. By hypothesis, g(X) =
g(a1) + g(az2) + g(a1az). The Kani-Rosen theorem [5] applied to the action
of H on X implies that 3g(X) = > __p. 9(X/0). After simplifying, we see
that

29(X) = g(X/r") + g(X/rfar) + g(X/rfaz) + g(X/rfa1az).

By the Riemann-Hurwitz formula, each of the terms on the righthand side
of this equation is at most (g(X) + 1)/2. It follows that g(X/rfas) +
g(X/rfaras) > g(X) — 1 and that g(aqer?) > (9(X) — 3)/2.
Suppose £ is even. In this case, 7oy and oy are conjugate in Do, . Then
9(X) = gla)+g9(X/rfas)+g(X/rfaias). It follows that g(o1) < g(ay) < 1.
By Proposition 6, 1 € pNp

Suppose £ is odd. In this case, o; and r‘ay are conjugate in Dy, . Thus
(9(X) —2)/3 > g(o1) > (g(X) — 3)/2. This is only possible if g(X) < 5.
The statement of the theorem is vacuous if g = 1 or g = 3. If g = 5, the
only partitions are pg, p1 and p} and so 1 € p N p by Proposition 6. O

The following small generalization of Theorem 9 shows that any curve
satisfying the hypotheses above is part of the family constructed in Lemma
4.

Corollary 10: Suppose X € Hg 2, NHy o5 for somep # p and let Hy and
Hy be the two corresponding Klein four sugroups of Aut(X). Then Hy N Hy
contains an involution o1, the subgroup HyHs is of the form Do, X Z/2 for
some even ¢, and g(X/o1) = 1.

Proof: By earlier work in this section, the result will follow if oy = 1. By
Theorem 9, g(X/a1) = g(X/o1) = 1. Strengthening the equations in the
proof of Lemma 7, we see that (¢(X)+m—1)/m > g(X/a101) > g(X)—2
where m is the order of ajoy. If g(X) > 5, then this implies m = 1 and
so 01 = aq. If g(X) < 5, the result follows from the approach of [6]. When
g=3, H Hy = (Z/2)® and when g =5, HiHy = Dg x 7Z/2. O
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Corollary 11: The number of non-empty connected components of Hg 2
equals [(g +6)2/48] if g is even and equals [(g+3)2/48] + [(g—1)/4]) if g
is odd.

Proof: Theorem 9 implies that if g is even then no pair of irreducible
components of H, o intersect and if g is odd then there is exactly one pair
of irreducible components which intersect. The proof is then immediate
from Lemma 3. D

4. The geometry of Hgy 3

In this section, we prove that H, 3 is not connected for g odd and g > 5.
Recall that H, 3 is empty if g is even, [3,Corollary 3.4]. Again the method
is to show that H, 3 N'H, is a connected component of H, 3. We note that
this approach will not work for n > 4 due to the following lemma.

Lemma 12: The intersection Hy ., NHgy is empty for n > 4.

Proof: Suppose X is a curve corresponding to a point of H,, NH,. Let
o be a hyperelliptic involution of X. Since o is in the center of Aut(X),
it follows that there exists H ~ (Z/2Z)" C Aut(X) so that o € H. Thus,
X/o € Hygpn-1 and 0 = g(X/o) =1 mod 2"~3 by [3, Corollary 3.4]. This is
a contradiction unless n < 3. ]

The irreducible components of H, 3 correspond to equivalence classes of
ordered tuples (g1, ...,g7) with g; € N and 21'721 gi, under a natural action
of Aut((Z/2)?) = GL3(Z/2). Without loss of generality, we reorder the
subgroups H; of order 4 in (Z/2)3 so that g; = g(X/H;) = min{g;}!_; and
g2 = g(X/Hs>) = min{g;}7_,. Then there is a unique third subgroup Hj of
order 4 in (Z/2)3 so that Hy N Hy C Hj and we suppose that g3 = g(X/Hg).
Finally, we suppose that g4 = min{g;}/_,. There is a unique representative
of each equivalence class satisfying these conditions which we denote by
the partition (g1,...,g7). Let py = (0,0,0,4,7,4,7+ 1) if g = 45+ 1 and
po=1(0,0,0,7,7+1,5+1,j+1)if g =45+ 3.

Lemma 13: The component Hy 3, is non-empty and equals Hg 3 N Hg.
Proof: First, note that H, 3 N H, is non-empty. In particular, consider

three hyperelliptic covers with branch loci By = {0,000}, B2 = {0, 1}, and
Bjs so that | U3_; B;| = (g + 7)/2. The normalized fibre product of these
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covers yields a curve in Hy 3N'H4. It remains to show that the only partition
p of g for which H, 3, contains hyperelliptic curves is pg.

Suppose that X corresponds to a point of H,3 N H, and let p be its
partition. Let o be such that g(X /o) has genus 0. There exists a subgroup
H =~ (Z/2)3 C Aut(X) containing o. There are three hyperelliptic quotients
of X — X/H dominated by X/o. Each of these must have genus 0. Thus
p =0,0,0, g4, g5, g6, g7) With ZZ:4 g; = g. Note that g; < (g+3)/4 by the
Riemann-Hurwitz formula.

Let Y — X/H be a Klein four quotient of X — X/H. Since Y — X/H
is not disjoint from X/o — X/H, it follows that Y corresponds to a point
of Hycy),2 N Hycyy- By Proposition 6, the three hyperelliptic quotients of
Y — X/H have genera {0,z,y} where 2 < y < z + 1. The numerical
constraints then imply that p = py. O

Proposition 14: The locus H, 3y, is a connected component of Hy 3. The
sublocus Hg 3 of M is connected if and only if g <'5.

Proof: Suppose X corresponds to a point of H 3 p; and let o be such that
g(X/o) = 0. Recall that ¢ is in the center of Aut(X). By Lemma 12, Hy 4
is empty. Thus there does not exist a subgroup H ~ (Z/2)® C Aut(X)
which is disjoint from o. It follows that X does not correspond to a point
of Hy 3, for any p # pg.

For g = 1 and g = 3, p;, is the only partition for which H, 3, is non-
empty. It follows that 7, 3 and H3 3 are connected.

It now suffices to show for g > 5 that there exists a partition p other than
p for which Hg 3, is non-empty. Let X’ be the normalized fibre product
of the three hyperelliptic curves branched at B, Bs, and Bg as follows. If
g=4j+1,let By = {0,1}, and By = {oo, u}, and By = {A1,..., Ag;,0,00}.
Then X’ corresponds to a point of Hy 3, with p = (0,0,1,7,4,4,7). If g =
454 3, let B; = {O, OO}, By = {0, 1,#1,/142}, and Bs = {O, 1L,A,..., )\Qj}.
Then X' corresponds to a point of Hg 3, with p =(0,1,1,5,7,4,7+1). O
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