Pries: 619 Complex Variables II. Homework 2. Due Wednesday 9/11

Discussion session 2:

What is an elliptic curve by Daniels and Lozano-Robledo.
https://www.ams.org/journals/notices/201703/rnoti-p241.pdf

Homework problems:

1. If $f(z)=p(z) / q(z)$ is a rational function on \mathbb{C}, show that $\operatorname{ord}_{\infty}(f)=\operatorname{deg}(q)-\operatorname{deg}(p)$. Show that $\sum_{P \in \mathbb{C}_{\infty}} \operatorname{ord}_{P}(f)=0$.
2. Given points $z_{1}, \ldots, z_{r} \in \mathbb{C}_{\infty}$ and integers n_{1}, \ldots, n_{r} such that $\sum_{i=1}^{r} n_{i}=0$, prove there exists a meromorphic function $f(z)$ such that $\operatorname{div}(f)=\sum_{i=1}^{r} n_{i} \cdot z_{i}$.
3. Give an example of a meromorphic function on \mathbb{C} with a simple pole at each $z \in \mathbb{Z}$. Does it extend to a meromorphic function on \mathbb{C}_{∞} ?
4. * Let $f(z)$ be a rational function so that $|z|=1$ implies $|f(z)|=1$. Show that $f(\alpha)=0$ if and only if $f(1 / \bar{\alpha})=\infty$ and thus find the most general form of $f(z)$.
5. Let $f(x, y)=x^{3}+y^{3}+1-t x y$. Find the values of t for which V_{f} is not smooth.
6. Let $X=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x^{n}-x\right\}$. The implicit function theorem implies that, near $(0,0), X$ is the graph of $y=g(x)$ for some function $g(x)$ which is holomorphic near 0 . Find the first several terms of the Taylor series of $g(x)$.
7. Let $f(z)=4 P(z)^{3}-60 G_{4} P(z)-140 G_{6}$, where G_{4}, G_{6} are defined from L, as in the lecture.
i) Show that $P^{\prime}(z)^{2}-f(z)$ is holomorphic near $z=0$ and has a zero at $z=0$ by looking at its Laurent series.
ii) Explain why $P^{\prime}(z)^{2}-f(z)$ is holomorphic everywhere.
iii) Explain why $P^{\prime}(z)^{2}-f(z)$ is the zero-function.
8. As in the previous problem, let $f(z)=4 P(z)^{3}-60 G_{4} P(z)-140 G_{6}$. Let $E \subset \mathbb{P}^{2}$ be the projective curve given by the affine equation $y^{2}=f(z)$. Show that E is non-singular and that there is an isomorphism $\tau: \mathbb{C} / L \rightarrow E$.
