Pries: 619 Complex Variables II. Homework 2. Due Wednesday 9/11

Discussion session 2:

What is an elliptic curve by Daniels and Lozano-Robledo. https://www.ams.org/journals/notices/201703/rnoti-p241.pdf

Homework problems:

- 1. If f(z) = p(z)/q(z) is a rational function on \mathbb{C} , show that $\operatorname{ord}_{\infty}(f) = \operatorname{deg}(q) \operatorname{deg}(p)$. Show that $\sum_{P \in \mathbb{C}_{\infty}} \operatorname{ord}_{P}(f) = 0$.
- 2. Given points $z_1, \ldots, z_r \in \mathbb{C}_{\infty}$ and integers n_1, \ldots, n_r such that $\sum_{i=1}^r n_i = 0$, prove there exists a meromorphic function f(z) such that $\operatorname{div}(f) = \sum_{i=1}^r n_i \cdot z_i$.
- 3. Give an example of a meromorphic function on \mathbb{C} with a simple pole at each $z \in \mathbb{Z}$. Does it extend to a meromorphic function on \mathbb{C}_{∞} ?
- 4. * Let f(z) be a rational function so that |z| = 1 implies |f(z)| = 1. Show that $f(\alpha) = 0$ if and only if $f(1/\overline{\alpha}) = \infty$ and thus find the most general form of f(z).
- 5. Let $f(x,y) = x^3 + y^3 + 1 txy$. Find the values of t for which V_f is not smooth.
- 6. Let $X = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x^n x\}$. The implicit function theorem implies that, near (0, 0), X is the graph of y = g(x) for some function g(x) which is holomorphic near 0. Find the first several terms of the Taylor series of g(x).
- 7. Let $f(z) = 4P(z)^3 60G_4P(z) 140G_6$, where G_4, G_6 are defined from L, as in the lecture.
 - i) Show that $P'(z)^2 f(z)$ is holomorphic near z = 0 and has a zero at z = 0 by looking at its Laurent series.
 - ii) Explain why $P'(z)^2 f(z)$ is holomorphic everywhere.
 - iii) Explain why $P'(z)^2 f(z)$ is the zero-function.
- 8. As in the previous problem, let $f(z) = 4P(z)^3 60G_4P(z) 140G_6$. Let $E \subset \mathbb{P}^2$ be the projective curve given by the affine equation $y^2 = f(z)$. Show that E is non-singular and that there is an isomorphism $\tau : \mathbb{C}/L \to E$.