The project presentations and reports are an opportunity to learn something new in greater depth. They provide a good way to develop skills at speaking and writing mathematics. In addition, they will give us a chance to have an overview of many interesting topics in abstract algebra that we wouldn’t see otherwise.

Presentations: 20 minutes long per person, during last two weeks of class.
Delivery method: dotcam, computer, or blackboard.
Make sure to practice - especially if you’re using the blackboard.

Written report: 10 pages, due 5/14 at 10 am.

Things to include:

2. Where/When/Why: motivation for studying topic, history of topic, applications of topic.

3. **** Facts: important properties and theorems about topic.

4. *** Examples: by hand or using computer.

7. References: (only for written report).

Possible topics The topic of your project should be connected to one of the central themes of this class: non-abelian groups and/or group actions.

1. Semi-direct products (generalization of dihedral groups).

2. Alternating groups: simple for \(n \geq 5 \), isomorphism between \(A_5 \) and the symmetry group of a dodecahedron.

3. Solvable groups, composition series.

5. Special unitary groups, orthogonal representation of \(SU_2 \).

6. Linear groups: generators, center, projective linear groups. There are infinitely many simple linear groups.

7. Motions of \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \): classification of finite subgroups of \(O(2) \) (cyclic and dihedral) and \(O(3) \) (platonic solids), discrete subgroups and lattices, 17 crystallographic groups. Classification of conics in \(n \) dimensions. Artin chapter 5.
8. $\mathbb{C}[t]$-modules (abelian group with action of $\mathbb{C}[t]$).

9. Bilinear forms, symmetric positive definite forms, diagonalizing real symmetric matrix, orthogonal complements.

11. The Todd-Coxeter algorithm: using generators and relations for describing a group operation in terms of an action on cosets. Artin 6.9.