Pries: M460 - Information and Coding Theory, Spring 2019 Handout 3W: Hamming code

Group work The extended Hamming $(7,4)$ code has this generator matrix.

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Problems

1. Give a formula for the value p_{4} in the last column in terms of $d_{1}, d_{2}, d_{3}, d_{4}$.
2. Explain how to compute p_{4} using parity and explain this with a Venn diagram picture.
3. What are the length n and the dimension k of the extended Hamming $(7,4)$ code? What is the information rate k / n ?
Is it more or less than the information rate of the Hamming $(7,4)$ code?
4. What is the minimum distance d of the extended Hamming $(7,4)$ code?

What is the relative error correction rate d / n ?
Is it more or less than the relative error correction rate of the Hamming $(7,4)$ code?
5. How many errors can this code detect? How many errors can this code correct?

Pries: M460 - Information and Coding Theory, Spring 2019 Homework: Due Friday 2/22

Here is another way of constructing the Hamming $(7,4)$ code.

$$
\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 10 & 11 & 100 & 101 & 110 & 111 \\
p_{1} & p_{2} & d_{1} & p_{3} & d_{2} & d_{3} & d_{4} \\
X & 0 & X & 0 & X & 0 & X \\
0 & X & X & 0 & 0 & X & X \\
0 & 0 & 0 & X & X & X & X
\end{array}\right)
$$

The last 3 rows give the relations

$$
p_{1}=d_{1}+d_{2}+d_{4}, p_{2}=d_{1}+d_{3}+d_{4}, p_{3}=d_{2}+d_{3}+d_{4} .
$$

To find the 4×7 generator matrix, take the 4×4 identity matrix and adjoin the 4×3 matrix which is the transpose of the data columns. Problems

1. Find the relations on p_{1} and p_{2} given by just the first three columns. What code from class is this the same as?
2. Construct a similar table for $n=15$.

$$
\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1 & 10 & 11 & 100 & 101 & 110 & 111 & & & & & & & \\
p_{1} & p_{2} & d_{1} & p_{3} & d_{2} & d_{3} & d_{4} & & & & & & & \\
X & 0 & X & 0 & X & 0 & X & & & & & & & \\
0 & X & X & 0 & 0 & X & X & & & & & & & \\
0 & 0 & 0 & X & X & X & X & & & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & &
\end{array}\right)
$$

3. Find the 4 relations for this code:

$$
\begin{aligned}
& p_{1}= \\
& p_{2}= \\
& p_{3}= \\
& p_{4}=
\end{aligned}
$$

4. What are the invariants: length $n=15$, dimension k, info rate k / n for this code?
5. What is the minimum distance d ? If you're not sure, find the generator matrix.
6. Extra Credit: It is possible to construct a Hamming code $H(n, k)$ in this way for any length $n=2^{m}-1$. How many parity check digits will it have? Find a formula for its dimension k and its minimum distance d in terms of m.
