Pries: M460 - Information and Coding Theory, Spring 2019 Handout 2F: Computations

1. Modular arithmetic: $a \equiv b \bmod m$ mean that m divides $b-a$. For each problem below, find an integer $0 \leq c \leq 6$ such that
(a) $c \equiv-17 \bmod 7$.
(b) $3 c \equiv 1 \bmod 7$.
(c) $c^{2} \equiv 2 \bmod 7$.
(d) the powers $c, c^{2}, c^{3}, c^{4}, c^{5}, c^{6}$ are all different $\bmod 7$.
2. Would you rather play a game where you receive $\$ 1000$ if you:
(a) (i) toss heads on a coin or (ii) roll 1 on a die?
(b) (i) roll 1 on a die with 8 sides or (ii) roll a sum of 7 on two dice?
(c) (i) choose 4 cards of the same number from a standard deck or
(ii) choose 4 consecutive cards of the same suit from a standard deck?

Pries: M460 - Information and Coding Theory, Spring 2019 Homework 3:
 Due Friday 2/8

Read Hall Sections 2.1-2.2 and Betten Section 1.2.

1. Hall problem 2.1.1 page 16
2. Hall problem 2.1.4 page 17
3. Betten problem E1.2.7
4. Betten problem E.1.2.8. If $C \subset(\mathbb{Z} / r \mathbb{Z})^{n}$ is a linear code, prove that the minimal distance $d_{\text {min }}$ of C equals the minimal weight $w_{\text {min }}$. Hint: first show that $d_{\text {min }} \leq w_{\text {min }}$. Then given $x, y \in C$ such that $d(x, y)=d_{\text {min }}$, find $z \in C$ such that $w t(z)=d_{\text {min }}$.
5. Modular arithmetic: $a \equiv b$ mod m mean that m divides $b-a$. For each problem below, find an integer $0 \leq c \leq 10$ such that
(a) $c \equiv-17 \bmod 11$.
(b) $3 c \equiv 1 \bmod 11$.
(c) $c^{2} \equiv 3 \bmod 11$.
(d) the powers c, c^{2}, \ldots, c^{10} are all different $\bmod 11$.
6. Extra credit E1.2.6.
