Pries: M460 - Information and Coding Theory, Spring 2019 Handout 1F: the ISBN error-correcting code

An *ISBN number* is a ten digit string $a = a_1 - a_2 a_3 a_4 - a_5 a_6 a_7 a_8 a_9 - a_{10}$, with each digit in $\mathbb{Z}/11\mathbb{Z} = \{0, 1, \dots, 9, X\}$ such that

$$a_{10} \equiv 1 \cdot a_1 + 2 \cdot a_2 \cdots 9 \cdot a_9 \mod 11$$
, or, equivalently, $\sum_{i=1}^{10} i \cdot a_i \equiv 0 \mod 11$.

- 1. What is the check digit a_{10} for the book with ISBN $1 111 11111 a_{10}$?
- 2. How many ISBN numbers are there?
- 3. What is the information rate of the ISBN code?
- 4. Find all ISBN numbers of the form $a_1 000 00000 a_{10}$.
- 5. How many errors can the ISBN code detect? How many can it correct?

Pries: M460 - Information and Coding Theory, Spring 2019 Homework 2: the ISBN error-correcting code Due Friday 2/1

In class we showed that the ISBN code can detect one error. Suppose that, for one *i* with $1 \le i \le 10$, the value a_i is replaced by $b_i = a_i + \epsilon$ ($\epsilon \ne 0 \mod 11$). Then the left hand side of the relation $\sum_{i=1}^{10} i \cdot a_i \equiv 0 \mod 11$ changes by $i \epsilon \ne 0 \mod 11$.

- 1. A librarian wants to type an ISBN number $a = a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}$. By mistake, the librarian transposes two non-equal digits. (For some $i \neq j$, for which $a_i \neq a_j$, the librarian types $b_i = a_j$ and $b_j = a_i$.) Explain why the formula for the check digit will produce an error.
- 2. Suppose a and b are ISBN numbers and $0 \le \kappa \le 10$. If $d_i = a_i + \kappa b_i$ for $1 \le i \le 10$, show that $d = d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10}$ is also an ISBN number. Remark: this shows that the set of ISBN numbers is a vector space over $\mathbb{Z}/11\mathbb{Z}$.
- 3. Here are 9 ISBN numbers:

 $v_1 = 1 - 000 - 00000 - 1, v_2 = 0 - 100 - 00000 - 2, \dots, v_9 = 0 - 000 - 00001 - 9.$

Show that $\{v_1, \ldots, v_9\}$ is a *basis* for the set of ISBN numbers as follows:.

- (a) Span: If a is an ISBN number, explain why there are constants $c_1, \ldots, c_9 \in \mathbb{Z}/11\mathbb{Z}$ such that $a = c_1v_1 + \cdots + c_9v_9$.
- (b) Linear Independence: If $c_1, \ldots, c_9 \in \mathbb{Z}/11\mathbb{Z}$ are constants such that $c_1v_1 + \cdots + c_9v_9 = 0 000 00000 0$, explain why c_1, \ldots, c_9 must all be zero.