Pries: M460 - Information and Coding Theory, Spring 2019 Handout 11M: BCH codes

Improvement: Reed-Solomon code - as BCH code

Choose α generator of \mathbb{F}_{q}^{*}. Let $n=q-1$.
Choose t such that $2 \leq t \leq n$ and let $k=n-t+1$ so that $n-1 \geq k \geq 1$.
Choose the generator polynomial $g(x) \in \mathbb{F}_{q}[x]$ to be the polynomial of degree $t-1$ having roots α^{i} for $1 \leq i \leq t-1$.

Codewords are coefficients of polynomials of degree $\leq n-1$ which are multiples of $g(x)$.
Equivalently, $\left(c_{0}, \ldots, c_{n-1}\right)$ codeword iff α^{i} root for $1 \leq i \leq n-k$ of

$$
p(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

Polynomial division by $g(x)$ has remainder $r(x) \neq 0$ if and only if error.
The minimal distance is at least t.
Construct the new Reed-Solomon code in this situation.
Recall that $\mathbb{F}_{9}=\{a+b i \mid a, b \in \mathbb{Z} / 3\}$.

1. Show that the element $\beta=1+i$ is a generator of \mathbb{F}_{9}^{*}.
2. Choose $t=3$. What are the length n and the dimension k ? What is the number M of codewords?
3. What is $g(x)$? Find the generator matrix for the code.
4. Continuing with $t=3$. Your data is $(1, i)$ which you use as the coefficients of the polynomial $h(x)=1+i x$. What is $g(x) h(x)$ and what is the encoded message?
5. Continuing with $t=3$. You receive the message ($1,0,0,0,1,0,0,0$). Did an error occur?
6. What is the minimum distance of this code? How many errors can it detect and correct?

Pries: M460 - Information and Coding Theory, Spring 2019 Homework 9: New Reed Solomon Code. Due Friday 4/19.

1. Let $q=7$ and $t=3$. Choose $\alpha=3$.
(a) Find the generator polynomial $g(x)$ and the generator matrix for the new Reed Solomon code.
(b) What are n, k, d ?
(c) Encode the data $(1,2,1,0)$.
(d) You receive the codeword $(5,1,1,3,0,0)$. What is the data?
(e) You receive the codeword ($3,0,5,2,0,0$). Show that an error occurred. If exactly one error occurred, find the data.
2. Recall that $\mathbb{F}_{8}=\left\{a+b \beta+c \beta^{2} \mid a, b, c \in \mathbb{Z} / 2\right\}$ where β is a root of $x^{3}+x+1 \in \mathbb{Z} / 2[x]$. In fact, β is a generator of \mathbb{F}_{8}^{*}. This problem is about the new Reed-Solomon code when $t=2$.
(a) What are the length n and the dimension k ? What is the number M of codewords?
(b) What is $g(x)$? Find the generator matrix for the code.
(c) Your data is $\left(1, \beta^{2}, \beta+1\right)$ which you use as the coefficients of the polynomial $h(x)=1+\beta^{2} x+(\beta+1) x^{2}$. What is $g(x) h(x)$ and what is the encoded message?
(d) You receive the message $\left(\beta, \beta^{2}, \beta^{2}+\beta, 0,0,0,0\right)$. Did an error occur?
(e) What is the minimum distance of this code? How many errors can it detect and correct?
3. Let $q=p^{r}$. What is the length, dimension, minimal distance, and generator polynomial of the new Reed-Solomon code when
(a) $t=2$.
(b) $t=q-1$. Which code is this?
4. Hand in extended outline and two references for your project.
