
Pries: M460 - Information and Coding Theory, Spring 2019
Homework 8: Polynomials over finite fields. Due Friday 4/12.

1. Find the three monic polynomials g1, g2, g3 in Z/3[x] which have degree 2 and are
irreducible over Z/3. Compute the product (x3 − x)g1g2g3 modulo 3.

2. (a) Find the roots of x2 − 1 in Z/8. Why is the answer surprising?

(b) Find two truly different factorizations of x2 − 1 in Z/8[x].

3. This problem is about the old Reed Solomon code RS(3, 7) with q = 7 and k = 3.

(a) Use the basis {1, x, x2} of L2 to find the generator matrix of RS(3, 7).

(b) Find the minimal distance d for RS(3, 7) and find a codeword of weight d.

(c) Encode the data (c0, c1, c2) = (3, 2, 1) into a codeword of RS(3, 7).

(d) You receive the codeword (4, 1, 0, 1, 4, 2). Decode to find the data (c0, c1, c2).

(e) You receive the codeword (1, 0, 0, 4, 5, 3). If one error occurred and you have high
confidence in the digits which are zero, what is the corrected codeword and what
is the data?



1 Week 10: Version 1 of Reed Solomon

Reed-Solomon codes were invented in 1960 at MIT Lincoln Lab. At that time, technology
was too weak to implement them. Their first uses (in the early 1980s) were for digital photos
for Voyager space probe (info rate 44.8 kbits/sec) and compact disks.

Example 1.1. Let q = 5 and k = 3. Let α1 = 1, . . . , α4 = 4. A basis for L2 is {1, x, x2}. Let
f1(x) = 1, let f2(x) = x, and f3(x) = x2. Then f1(~α) = (1, 1, 1, 1), and f2(~α) = (1, 2, 3, 4),
and f3(~α) = (1, 4, 4, 1). These three vectors are a basis for RS(2, 5). This is a code over Z/5
with length 4 and dimension 3 (info rate 3/4).

Example 1.2. Suppose q = 5 and k = 3. Then we can transmit three pieces of data, let’s
say (c0, c1, c2). First we create a function f(x) = c0 + c1x + c2x

2. Then the code word is
(f(1), f(2), f(3), f(4)). Specifically, if the data is (4, 0, 1) then f(x) = x2 + 4 and the code
word is (0, 3, 3, 0).

This can be implemented easily using linear algebra.

Example 1.3. d = 2. Have already found codeword of weight 2 and a non-zero polynomial
with degree 2 has at most 2 roots.

This reaches Singleton bound.

Notation 1.4. Let q = pn be a prime power and label the non-zero elements of Fq as
α1, . . . , αq−1. Let k be such that 1 ≤ k ≤ q − 1. Let Lk−1 be the set of polynomials g(x)
with deg(g) ≤ k − 1. Given f ∈ Lk−1, let f(~α) = (f(α1), . . . , f(αq−1)).

Definition 1.5. The Reed-Solomon code RS(k, q) is the subset of Fq−1
q consisting of all

vectors f(~α) for f ∈ Lk−1.

Example 1.6. If k = q − 1, then RS(q − 1, q) = Fq−1
q . If k = 1, then RS(1, q) is the q − 1

repetition code.

Lemma 1.7. 1. Lk−1 is a vector space over Fq of dimension k, with basis 1, x, . . . , xk−1.

2. RS(k, q) is a linear code over Fq of length q − 1 and dimension k.

3. The number of codewords is qk.

Proof. 1. A basis for Lk−1 over Fq is {1, x, x2, . . . , xk−1}.

2. Suppose f1(~α) and f2(~α) are in RS(k, q). Then f1(x) and f2(x) are in Lk−1. By
part (i), Lk−1 is a vector space over Fq. So if c ∈ Fq, then cf1 + f2 ∈ Lk−1. Then
cf1(~α) + cf2(~α) = (cf1 + f2)(~α) ∈ RS(k, q). Thus RS(k, q) is a linear code over Fq.

Consider the k vectors ~vi = (αi
1, . . . , α

i
q−1) 0 ≤ i ≤ k−1 (these are found by evaluating

the basis functions for Lk−1. By definition, they span RS(k, q). To finish, we need to
show they are linearly independent.

Remark: Fermat’s little Theorem evaluating the function xp−1 on the non-zero entries
of Z/p gives the constant vector ~1. Luckily this is excluded by our bounds on k.



Method 1: Show there exist functions fi for 1 ≤ i ≤ k, such that fi(αj) = δij for
1 ≤ j ≤ k. This shows that RS(k, q) contains k codewords beginning with (1, 0, 0, 0, ...),
(0, 1, 0, 0, ...), so its dimension is at least k.

Example: for k = 2. Given α1 6= α2 ∈ Fq, find f1, f2 polynomials of degree 1 such that

f1(α1) = 1, f2(α1) = 0,

and
f1(α2) = 0, f2(α2) = 1.

Example 1.8. Given distinct values α1, α2, α3, find f1 a polynomial of degree 2 such that

f1(α1) = 1, f1(α2) = 0, f1(α3) = 0.

Example 1.9. Let’s investigate the Reed-Solomon code RS(2, 5).

1. What is a basis for the codewords? How many codewords are there? What is the
matrix M2,5?

2. If the data is ~c = (1, 3), what is the codeword? Answer (4, 2, 0, 3).

3. If the codeword is ~b = (1, 0, 4, 3), what is the data? Answer (2, 4).

4. If the codeword is ~b = (1, 0, 2, 4), show that an error occurred in transmission. What
is the best guess for the data vector ~c?

Linear system: g = c0 + c1x. Then

c0 + c1 = 1, c0 + 2c1 = 0, c0 + 3c1 = 2, c0 + 4c1 = 4.

This is inconsistent. It turns out that the first digit is incorrect. Taking c0 = 1 and
c1 = 2 corrects to (3, 0, 2, 4).

5. What is the distance invariant for RS(2, 5)? How many errors can this code detect?
How many errors can this code correct?

Remark 1.10. Notice that Lk−1 is the vector space of functions on P1 whose only poles are
at ∞ and such that the order of the pole at ∞ is at most k − 1. The entries of a codeword
are the values of the function at the (non-zero) points of P1.

Transmitting data One interesting thing about the Reed-Solomon code is that all the
entries are treated equally. Unlike the ISBN code or the (7, 4) code, there are no ’check
digits’. The data does not appear as part of the transmitted message. So how does it work?



Transmitting data:

Definition 1.11. If ~c = (c0, . . . , ck−1) is the data, then let f~c(x) =
∑k−1

i=0 cix
i and the code

word is f~c(~α).

Definition 1.12. The generator matrix Mk,q for RS(k, q) is the matrix with q − 1 columns
and k rows constructed as follows: let f1(x) = 1, f2(x) = x, . . . , fk(x) = xk−1. The jth row
of Mk,q is the codeword fk(~α). Given a data vector ~c = (c0, . . . , ck−1), the code word is ~cMk,q.

Example 1.13.

M3,5 =
1 1 1 1
1 2 3 4
1 4 4 1

Interpreting data: Suppose the codeword is~b = (b1, . . . , bq−1). We need to find a function

f(x) with degree at most k− 1 such that f(~α) = ~b, i.e., such that f(αi) = bi. Then the data
is given by the coefficients of f(x).

Lemma 1.14. The data vector ~c is the solution to the linear system ~cMk,q = ~b.

Specifically, we can find the data vector ~c using row reduction.

Lemma 1.15. If the linear system is inconsistent, then there has been an error in transmis-
sion.

This was improved by Berlekamp and Massey in 1969.

Remark 1.16. Problem - encoding and decoding is slow, uses k(n − k)log2(n) operations.
Will later improve this using low density parity check codes which also have high rate and
short blocks. Another problem - need to choose k/n before transmission, can’t improve on
the fly.

The minimal distance of a Reed-Solomon code Recall that the minimal distance of
a code is the smallest non-zero Hamming distance between two codewords. This measures
how many entries are different between the codewords. It determines the number of errors
in transmission that can be detected and corrected. The distance of a Reed-Solomon code
is optimal given the fixed length q − 1 and dimension k.

Example 1.17. There is no vector in RS(5, 3) with weight 1. To see this, suppose f(~α) is
a vector in RS(5, 3) with length 4 and weight 1; this means exactly three entries are zero,
e.g., (0, 0, 0, 2). Then f(x) has three roots in Z/5. This is impossible since deg(f) ≤ 2.

Theorem 1.18. The Reed-Solomon code RS(k, q) has distance d = q − k.

Proof. By the Singleton bound, d ≤ n− k+ 1 where n is the length of the codewords. Since
n = q − 1, this implies d ≤ q − k.

To prove that d ≥ q − k, recall that the minimal distance of a linear code is the same
as the minimal weight. The weight of a codeword is the number of its entries which are



non-zero. So we need to show that if f(~α) is a non-zero codeword, then the number of its
entries which are non-zero is at least q−k. In other words, we need to show that the number
of roots of f(x) is at most (q − 1) − (q − k) = k − 1. This is true since f(x) has degree at
most k − 1.

The Reed-Solomon codes are very good codes, especially when used in concatenated
codes. Good for erasure correction - if any k signals received then can decode. On digital
CD’s can correct burst errors up to 4000 bits. (The number of consecutive errors goes down
dramatically in outer code).

For fixed q and k, the distance of the code RS(k, q) is optimal. One drawback of the
Reed-Solomon codes is that, once q is fixed, the length of the codewords is fixed at q−1 and
the dimension is bounded by q− 1. Next time we will look for codes where the distance and
dimension can be large relative to q.


