Pries: M405 - Number Theory, spring 2020 Homework 2: due 3/13

Do 10 parts out of the 6 parts of problem 1 and the 8 parts of problem 2. For extra credit, do some of the remaining 4 parts.

1. Let $R = \mathbb{Z}[\sqrt{-6}]$. Let $P = \langle 2, \sqrt{-6} \rangle$ and let $Q = \langle 3, \sqrt{-6} \rangle$.

- (a) Show that 2, 3, and $\sqrt{-6}$ are irreducible in R.
- (b) Prove that P and Q are non-principal ideals by showing that neither has a generator.
- (c) Show that $P^2 = \langle 2 \rangle$, $Q^2 = \langle 3 \rangle$, and $PQ = \langle \sqrt{-6} \rangle$.
- (d) Show that the element 6 does not factor uniquely into irreducible elements of R but that the ideal $\langle 6 \rangle$ has a unique factorization into ideals of R.
- (e) Find an element $\gamma \in \mathbb{Q}(\sqrt{-6})$ such that $P = \gamma Q$.
- (f) Show that the class group of R has size two. Hint: If W is a non-principal ideal of R, let α be an element of smallest non-zero norm in W. Show that $W = \langle \alpha, \alpha \sqrt{-6/2} \rangle$ and that $W \sim P$.
- 2. Let g be an odd positive integer. Suppose there is an odd integer x, such that $x^2 < 3^g/2$ and $d = 3^g - x^2$ is square-free. Redo problems 1-8 from the Week 7 Friday class handout (attached below) in this more general case to show that the class group of $\mathbb{Z}[\sqrt{-d}]$ has an element of order g.

For the last step: to show m = g, write $P^m = \langle u + v\sqrt{-d} \rangle$; find a formula for 3^m ; break into cases for v = 0 and $v \neq 0$ and get a contradiction if m < g in each case.

Pries: M405 - number theory, spring 2020 Handout 7F: A non-principal ideal P such that P^3 is principal

Let g = 3. Let x = 1. Find $d = 3^g - x^2$. Let $R = \mathbb{Z}[\sqrt{-d}]$.

- 1. Show that 3 is irreducible in R.
- 2. Let $z = x + \sqrt{-d}$. Show that $3^g = z\overline{z}$.
- 3. Show that z and \bar{z} are relatively prime; (there is no $t \in R$ which divides both of them other than $t = \pm 1$).
- 4. Explain why the g factors of 3 can't be split up between z and \bar{z} .
- 5. Let $P = \langle 3, x + \sqrt{-d} \rangle$. Show that P is a non-principal ideal; (there is no $\tau \in R$ such that $P = \langle \tau \rangle$).
- 6. Show that $\langle 3 \rangle = P\bar{P}$.
- 7. Show that $P^g = \langle x + \sqrt{-d} \rangle$ using parts 2 and 6. This means that P^g is principal.
- 8. Let m be the smallest positive number such that P^m is principal. Show that m = g. Step 1: m divides g.