Homework 2: due 3/13

Do 10 parts out of the 6 parts of problem 1 and the 8 parts of problem 2. For extra credit, do some of the remaining 4 parts.

1. Let $R=\mathbb{Z}[\sqrt{-6}]$. Let $P=\langle 2, \sqrt{-6}\rangle$ and let $Q=\langle 3, \sqrt{-6}\rangle$.
(a) Show that 2, 3, and $\sqrt{-6}$ are irreducible in R.
(b) Prove that P and Q are non-principal ideals by showing that neither has a generator.
(c) Show that $P^{2}=\langle 2\rangle, Q^{2}=\langle 3\rangle$, and $P Q=\langle\sqrt{-6}\rangle$.
(d) Show that the element 6 does not factor uniquely into irreducible elements of R but that the ideal $\langle 6\rangle$ has a unique factorization into ideals of R.
(e) Find an element $\gamma \in \mathbb{Q}(\sqrt{-6})$ such that $P=\gamma Q$.
(f) Show that the class group of R has size two. Hint: If W is a non-principal ideal of R, let α be an element of smallest non-zero norm in W. Show that $W=\langle\alpha, \alpha \sqrt{-6} / 2\rangle$ and that $W \sim P$.
2. Let g be an odd positive integer. Suppose there is an odd integer x, such that $x^{2}<3^{g} / 2$ and $d=3^{g}-x^{2}$ is square-free. Redo problems 1-8 from the Week 7 Friday class handout (attached below) in this more general case to show that the class group of $\mathbb{Z}[\sqrt{-d}]$ has an element of order g.
For the last step: to show $m=g$, write $P^{m}=\langle u+v \sqrt{-d}\rangle$; find a formula for 3^{m}; break into cases for $v=0$ and $v \neq 0$ and get a contradiction if $m<g$ in each case.

Pries: M405-number theory, spring 2020
Handout 7F: A non-principal ideal P such that P^{3} is principal
Let $g=3$. Let $x=1$. Find $d=3^{g}-x^{2}$. Let $R=\mathbb{Z}[\sqrt{-d}]$.

1. Show that 3 is irreducible in R.
2. Let $z=x+\sqrt{-d}$. Show that $3^{g}=z \bar{z}$.
3. Show that z and \bar{z} are relatively prime;
(there is no $t \in R$ which divides both of them other than $t= \pm 1$).
4. Explain why the g factors of 3 can't be split up between z and \bar{z}.
5. Let $P=\langle 3, x+\sqrt{-d}\rangle$. Show that P is a non-principal ideal;
(there is no $\tau \in R$ such that $P=\langle\tau\rangle$).
6. Show that $\langle 3\rangle=P \bar{P}$.
7. Show that $P^{g}=\langle x+\sqrt{-d}\rangle$ using parts 2 and 6 . This means that P^{g} is principal.
8. Let m be the smallest positive number such that P^{m} is principal. Show that $m=g$. Step 1: m divides g.
