Pries: M405 - Number Theory, spring 2020
 Homework 1: due $2 / 7$

1. In Section 1.7 Stillwell, it shows how to find a formula for all rational points on the circle $x^{2}+y^{2}=1$ using the Diophantus chord method. In this problem, the goal is to find a formula for all rational points on the hyperbola H with equation $x^{2}-y^{2}=1$ using the same method.
(a) Find the equation for the line L with slope t going through the point $(-1,0)$.
(b) Find the quadratic equation for x (similar to top of page 15) whose roots are -1 and the 2 nd point of intersection of L and H.
(c) Find the x and y coordinate of this point of intersection.
(d) Draw a graph of this procedure.
(e) What is different about the cases $|t|<1,|t|>1$, and $t= \pm 1$?
(f) Explain why every rational point on H is found with this method.
2. Let $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ be the Gaussian integers. If $z=a+b i$ is in $\mathbb{Z}[i]$, let $\bar{z}=a-b i$ be its complex conjugate. The norm of z is $N(z)=a^{2}+b^{2}$ and the trace of z is $\operatorname{Tr}(z)=2 a$.
(a) Write $w=a^{\prime}+b^{\prime} i$. Show that $N(z w)=N(z) N(w)$ and $\operatorname{Tr}(z+w)=\operatorname{Tr}(z)+\operatorname{Tr}(w)$.
(b) Show that z is a root of the equation $X^{2}-\operatorname{Tr}(z) X+N(z)=0$.
(c) Find all possible $z \in \mathbb{Z}[i]$ such that $N(z)=1$.
(d) * If p is a prime such that $p \equiv 3 \bmod 4$, show that $p \neq N(z)$ for any $z \in \mathbb{Z}[i]$.
(e) * Suppose $Z=\alpha+\beta i$ where α, β are fractions. Use the same formulas for N and Tr. If $N(Z)$ and $\operatorname{Tr}(Z)$ are both integers, show that α and β are integers.
