Pries: M405 - Number Theory, Spring 2018

Week 8 Wednesday: Roots of unity and cyclotomic fields in SAGE Let p be an odd prime.

1. Getting started:
(a) Method 1: go to http://sagecell.sagemath.org/

Method 2: (required for bigger jobs) start a free CoCalc account at http://www.sagemath.org/
(b) Reference websites
http://doc.sagemath.org/html/en/reference/number_fields/index.html http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf
2. Polynomial factoring over the rationals
(a) R. $\langle x\rangle=Q Q[]$; R
(b) $\mathrm{f} 3=\mathrm{x}^{\wedge} 3-1$; $\mathrm{f} 3 . \operatorname{roots}()$;
(c) $\operatorname{plot}(f 3,-1,1.5)$;
(d) $f 3=x^{\wedge} 3-1$; factor (f3);
(e) Repeat step d , replacing $p=3$ by $p=5$, then $p=7$ until you see the pattern.
(f) Make a conjecture: the factors of $g p=x^{p}-1$ in $\mathbb{Q}[x]$ are:
3. The cyclotomic field
(a) K.<zeta> = CyclotomicField(3); K.degree();
(b) Evaluate these

CC(zeta), \zeta^3; \zeta^\{3-1\}; sum(zeta^i for i in range (0,3));
(c) Repeat (a,b), replacing $p=3$ by $p=5$, then $p=7$ until you see the pattern.
(d) Make a conjecture about ζ^{p} and $\sum_{i=0}^{p-1} \zeta^{n}$ and ζ^{p-1} for an arbitrary prime p.
4. Polynomial factoring over the cyclotomic field
(a) K.<zeta> = CyclotomicField(3) ; S. $\langle\mathrm{x}>=\mathrm{K}[]$;
(b) $\mathrm{f} 3=\mathrm{x}^{\wedge} 3-1$; f3.roots () ;
(c) $\mathrm{f} 3=\mathrm{x}^{\wedge} 3-1$; factor $(\mathrm{f} 3)$;
(d) Repeat step c , replacing $p=3$ by $p=5$, then $p=7$ until you see the pattern.
(e) Make a conjecture: the factors of $f p=x^{p}-1$ in $K[x]$ are:
5. For $p=3,5,7,11$, determine if \sqrt{p} is contained in the cyclotomic field $K .<$ zeta $>$. What about $\sqrt{-p}$? Make a conjecture for all odd primes p. Here are some helpful commands.

```
L.<y> = K.extension(x^2-3); L.absolute\_degree();
```

6. Gauss sums
(a) Type this:
```
def gauss_sum(a,p):
    K.<zeta> = CyclotomicField(p)
    return sum(legendre_symbol(n,p)*zeta^(a*n) for n in range(1,p))
```

(b) $g=$ gauss_sum $(2,5) ; g$;
(c) $\mathrm{g}^{\wedge} 2$;
(d) Repeat steps b, c for other choices of a, p (do not change the number 2 in step c).
(e) Make a conjecture about how g^{2} depends on a and p.

