Pries: M405 - Number Theory, Spring 2018

Week 8 Monday: continued fractions in SAGE

1. Getting started:
(a) Method 1: go to http://sagecell.sagemath.org/ and type $2+3$ then evaluate
(b) Method 2: (required for bigger jobs) start a free CoCalc account at http://www.sagemath.org/
(c) http://doc.sagemath.org/html/en/reference/, quick search for continued fraction
(d) Open and skim sage.rings.continued_fraction
2. Explain the output of these commands:
(a) $\operatorname{gcd}(97,100)$
(b) $\operatorname{Mod}(97,100)^{\wedge}(-1)$
(c) $\operatorname{xgcd}(97,100)$
(d) $\operatorname{plot}((1-97 * x) / 100,-.1, .1) \backslash \backslash$
(then change -.1, . 1 to values a,b that illustrates the output of (c))
(e) c=continued_fraction(100/97); c
(f) c.convergents();
3. What pattern do you see in (a) and how does it compare with (b)-(c)?
(a) $\mathrm{c}=$ continued_fraction $([1,1,1,1,1,1,1,1])$; c.convergents;
(b) K.<sqrt5> = QuadraticField(5); d=(1+sqrt5)/2; d.continued_fraction();
(c) $N(c . v a l u e()-d) ;$
4. For $p=2,3,5,7,11$, do:
(a) $N(\operatorname{sqrt}(p))$;
(b) continued_fraction(sqrt(p)) or continued_fraction_list(sqrt(p), nterms=20)

What kind of behavior do you notice?
(c) What is different for the output of:

```
K.<sqrt2> = QuadraticField(2); cf=continued_fraction(sqrt2); cf;
```

(d) What do these commands do and what are they for $p=2,3,5,7,11$? cf.period(); cf.preperiod();
5. Conceptual problems:
(a) If α is a fraction, explain why the continued fraction of α terminates.
(b) If the continued fraction of α terminates, explain why α is a fraction.
(c) If α has continued fraction $[\overline{1,2}]$, find a quadratic polynomial which has α as a root. What is α ?

