NAME: __________________________
SI: ____________________________

SECTION NUMBER: _____

You may NOT use calculators or any references. Show work to receive full credit.

GOOD LUCK !!!
1. Consider the double integral in the Cartesian coordinates
\[\int_0^6 \int_0^y x \, dx \, dy. \]
Change the integral into an equivalent polar integral. **Do not evaluate.**

2. Using **Cylindrical** coordinates set up, **but do not evaluate**, the triple integral
\[\iiint_E x y z \, dV, \]
where \(E \) is the circular cylinder whose base is the circle \(x^2 + (y - 1)^2 = 1 \) and whose top lies in the plane \(z = 5 - x \).

3. Consider the triple integral \(\iiint_D x \, dV \), where \(D \) is the wedge cut from the cylinder \(x^2 + y^2 = 1 \) by the planes \(z = -y \) and \(z = 0 \) in the half-space \(z \geq 0 \).

 (a) Sketch the projection of \(D \) onto the plane you use to set up the triple integral. Label the sketch appropriately.

 (b) **Set up, do not evaluate**, this integral in **Cartesian (Rectangular)** coordinates.

 (c) **Set up, do not evaluate**, the triple integral in **Cylindrical** coordinates.

 (d) Evaluate the integral you set up in (c).

4. Consider the solid \(E \) in the first octant bounded between the planes \(x + y + 2z = 2 \) and \(2x + 2y + z = 4 \) with density \(\delta(x, y, z) = xyz \).

 (a) Sketch \(E \) and label appropriately.

 (b) **Set up, do not evaluate**, a triple integral that computes the **volume** of \(E \). Be sure to include a sketch of the projection.

 (c) **Set up, do not evaluate**, a triple integral that computes the **mass** of the solid \(E \).

5. Set up, do not evaluate, the volume of the smaller region cut from the solid sphere \(\rho \leq 2 \) by the plane \(z = \sqrt{3} \) in the first octant in **Spherical** coordinates.

6. Use the change of variable equations \(x = 3r \cos \theta, \ y = 2r \sin \theta \) to find the volume of the region bounded by the \(xy \)-plane, the paraboloid \(z = x^2 + y^2 \), and the elliptical cylinder \(\frac{x^2}{9} + \frac{y^2}{4} = 1 \). The half-angle formulas are useful:
\[\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \quad \text{and} \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}. \]
7. Let \(C = C_1 \cup C_2 \cup C_3 \), where \(C_1 : y = x^2 \) from \((0,0)\) to \((2,4)\); \(C_2 \) : line segment joining \((2,4)\) and \((2,0)\); \(C_3 \) : line segment joining \((2,0)\) and \((0,0)\). For the velocity field \(\mathbf{F} = xi - yj \), find

(a) The flow of \(\mathbf{F} \) along \(C_1 \).

(b) The outward flux of \(\mathbf{F} \) across the closed path \(C \) if the outward flux of \(\mathbf{F} \) over \(C_2 \) is \(-8\) and the outward flux of \(\mathbf{F} \) over \(C_3 \) is \(0\).

8. Consider the vector field \(\mathbf{F}(x, y, z) = \langle 2xz, \sin z, x^2 + y \cos z \rangle \).

(a) Show that \(\mathbf{F} \) is conservative.

(b) Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is the line path that connects \(A(1, 2, \pi) \) to \(B(e, 4, 0) \), \(B \) to \(C(1, 2, -3) \), and \(C \) to \(D(2,1,2\pi) \).