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Motivated by the recent discovery of Mott insulating phase and unconventional superconduc-
tivity due to the flat bands in twisted bilayer graphene, we propose more generic ways of getting
two-dimensional (2D) emergent flat band lattices using either 2D Dirac materials or electron gas
(2DEG) subject to moderate periodic magnetic fields with zero spatial average. We find that 2DEG
shows recurring “magic” values of the magnetic field when the lowest band becomes flat, while for
Dirac electrons the zero-energy bands are asymptotically flat without magicness. We explain these
nontrivial behaviors using minimal tight-binding models on a square lattice inspired by the Wannier
functions of the flat bands, and find that the magicness of the 2DEG is due to destructive quantum
interference similar to classic flat-band lattice models. The two cases can be interpolated by varying
the g-factor or effective mass of a 2DEG, which also leads to flat bands with nonzero Chern numbers
for each spin. Our work provides flexible platforms for exploring interaction-driven phases in 2D
systems with on-demand superlattice symmetries.

Introduction— Moiré structures formed by stacking 2D
crystals such as graphene, hexagonal boron nitride, tran-
sition metal dichalcogenides, etc. have attracted a lot of
attention recently [1–5]. Although for incommensurate
moiré structures in-plane translation symmetry is bro-
ken, in the long-wavelength limit and when the moiré po-
tential is weak, one can still adopt a momentum-space de-
scription of the low-energy electronic states [6–8]. In this
context, Bistritzer and MacDonald first found that the
moiré structure formed by twisted bilayer graphene has
flat bands at charge neutrality for certain “magic angles”
of twisting [8]. The strongly suppressed kinetic energy in
these flat bands suggests potential for interaction-driven
exotic phases, which were recently revealed experimen-
tally in Refs. [9–11], where both correlated insulating and
unconventional superconducting (Tc ∼ 1K) phases were
found near charge neutrality in twisted bilayer graphene
at the first magic angle θ ≈ 1.05◦.

While the flat moiré bands in the family of twisted mul-
tilayer van der Waals materials [12–14] may host other
interaction-driven phases, these phases will inevitably be
restricted or selected by the symmetries of the moiré
structures, which determine the form of interactions in
the moiré bands [15–28]. The spatial symmetry of a
moiré structure, however, cannot be easily changed since
it is dictated by the crystal symmetry of the constituent
layers. One main task of this paper is to provide practical
ways of realizing 2D flat bands with different crystalline
symmetries by design, not relying on moiré structures,
thus enabling exploration of exotic phases in a larger pa-
rameter space. Our main idea is to replace the moiré
potential [29–31] by periodic external magnetic fields or
other artificial crystal potentials such as Zeeman or strain
fields [32–35], that can now be created and controlled ex-
perimentally.

There has been a long effort of creating spatially pe-
riodic electric and magnetic fields and studying their in-

fluence on condensed matter systems. One of the ear-
liest examples is the observation of Weiss oscillations
in conventional two-dimensional electron gas (2DEG)
in GaAs/AlGaAs subject to a one-dimensional periodic
static electric potential, created by parallel fringes or
metallic strip arrays, and a perpendicular homogeneous
magnetic field [36], which is due to the commensuration
between the cyclotron radius and the period of the elec-
tric potential [37–40]. 2D periodic electric potentials on
2DEG [41–45], with different symmetries [46–48], were
also realized. In parallel, spatially periodic (orbital) mag-
netic fields in 1D [49–52], 2D [53–56], and Zeeman fields
[57] have been experimentally realized using periodic ar-
rays of superconducting or ferromagnetic strips or dots.
More recently, 1D [58] and 2D [59–61] periodic electric
potentials have also been realized in graphene.

In this work, we propose that 2D-periodic magnetic
fields with zero average, applied on either 2D Dirac sys-
tems or ordinary 2DEG, are an effective and versatile way
of creating flat bands with different superlattice symme-
tries in the low-energy electronic structure. Studies on
1D-periodic magnetic fields with zero average exist in lit-
erature [33, 62–67], but no general conclusions have been
made on the existence and origin of 2D flatbands in non-
quantizing 2D periodic magnetic fields. We find that for
a simple 2D sinusoidal magnetic field forming a square
Bravais lattice, Schrödinger (or 2DEG) and Dirac elec-
trons exhibit drastically different behaviors in the ten-
dency of realizing flat, low-energy bands. In particular
the existence of magicness for the former is due to de-
structive interference reminiscent of the classic examples
of flat band lattice models [68–73]. Moreover, by taking
into account Zeeman coupling and spin degrees of free-
dom, one can naturally interpolate between Dirac and
Schrödinger electrons, by varying the g-factor or the ef-
fective mass of a 2DEG. In this case we find that it is
common for the lowest flat band to have a nonzero Chern
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number for each spin species, despite the magnetic field
having zero spatial average.

Band flattening for Dirac and Schrödinger electrons
in periodic magnetic fields— We start by considering
a generic 2D Dirac system subject to a perpendicular
magnetic field having two cosinusoidal components along
x and y directions, respectively: B = B[cos(Kx) +
cos(Ky)]ẑ, where K ≡ 2π/a is the wave number with a
the period of the magnetic modulation. Specific material
realizations and effects of more complex functional forms
of fields will be addressed in Discussion. The single-
particle Hamiltonian is HD = vFσ ·Π, where vF is the
Fermi velocity of the Dirac electron, Π = −i~∇+ eA is
the kinetic momentum, and σ = σxx̂ + σy ŷ. The vector
potential A corresponding to the periodic magnetic field
in the Coulomb gauge is

A =
B

K
[− sin(Ky)x̂+ sin(Kx)ŷ] . (1)

For such a simple vector potential it is convenient to
use plane wave expansion to solve the eigenvalue prob-
lem [8] (see Supplemental Information). The momentum
space Hamiltonian has a single dimensionless parameter
φ ≡ eB/~K2 determining the strength of the magnetic
potential. We have used a momentum cutoff of the form
max(|Kx|, |Ky|) ≤ Kc, where K labels reciprocal lattice
vectors and found that convergence [8, 74] for moderate
values of φ ∼ 1 can be well achieved with Kc = 5.

The Dirac Hamiltonian with the periodic vector po-
tential Eq. (1) has a particle-hole symmetry: σzH

Dσz =
−HD and a zero energy solution. By diagonalizing the
truncated Hamiltonian and focusing on the two particle-
hole symmetric bands near zero energy we found that the
velocity near zero momentum monotonically decreases
with increasing φ, and approaches zero asymptotically, as
shown in Fig. 1 (a,b). Moreover, the overall band widths
of the two low-energy bands are also monotonically de-
creasing [75], consistent with the behavior at small mo-
mentum. Thus one can get as flat as possible low-energy
bands by keeping increasing φ without fine-tuning. We
also note that the renormalized Fermi velocity near zero
momentum can be obtained analytically by perturbing
the zero-energy eigen solution of HD with ~vFσ · k [75–
77]. This gives veff

F = vF /[I0(2φ)]2, where I0 is the zeroth
modified Bessel function of the first kind. Importantly,
the flatness is controlled by φ = eB/~K2 instead of B
alone, which can be large by having a large period even
with a relatively small B. Quantitative estimates, includ-
ing lower bounds on the magnetic field set by disorder
potential, will be given in Discussion.

For a triangular lattice periodic magnetic field, our cal-
culation shows that the band flattening behavior is qual-
itatively the same as the square lattice case [75]. Thus
periodic magnetic fields can be used as an effective way
of creating flat band Dirac systems with different super-
lattice symmetries.
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FIG. 1. Flat bands for Dirac electrons (a,b) and 2DEG (c,d)
in periodic magnetic fields. (a) Band structure for the two
particle-hole symmetric bands close to zero energy when φ =
2. E0 = ~vFK is the energy unit. The color scale is the
same as E/E0. (b) Renormalized Fermi velocity veff

F vs. φ.
A plane wave cutoff of Kc = 5K is used. (c) Band structure
for the lowest band when φ = 0.6 near the first magic value.
E0 = ~2K2/2m. The color scale is the same as E/E0 with
white corresponding to the energy at k = 0. (b) Renormalized
inverse effective mass m−1

eff (in units of m−1) vs. φ. The cutoff
is Kc = 9K.

Another consequence of the flat band, in addition to
enhancing correlation effects, is the immobility of the
wavepacket centered around k = 0. Physically it means
that particles described by such wavepackets will be eas-
ily trapped or localized by disorder. This is formally
considered as the homogenization problem in PDE the-
ory, which absorbs the effect of a periodic potential into
an effective mass tensor by considering the dynamics at
a much larger scale than the period. There is a large lit-
erature on the subject in the Schrödinger case, see e.g.,
Refs. [78, 79] for some rigorous mathematical references.
The situation is similar for the Dirac equation under ap-
propriate assumptions, which will be addressed in a fu-
ture work [80]. In this context the vanishing veff

F directly
corresponds to flat bands for the Dirac operator.

We next show that periodic magnetic fields can lead
to flat bands for 2D Schrödinger electrons, but only at
discrete values of the parameter φ. Using the same vec-
tor potential Eq. (1), the Hamiltonian is HS = 1

2mΠ2,
where m is the effective mass. By diagonalizing the mo-
mentum space Hamiltonian with a large enough cutoff,
we calculate the inverse effective mass of the lowest band
m−1

eff at k = 0 and plot it against φ. Fig. 1 (d) shows
that m−1

eff has an oscillatory dependence on φ and crosses
zero repeatedly as φ increases. In [75] we show that al-
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though the band width of the lowest band is nonzero
when m−1

eff (k = 0) vanishes, it reaches local minima at
these points, accompanied by diverging density of states
at the energy of the lowest band at k = 0. In the more
generalized context mentioned above it is still reasonable
to be called flat bands at these magic values.

Our real space calculation using the spectral method
[75] gives the same result. Our calculations for a trian-
gular lattice periodic magnetic field also show similar os-
cillatory behavior [75]. Later in Discussion we will show
that the qualitative behavior is retained even for more re-
alistic Gaussian-like magnetic field profile. Thus in con-
trast to Dirac electrons, 2DEG can have flat bands with
exact vanishing of m−1

eff at magic values of φ. However,
to understand the origin of the recurring magic values in
the Schrödinger case and why there is no magicness in
the Dirac case, we have to look into details of the wave-
functions associated with the flat bands.

Wannier functions of the flat bands and minimal tight-
binding models— We next examine the Wannier func-
tions associated with the lowest bands for both 2DEG
and Dirac electrons, and based on them explain the con-
trasting band flattening behaviors using minimal tight-
binding models.

For the 2DEG case, we found that the absolute value of
the maximally localized Wannier function (MLWF) [81]
of the lowest band has four peaks at ± π

K x̂ and ± π
K ŷ,

which are minima of |A|2 [75]. This suggests that it
may be possible to use a basis of two Gaussian-like Wan-
nier functions, located at the plaquette corners (π/K, 0)
and (0, π/K) to describe the lowest band. In [75] we
show that this is indeed the case and the resulting two-
orbital tight-binding model reproduces the two lowest
bands from the plane wave calculation very well. More
importantly, the tight-binding Hamiltonian has complex
hopping parameters and the nearest-neighbor hopping is
almost purely imaginary near the first magic value of φ.
These features provide important clues for our construc-
tion of a minimal tight-binding model below.

For the Dirac case, we make use of the particle-hole
symmetry of the Hamiltonian HD and consider its square
(HD)2 [75]. In stark contrast to the Schrödinger case, the
peaks of the MLWF of the lowest band are now located at
(±π/K,±π/K) (four equivalent points) and (0, 0), which
are the minima of ±B(r) for spin up and down, respec-
tively [75]. Thus the tight-binding Hamiltonian for each
spin is one-dimensional, and all the hopping parameters
are real and monotonically decrease as φ increases. This
is because the potential wells of ±B(r) become monoton-
ically deeper.

The Wannier functions obtained above motivate us to
construct minimal tight-binding models to explain the
different behaviors of 2DEG and Dirac electrons. For
2DEG, we consider a model with spinless free fermions
hopping between nearest neighbors on a 2D square lat-
tice, where the lattice sites coincide with the plaquette

corners:

H = −
∑
〈ij〉

teiϕijc†i cj + 4t, (2)

where t = ~2/2ma2 is the hopping parameter between
nearest neighbors, and the summation is over nearest
neighbors. For the 2D-cosinusoidal magnetic field used
above the absolute value of the flux through a plaquette
is Φ = 16B/K2 = 8Ba2/π2. All positive flux plaque-
ttes only share edges with negative flux ones [Fig. 2 (a)].
The magnetic field is included as a Peierls phase in the
hopping parameter, motivated by the shape of the com-
plex Wannier functions [75]. The vector potential Eq. (1)
leads to ϕij = ± 4eB

~K2 = ± πΦ
2Φ0

= ±4φ, where positive sign
means the plaquette on the left of the directional hopping
path has positive flux, and Φ0 = h/e.

The momentum space Hamiltonian can be easily
diagonalized[75]. Expanding the eigenenergies at small
k, one finds a series of magic values at which the inverse
effective mass vanishes:

φ =
(2n+ 1)π

8
, n ∈ Z, (3)

with the periodicity ∆φ = π/4 ≈ 0.785, which is close
to the period of the oscillation in Fig. 1 (d). The model
fails, however, to capture some fine features in the plane
wave results, e.g., the negative values of m−1

eff near the
magic values, the decreasing amplitudes of the oscillation
with increasing φ, etc., which is not surprising given the
simplicity of the model. Nonetheless, the model helps
to elucidate the origin of the magicness, which is the
destructive interference of different hopping terms, sim-
ilar to many early examples of flat band lattice models
[68–73]. In the present case, the destructive interference
comes from the values of φ in Eq. (3), at which tij = −tji
for nearest neighbors i and j. Specifically, for some lo-
cal wavefunction having equal weights on two diagonal
sites of a plaquette, which belong to the same sublattice,
hopping to their common nearest neighbors will cancel
out. This is the reason for the complete flatness of the
bands along kx = ±ky. At distances much larger than
the lattice period, such cancellation leads to strong sup-
pression of hopping along almost all directions, which is
the reason for the vanishing inverse effective mass near
k = 0.

In contrast, the minimal model for the Dirac case [more
exactly for (HD)2] is trivial, which is a nearest-neighbor
hopping model on a square lattice with one site per unit
cell. Such a model obviously cannot describe the band
flattening as it stands, unless one allows the hopping am-
plitude to depend on φ which is a posteriori. Physically,
the decreasing hopping with increasing φ should have two
origins. The first is the Landau localization in the strong
field limit. The second, which is unique to Dirac elec-
trons, is the localization due to the Zeeman potential in
(HD)2 which has a Berry phase origin.
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FIG. 2. (a) Tight-binding model on a square lattice with
staggered magnetic fields for 2DEG. The xy axes are rotated
by π/4 compared to that used for Eq. (1). (b) Inverse effective
mass versus φ.

Zeeman coupling and flat band Chern insulators— We
now consider the Zeeman coupling between 2DEG and
the periodic magnetic field, which always accompanies
the orbital coupling. In particular, Dirac electrons (based
on the squared Hamiltonian) can be viewed as a special
case of 2DEG plus Zeeman coupling with gm/me = 2,
where g is the g-factor, m is the effective mass of the
2DEG, and me is the free electron mass. In common
2DEGs this ratio can vary significantly depending on ma-
terials realization [82, 83] and may even be tunable in a
given system [57, 84, 85]. We thus take the Zeeman cou-
pling strength gm/me as a variable and study how the
flat band behaviors of 2DEG and Dirac electrons can be
smoothly bridged by changing it between 0 and 2.

Figure 3 (a) shows the phase diagram of the inverse
effective mass m−1

eff (in units of m−1) at k = 0 versus φ
and gm/me. One can see that along the horizontal line of
gm/me = 0, i.e., 2DEG without Zeeman coupling, m−1

eff

oscillates between positive (red color) and negative (blue
color) values, and reaches 0 (white color) at magic values
of φ. This is basically the same as Fig. 1 (d). Similarly
when gm/me = 2 the figure reproduces the monotonic
decay of m−1

eff for the Dirac case shown in Fig. 1 (d). In
between these two limits the regions with negative m−1

eff

form bands which start from being perpendicular to the
φ axis when gm/me = 0, and gradually bend toward the
horizontal gm/me = 2 line as gm/me increases. Accord-
ingly, the lines of magic values of φ and gm/me, defined
by m−1

eff = 0, also bend to gm/me = 2 and disappear
from the field of view.

In [75], we have constructed a minimal 3-band model,
based on the Wannier functions, to qualitatively capture
the band flattening behavior for general values of gm/me.
Interestingly, we find that the lowest band of the model
quite generally has a nonzero Chern number, making it
similar to the Haldane model of quantum anomalous Hall
effect with zero net magnetic field [86], but on the square
lattice instead of the honeycomb lattice. We thus calcu-
late the Chern number of the lowest-band C1 using the
plane wave method [75] in a 2D parameter space spanned

by φ and gm/me, which is shown in Fig. 3 (b). One
can see that the Chern insulator phase is ubiquitous.
Most regions have a C1 = −1 while on several narrow
bands it is +1. These regions are separated by lines cor-
responding to band touching where the Chern number is
ill-defined. Comparing Figs. 3 (a) and (b), one can see
that the C1 = 1 regions coincide with places where m−1

eff

is extremal, indicating that there is band inversion near
these values of m−1

eff . Most importantly, the regions with
zero or vanishingly small m−1

eff almost all have nonzero
C1. Thus by tuning to the magic values of φ and gm/me

one could have flat bands and nontrivial topology simul-
taneously.

For the simple 2DEG Hamiltonian used here, all bands
have two-fold degeneracy due to an emergent symmetry
of the bipartite lattice. The nonzero Chern number above
should thus be understood as a spin Chern number. To
get nonzero charge Chern numbers one simply needs to
lift this effective Kramers degeneracy, by e.g. adding a
periodic scalar potential commensurate with the periodic
magnetic field.

Discussion— The magnetic field used above has a very
simple form [49–52]. In reality magnetic fields created by
periodic arrays of bar magnets or superconducting wires
will have more Fourier components, as well as finite in-
plane magnetic fields. However, on the one hand the
sinusoidal potential can be viewed as a legitimate first
approximation if the spatial profile of the magnetic field
is smooth [49–52]. On the other hand, we expect the
general low-energy behavior of Dirac electrons or 2DEG
revealed in this work to qualitatively hold even with more
realistic potential profiles, including that due to the pseu-
domagnetic fields created by strain in graphene [35, 87–
89]. To prove this we have performed calculations for
periodic Gaussian magnetic fields (for 2DEG) and peri-
odic Gaussian strain fields (for Dirac electrons) [87–89]
(Fig. 3 in [75]) using the spectral method. The results
strongly resemble those for the simple cosinusoidal fields.
Namely, in the Dirac case the velocity monotonically de-
creases, while in the Schrödinger case the inverse effective
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FIG. 3. (a) Inverse effective mass at k = 0 and (b) Chern
number of the up spin for the lowest band versus gm/me and
φ. Kc = 5K. Brillouin zone discretization of 11 × 11 and
10 × 10 were used for calculating m−1

eff and Chern number,
respectively.
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mass repeatedly crosses zero.

The typical strength of fields needed to get flat bands
should be such that the magnetic flux through each pla-
quette is on the order of Φ0. We emphasize that this
is a rather modest requirement (see below) especially for
large periods or small K. Since Φ0 ≈ 4.136×10−3 T·µm2,
a µm period field only needs to have an amplitude ∼ 102

Gauss. In the case of graphene, such long wavelengths
also mean the two valleys of graphene can be viewed as
independent [90, 91]. Based on the lessons learned from
the twisted multilayer graphene systems, for interaction-
driven phases to appear the number of moiré unit cells in
a given sample does not have to be macroscopically large–
102 × 102 is sufficient. Artificial superlattices with such
number of periods are not out of reach [49, 50, 54–57].
Experimentally one can use either transport [54–56, 59–
61] or spectroscopic [90] methods to reveal the existence
of the flat bands [9, 10, 12, 13] and in addition to look
for exotic phases at very low temperatures.

Disorder places another constraint on the lower bound
of the magnetic field or the upper bound of the spatial
period. For the Bloch wave picture to be valid, the kinetic
energy of the electron must be larger than the disorder
potential Γ. Thus for a given spatial period 2π/K, the
width of the band under discussion must be at least larger
than the disorder potential. This requires ~2K2/2m >
Γ for 2DEG and ~vFK > Γ for Dirac electrons, and
consequently gives a lower bound of the magnetic field
if φ ∼ 1. For Dirac electrons, in the case of graphene,
Γ ∼ 1 meV if we adopt the experimental relaxation time
of 3.0 × 10−13s [92]. Thus K ≥ 1.67 × 10−3nm−1, or
the period must be smaller than 3.8 µm, and B ≥ 3.7
mT for achieving nearly flat bands (φ ∼ 2). For high
mobility 2DEG such as GaAs/AlGaAs, Γ ∼ 0.01 meV if
using the mobility µ =70 m2/(V·s) [93] and the effective
mass 0.067 me. This corresponds to a lower bound K ≥
4.6×10−3 nm−1 (or a period of 1.4 µm), and B ≥ 8.6 mT
for achieving nearly flat bands (φ ∼ 0.6). These values of
B are at least one order of magnitude smaller than that
achieved experimentally for smooth spatial modulations
of real magnetic field [49, 50, 94–98] or strain [35, 87–
89], and the micrometer period is also experimentally
realizable [49, 50, 94–98].

While our prescription works for the whole spectrum
bridging Dirac materials and 2DEG, the former can take
advantage of the various pseudo-magnetic fields through
e.g. periodic strain or Zeeman field that may be eas-
ier to implement experimentally. Moreover, practically
the absence of “magicness” in the Dirac case makes it
much easier to realize flat bands without the need of fine
tuning. On the other hand, the complex hopping in the
tight-binding model for 2DEG is reminiscent of the loop-
current model for cuprates [99, 100], thus suggesting po-
tential new phases more proximate to high-temperature
superconductors on a square lattice.
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