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Abstract

We consider in this work the problem of minimizing the von Neumann entropy
under the constraints that the density of particles, the current, and the kinetic
energy of the system is fixed at each point of space. The unique minimizer is a
self-adjoint positive trace class operator, and our objective is to characterize its
form. We will show that this minimizer is solution to a self-consistent nonlinear
eigenvalue problem. One of the main difficulties in the proof is to parametrize the
feasible set in order to derive the Euler-Lagrange equation, and we will proceed by
constructing an appropriate form of perturbations of the minimizer. The question
of deriving quantum statistical equilibria is at the heart of the quantum hydrody-
namical models introduced by Degond and Ringhofer in [5]. An original feature of
the problem is the local nature of constraints, i.e. they depend on position, while
more classical models consider the total number of particles, the total current and
the total energy in the system to be fixed.

1 Introduction

This work is concerned with the study of minimizers of quantum entropies, which are
solutions to problems of the form

min
A

Tr
(
s(%)

)
, (1)

∗Romain.Duboscq@math.univ-tlse.fr
†pinaud@math.colostate.edu
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where % is a density operator (i.e. a self-adjoint trace class positive operator), s an
entropy function, typically the Boltzmann entropy s(x) = x log(x) − x for x ≥ 0, and
Tr(·) denotes operator trace. The feasible setA includes linear constraints on % involving
particles density, current, and energy.

This problem is motivated by a series of papers by Degond and Ringhofer on the
derivation of quantum hydrodynamical models from first principles, see [4, 3, 2, 1]. It
is also a problem arising in the work of Nachtergaele and Yau in their derivation of the
Euler equation from quantum dynamics [17]. In [5], Degond and Ringhofer main idea is
to transpose to the quantum setting the entropy closure strategy that Levermore used
for kinetic equations [12]. The kinetic formulation starts with the transport equation
(all physical constants are set to one),

∂tf + {H, f} = Q(f), f ≡ f(t, x, p), (x, p) ∈ Rd × Rd, (2)

where f ≥ 0 is the particle distribution function, H is a classical Hamiltonian, e.g.
H(x, p) = |p|2/2 + V (x) for some potential V , {H, f} = ∇pH · ∇xf −∇xH · ∇pf is the
Poisson bracket, and Q a collision operator. Fluid models are obtained by considering
the quantities

nf (t, x) =

∫
Rd
f(t, x, p)dp, uf (t, x) = nf (t, x)−1

∫
Rd
pf(t, x, p)dp

kf (t, x) =
1

2

∫
Rd
|p|2f(t, x, p)dp,

which are respectively the average particle density, velocity, and kinetic energy. It is not
possible to derive a closed system on nf , uf , and kf from (2), and Levermore’s method
consists in replacing f in the non-closed terms by a statistical equilibrium feq. The
form of the latter depends on Q, and is in some situations the minimizer of the classical
Boltzmann entropy

Sc(g) =

∫
R2d

s(g(x, p))dxdp, under the constraints ng = nf , ug = uf , kg = kf .

The solution to the minimization problem is the standard Maxwellian

feq(t, x, p) =
nf (t, x)

(2π T (t, x))d/2
e−

(p−uf (t,x))
2

2T (t,x) , (3)

where the temperature T is such that

kf (t, x) =
1

2
nf (t, x)|uf (t, x)|2 +

d

2
nf (t, x)T (t, x).

The equilibrium feq is an explicit and local function of the constraints, and one may
therefore remove the variable x in the definition of the classical entropy Sc and consider
the constraints on ng, ug and kg to be simple numbers independent of x. The well-
posedness of the classical minimization problem was addressed in [11].

Degond and Ringhofer theory is the quantum version of the above kinetic problem,
and their starting point is the quantum Liouville-BGK equation of the form

i∂t% = [H, %] +
i

τ
(%eq[%]− %) , (4)
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where H is a given Hamiltonian, [·, ·] denotes the commutator between two operators, τ
is a relaxation time, and %eq[%] a quantum statistical equilibrium. The latter is solution
to (1) under constraints of density, current, and energy as in the classical case. The
constraints are defined as follows (we give further an equivalent definition better suited
for the mathematical analysis): to any density operator %, we can associate a Wigner
function W [%](x, p), see e.g. [13], so that the particle density n[%], the current density
n[%]u[%], and the energy density w[%] of % are given by formulas similar to the classical
picture: 

n[%](x) =

∫
Rd
W [%](x, p)dp, n[%](x)u[%](x) =

∫
Rd
pW [%](x, p)dp

w[%](x) =
1

2

∫
Rd
|p|2W [%](x, p)dp.

In the statistical physics terminology, fixing the density, current, and energy amounts
to consider equilibria in the microcanonical ensemble. The feasible set A in (1) then
consists in density operators % such that n[%], u[%], and w[%] are given functions. Note
that the constraints are local in x, and not global as is often found in the literature, see
e.g. [6]. In other words, the number of particles (as well as the current and the energy)
is fixed at each point x of space, rather than prescribing the total number of particles
in the system.

Our main objective in this work is to derive a representation formula such as the
Maxwellian (3) for the minimizers solution to (1). The problem is considerably more
difficult than in the classical case since the solution is now an operator, which depends
nonlocally and implicitly on the constraints. The formal solution %? to (1) reads

%? = e−H? , (5)

for an appropriate self-consistent HamiltonianH? ≡ H[%?] which depends on the solution
%?. Our main result is a rigorous formulation of (5). We will show that the eigenval-
ues and eigenfunctions of %? are the solutions to a nonlinear self-consistent eigenvalue
problem. The fact that (1) admits a unique solution under local constraints of density,
current and energy is established in [8] for a bounded one-dimensional spatial domain.
The Rd case is still an open problem, and we will therefore only focus here on the char-
acterization of the minimizer in 1D. The justification of (5) in the context of a density
constraint only (i.e. only n[%] is prescribed and not u[%] and w[%]) was done in [14] in a
1D bounded domain, and later extended to Rd in [7]. The existence and uniqueness of
a minimizer solution to (1) under constraints of density and current was established in
[15] in Rd. The fact that the energy constraint is harder to handle than the two others is
related to compactness issues, see [8]. Regarding the quantum Liouville-BGK equation,
it is shown in [16] that (4) admits a solution in 1D when the equilibrium is obtained
under a density constraint. The diffusion model obtained in the limit τ → 0 is studied
in [18]. See [10, 9] for more references on quantum hydrodynamics.

One of the main difficulties in the characterization of the minimizer is to properly
parametrize the feasible set in order to derive the Euler-Lagrange equation. Indeed,
operators in the feasible set must be (i) self-adjoint, (ii) positive, (iii) trace class, and
have fixed local (iv) density, (v) current, and (vi) energy. Items (i) and (iii) are some-
what direct to enforce, while (v) is easily handled by a change of gauge (at least in 1D).
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Items (ii)-(iv)-(vi) together are the most difficult to satisfy. In particular, additive per-
turbations found in standard differential calculus only provide here inequalities because
of (ii). We will then construct a fine parameterization of the feasible set by choosing
perturbations of the minimizer that are both additive and multiplicative, and by using
the implicit function theorem in Banach spaces to conclude.

The paper is structured as follows: in Section 2, we introduce the setup and state
our main result. Section 3 is devoted to the proof of our main theorem and is divided
into four steps. In Section 4, we give some proofs that were postponed in the previous
section.

Acknowledgement. OP is supported by NSF CAREER grant DMS-1452349.

2 Main result

Before stating our main result, we need to introduce some notation and the functional
setting.

Notation. Our spatial domain is Ω = [0, 1]. We will denote by Lr , r ∈ [1,∞], the
usual Lebesgue spaces of complex-valued functions on Ω, and by W k,r the standard
Sobolev spaces. We introduce as well Hk = W k,2, and 〈·, ·〉 for the Hermitian product
on L2 with the convention 〈f, g〉 =

∫
Ω
f ∗gdx. We will use the notations ∇ = d/dx and

∆ = d2/dx2 for brevity. The free Hamiltonian −1
2
∆ is denoted by H0, with domain

H2
Neu =

{
u ∈ H2 : ∇u(0) = ∇u(1) = 0

}
.

Moreover, L(L2) is the space of bounded operators, J1 ≡ J1(L2) is the space of trace
class operators, and J2 the space of Hilbert-Schmidt operators, all on L2. Tr(·) denotes
operator trace. In the sequel, we will refer to a density operator as a positive, trace
class, self-adjoint operator on L2. For %∗ the adjoint of % and |%| =

√
%∗%, we introduce

the following space:

E =
{
% ∈ J1 :

√
H0|%|

√
H0 ∈ J1

}
,

where
√
H0|%|

√
H0 denotes the extension of the operator

√
H0|%|

√
H0 to L2. The domain

of
√
H0 is H1. We will often drop the extension sign in the sequel to ease notation, and

keep it when it is relevant. The space E is a Banach space when endowed with the norm

‖%‖E = Tr
(
|%|
)

+ Tr
(√

H0|%|
√
H0

)
.

The energy space is the following closed convex subspace of E :

E+ = {% ∈ E : % ≥ 0} .

The eigenvalues of a density operator are counted with multiplicity, and form a non-
increasing sequence, converging to zero if the sequence is infinite. The notation a . b
stands for a ≤ Cb, where C is a constant independent of a and b.
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Setting of the problem. The first three moments of a density operator % are defined
in terms of % and not its Wigner function as follows: for any smooth function ϕ on Ω,
and identifying a function with its associated multiplication operator, the (local) density
n[%], current n[%]u[%] and energy w[%] of % are uniquely defined by duality by∫

Ω

n[%]ϕdx = Tr
(
%ϕ
)
,

∫
Ω

n[%]u[%]ϕdx = −iTr

(
%

(
ϕ∇+

1

2
∇ϕ
))

∫
Ω

w[%]ϕdx = −1

2
Tr

(
%

(
∇ϕ∇+

1

4
∆ϕ

))
.

Denote by {ρp, φp}p∈N the spectral elements of a density operator % (the number of
nonzero eigenvalues might be finite or not), and let

k[%] = −n[∇%∇] =
∑
p∈N

ρp|∇φp|2.

A short calculation shows that

w[%] =
1

2

(
k[%]− 1

4
∆n[%]

)
.

Hence, since n[%] is prescribed, we can equivalently set a constraint on w[%] or on k[%],
and we choose k[%] since it is positive. Note also the classical (formal) relations

n[%] =
∑
p∈N

ρp|φp|2, j[%] = n[%]u[%] = =

(∑
p∈N

ρpφ
∗
p∇φp

)
. (6)

Remark 2.1 Let % ∈ E+ with eigenvalues {ρp}p∈N and eigenvectors {φp}p∈N. Then

n[%] =
∑
p∈N

ρp|φp|2, k[%] =
∑
p∈N

ρp|∇φp|2,

with convergence in L1 and almost everywhere. The density n[%] is bounded since % ∈ E+

implies that ∇
√
n[%] ∈ L2 according to the inequality

‖∇
√
n[%]‖2

L2 ≤ ‖%‖E ,

and a Sobolev embedding gives n[%] ∈ L∞.

For % ∈ E+, we denote the entropy of % by

S(%) = Tr(s(%)),

where s(x) = x log x− x is the Boltzmann entropy. The entropy S is referred to as the
von Neumann entropy [20]. We define the set of admissible contraints

M =
{

(n0, u0, k0) ∈
(
L1
)3

: n0 = n[%], u0 = u[%], k0 = k[%], for some % ∈ E+
}
,

that is the set of functions (n0, u0, k0) such that there is at least one density operator in
E with local density, current, and kinetic energy given by (n0, u0, k0). The structure of

5



M is unknown as of now, but this is not an issue for us since in our problem of interest,
the constraints are always in M as originating from the solution % to the quantum
Liouville-BGK equation (4). For the constraints n0, u0 and k0 inM, we then define the
feasible set

A(n0, u0, k0) =
{
% ∈ E+ : n[%] = n0, u[%] = u0, k[%] = k0

}
.

Remark 2.2 Constraints in the admissible setM satisfy some compatibility conditions.
Let indeed % ∈ E+. Then,

k[%] ≥ n[%]|u[%]|2 +
∣∣∣∇√n[%]

∣∣∣2 . (7)

To see this, we remark that

1

2
∇n[%] =

∑
p∈N

ρp<
(
φ∗p∇φp

)
and j[%] = n[%]u[%] =

∑
p∈N

ρp=
(
φ∗p∇φp

)
, (8)

where both series converge in L1 and a.e. according to Remark 2.1, and, thus, we deduce
that

1

2
∇n[%] + ij[%] =

∑
p∈N

ρpφ
∗
p∇φp.

It follows that, by the Cauchy-Schwarz inequality,

1

4
|∇n[%]|2 + |j[%]|2 =

∣∣∣∣12∇n[%] + ij[%]

∣∣∣∣2 =

∣∣∣∣∣∑
p∈N

ρpφ
∗
p∇φp

∣∣∣∣∣
2

≤

(∑
p∈N

ρp|φp|2
)(∑

p∈N

ρp|∇φp|2
)

= n[%]k[%],

which yields (7).

The fact that S admits a unique minimizer in A(n0, u0, k0) was proven in [8]. The
result is the following:

Theorem 2.3 Suppose that (n0, u0, k0) ∈ M, where ∆n0 ∈ L2 with n0 > 0, u0 ∈ L2.
Then, the constrained minimization problem

min
A(n0,u0,k0)

S(%)

admits a unique solution. If ‖k0‖L1 = ‖∇√n0‖2
L2 + ‖√n0u0‖2

L2, then the solution is

ei
∫ x
0 u0(y)dy|

√
n0〉〈
√
n0|e−i

∫ x
0 u0(y)dy.

Note that Theorem 2.3 was obtained in [8] for periodic boundary conditions. The
proof immediately generalizes to the Neumann conditions that we chose here since they
somewhat simplify some technicalities. Indeed, Neumann and periodic boundary con-
ditions share the property that the ground state of the associated free Hamiltonian H0
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can be chosen to be strictly positive, which is essential to the proof in [8]. Up to a
change of the domains of H0 and

√
H0, the proof in [8] is idendical.

The main result of this paper is the characterization of the minimizer of Theorem
2.3. Since the spatial domain is one-dimensional, we can actually treat the current
constraint by a simple change a gauge and not consider it in the minimization. Suppose
indeed that we can characterize the minimizer of S, denoted %?, in the set

A(n, k) =
{
% ∈ E+ : n[%] = n, k[%] = k

}
,

where (n, k) ∈M0 with

M0 =
{

(n0, k0) ∈
(
L1
)3

: n0 = n[%], k0 = k[%], for some % ∈ E+
}
.

Suppose in addition that u[%?] = 0. Then, we claim that the minimizer in A(n0, u0, k0),
for n = n0 and k = k0 − n0u

2
0, is

%̃? = ei
∫ x
0 u0(y)dy%? e

−i
∫ x
0 u0(y)dy.

We have indeed, for any % ∈ E+,

j
[
ei

∫ x
0 u0(y)dy % e−i

∫ x
0 u0(y)dy

]
= j[%] + n[%]u0

k
[
ei

∫ x
0 u0(y)dy % e−i

∫ x
0 u0(y)dy

]
= k[%] + n[%]u2

0 + 2n[%]u[%]u0, (9)

and therefore, since u[%?] = 0, it follows that j[%̃?] = n0u0 and k[%̃?] = k0. This shows
that %̃? satisfies the constraints (n0, u0, k0). It is the minimizer since on the one hand,

min
A(n,0,k)

S(%) = min
A(n,k)

S(%) = S(%?),

since A(n, 0, k) ⊂ A(n, k) and u[%?] = 0, and on the other, denoting for the moment by
σ? the minimizer in A(n0, u0, k0),

S(%̃?) ≥ S(σ?) = S(e−i
∫ x
0 u0(y)dyσ?e

i
∫ x
0 u0(y)dy) ≥ min

A(n,0,k)
S(%) = S(%?) = S(%̃?).

Above, we used that unitary equivalent operators have the same eigenvalues and there-
fore the same entropy, and that e−i

∫ x
0 u0(y)dyσ?e

i
∫ x
0 u0(y)dy ∈ A(n, 0, k). Hence,

S(%̃?) = S(σ?),

and since the minimizer is unique, we conclude that %̃? = σ?. Note that (n0, u0, k0) ∈M
implies that (n, k) ∈M0. Indeed, if (n0, u0, k0) are the moments of %0 ∈ E+, then (n, k)
are the density and energy of e−i

∫ x
0 u0(y)dy%0e

i
∫ x
0 u0(y)dy according to (9).

From now on, we only consider the minimization problem in A(n, k). We make the
following assumptions on (n, k) ∈M0.
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Assumptions A. Let

a(x) =

(
k(x)−

∣∣∣∇√n(x)
∣∣∣2)−1

, (10)

and denote
nm = min

x∈[0,1]
n(x).

We assume that

1.
√
n ∈ H1, ∆n ∈ L2, and nm > 0,

2. k ∈ L∞,

3. there exists aM > 0 such that a−1(x) > a−1
M > 0 a.e.

Under Assumptions A, S admits a unique minimizer %? in A(n, k) (this is a direct
adaptation of Theorem 2.3). And because of item 3, this minimizer is not simply
|√n0〉〈

√
n0|.

Main result. We introduce first the following, for {ρp}p∈N and {φp}p∈N the eigenvalues
and eigenvectors of %?:

K0(x, y) = 2<
∑
p∈N

ρpφ
∗
p(x)∇φp(y), K(x, y) =

K0(x, y)

2n(x)
+
a(x)∇n(x)

4n(x)
∇xK0(x, y), (11)

for any (x, y) ∈ Ω×Ω, where a is defined in (10) and n is the constraint. Note that the
series defining K0 and ∇xK0 converge almost everywhere according to Remark 2.1, and
that we have the estimates |K0(x, y)| ≤ 2

√
n(x) k(y) and |∇xK0(x, y)| ≤ 2

√
k(x) k(y),

x, y a.e. in Ω × Ω. Since both n and k are bounded according to Assumptions A, it
follows that K0 and ∇xK0 belong to L∞ × L∞. Moreover, since a, ∇n (since k ∈ L∞)
and n−1 are bounded according to Assumptions A, it follows that K ∈ L∞ × L∞. For
an arbitrary kernel N ∈ L2×L2, we then define the integral operator LN and its adjoint
L∗N by, for all ϕ ∈ L2 and for any x ∈ Ω,

LNϕ(x) =

∫ x

0

N(x, y)ϕ(y)dy, L∗Nϕ(x) =

∫ 1

x

N(y, x)ϕ(y)dy. (12)

Let also, for every x ∈ Ω,

γ?(x) = 2<
∑
p∈N

ρp∇φp(x)

∫ 1

x

φ∗p(y)

(
log(ρp)−

n[%? log(%?)](y)

n(y)

)
dy, (13)

which will be proved to belong to L∞, and let m? = am0/2 ∈ L∞, where m0 is the
unique solution to the adjoint equation

m0 = L∗Km0 + γ?. (14)
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The facts that the equation above admits a unique solution in L∞and that m? is positive
will be estalished in Sections 4.1 and 3.4. For ϕ, ψ ∈ H1, consider finally the sesquilinear
form

Q?(ψ, ϕ) =

∫ 1

0

n(x)

(
∇

(
ψ∗(x)√
n(x)

)
∇

(
ϕ(x)√
n(x)

))
m?(x)dx+

∫ 1

0

A?(x)ψ∗(x)ϕ(x)dx,

where

A? = −n[%? log(%?)]

n
− m?

n
k.

We will prove further that A? ∈ L∞. That Q? is well-defined on H1 is a consequence of
the facts that n is bounded below and that ∇n ∈ L∞. Our main result is the following:

Theorem 2.4 Let (n, k) ∈ M0 satisfy Assumptions A, and let %? be the unique mini-
mizer of S in A(n, k). Denote by {ρp}p∈N and {φp}p∈N the eigenvalues and eigenfunc-
tions of %?. Then %? is full rank, i.e. ρp > 0 for all p ∈ N, and {ρp}p∈N and {φp}p∈N are
solutions to the self-consistent nonlinear eigenvalue problem

− log(ρp) = min
ϕ∈Kp

Q?(ϕ, ϕ) = Q?(φp, φp), p ∈ N, (15)

where
Kp =

{
ϕ ∈ H1 : ‖ϕ‖L2 = 1 and ϕ ∈ (span{φj}0≤j≤p−1)⊥

}
,

with the convention K0 = {ϕ ∈ H1, ‖ϕ‖L2 = 1}. Morever, the current nu[%?] carried by
%? vanishes.

Theorem 2.4 provides us with a rigorous formulation of the relation (5), where H?

is formally

H? = − 1√
n
∇
(
nm?∇

(
·√
n

))
+ A?.

Note that we establish the fact thatQ? admits minimizers on the subspacesKp by relying
on the original minimization problem, while constructing directly these minimizers from
the form Q? alone seems difficult. The reason for this is that we only have very minimal
information on m?: we only know that m? ≥ 0 and that m? ∈ L∞, and in particular
there is no sufficient information to both use the min-max principle and to prove that
the weighted space

H1
? =

{
ϕ ∈ L2 :

∫ 1

0

|∇ϕ(x)|2m?(x) dx+

∫ 1

0

|ϕ(x)|2dx <∞
}

is complete. It is unclear at this point if improved regularity of the data (n, k) translates
to more regularity on m?. In the same way, the fact that m? = am0/2 is positive is
not a consequence of m0 solving (14), it follows from the original minimization problem,
more precisely from the fact that Q? is bounded from below as a consequence of the
Euler-Lagrange equation. To summarize, the properties of Q? and m? are all inherited
from the original minimization problem, and are difficult, if possible, to establish alone.

Theorem 2.4 can be generalized to other entropies, in particular to the Fermi-Dirac
entropy of the form s(x) = x log(x) + (1−x) log(1−x), which shares the same technical
difficulties as the Boltzmann entropy.

The rest of the paper consists of the proof of Theorem 2.4.
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3 Proof of Theorem 2.4

Outline of the proof. The proof is divided into four steps. In the first step, we
construct a parameterization of the feasible set A(n, k) in order to perturb around the
minimizer and obtain the Euler-Lagrange equation. This is done by using the implicit
function theorem and an appropriate class of perturbations. The second step is the
derivation of the Euler-Lagrange equation. There is a technical difficulty since the
derivative of the entropy s′(x) = log(x) is singular at zero. We will therefore regularize
the entropy and then pass to the limit. The third step consists in proving that %? is full
rank, and is based on a proper use of the Euler-Lagrange equation. In the fourth step,
we finally establish the positivity of m? and the minimization principle (15) of Theorem
2.4.

We start by introducing some notation. For f ∈ L2, consider the bounded operator
Tf : H1 → L∞, defined by

Tfu(x) :=

∫ x

0

f(y)∇u(y)dy.

Furthermore, for ϕ ∈ W 1,∞, let %1 =
√
ρp|ϕ〉〈φp| (we use the standard Dirac bra-ket

notation), where φp is the eigenvector of the minimizer %? associated with the eigenvalue
ρp. With %2 ∈ E+, f = (f2, f3) ∈ L∞ × L∞, t ∈ [−1, 1], we define the operator

L(t, f) = t%1 + f2I + Tf3 , with domain D(L(t, f)) = H1,

and introduce
%(t, f) = (I + L(t, f))(%? + t%2)(I + L∗(t, f)),

where I the identity operator and L∗(t, f) the adjoint of L(t, f) (formal at that stage).
The rationale behind the choice of L(t, f) and %(t, f) is the following: we need first

%(t, f) to be a density operator, and if t%2 is positive, it is clear that %(t, f) is positive
(and therefore self-adjoint). The trace class property is a consequence of the regularity
of f and %1 and will be established further.

We need moreover to impose the density and energy constraints on the two functions
n[%(t, f)] and k[%(t, f)], and with the goal of using the implicit function theorem, it is
natural to introduce two functions f2 and f3 for this. More precisely, the operator f2I
for f2 real-valued acts as multiplication of the local density by f2 since n[f2%] = f2n[%]
for any density operator %; in the same way, Tf3 multiplies the local energy by f3 since
k[Tf3%] = f3k[%]. The variable t will allow us to parametrize the feasible set with some
(f2(t), f3(t)) obtained with the implicit function theorem. The operators %1 and %2

serve as “test operators” in the Euler-Lagrange equation, and provide us both with
independent information. On the one hand, the operator %1 can have an arbitrary sign
and leads to test operators of form %1%? + %?%

∗
1 and to Lemma 3.14. The presence of

%? in the previous expression limits what can infered about the form Q?. On the other
hand, as an additive positive perturbation, %2 leads to a inequality, with now a test
operator independent of %?. This results in particular in Corollary 3.12 and in the fact
that %? is full rank.
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3.1 Step 1: Construction of admissible directions

The next lemma provides us with a proper definition of %(t, f).

Lemma 3.1 Let σ ∈ E+ and f ∈ L∞ × L∞. Then B = (I + L(t, f))
√
σ is bounded,

and (I + L(t, f))σ(I + L∗(t, f)) = BB∗.

Proof. We note first that
√
σL2 ⊂ H1 since ‖

√
σϕ‖H1 ≤ ‖σ‖1/2

E ‖ϕ‖L2 for all ϕ ∈
L2. Hence, (I + L(t, f))

√
σ is bounded since D(L(t, f)) = H1. Furthermore, a direct

calculation shows that, for ρj[σ] and φj[σ] the eigenvalues and eigenfunctions of σ and
ϕ ∈ L2,

√
σ(I + L∗(t, f))ϕ =

∑
j∈N

√
ρj[σ]〈(I + L(t, f))φj[σ], ϕ〉φj[σ],

with convergence in L2. It suffices then to identify the expression of the r.h.s above
with that of ((I+L(t, f))

√
σ)∗ϕ to obtain ((I+L(t, f))

√
σ)∗ =

√
σ(I + L∗(t, f)) . This

concludes the proof since

(I + L(t, f))σ(I + L∗(t, f)) = (I + L(t, f))
√
σ
√
σ(I + L∗(t, f)),

as (I + L(t, f))
√
σ is bounded.

Since both %? and %2 are in E+, we can then interpret %(t, f) as

%(t, f) = A0A
∗
0 + tA1A

∗
1, (16)

where A0 = (I + L(t, f))
√
%? and A1 = (I + L(t, f))

√
%2, both being bounded.

We remark in passing that

n[%1%? + %?%
∗
1] = 2ρ3/2

p <ϕ∗φp, k[%1%? + %?%
∗
1] = 2ρ3/2

p <∇ϕ∗∇φp,

which are both bounded since ϕ ∈ W 1,∞ and
√
ρpφp ∈ W 1,∞ since k ∈ L∞.

The main result of this section is the following:

Proposition 3.2 (Parameterization of the feasible set). Suppose %2 = 0, (resp. %1 = 0,
k[%2] ∈ L∞). Then, there exists t0 > 0 and f ∈ C1((−t0, t0),W 1,∞ × L∞) (resp.
C1([0, t0),W 1,∞ × L∞)) such that %(t, f(t)) ∈ A(n, k) for all t ∈ (−t0, t0) (resp. t ∈
[0, t0)). Moreover, the derivatives at t = 0, f ′2(0) and f ′3(0) verify n1 + n2 + 2f ′2(0)n+ LK0f

′
3(0) = 0,

f ′3(0) = LKf ′3(0) + b,
(17)

where LK, LK0 are defined in (11)-(12), n1 = n[%1%?+%?%
∗
1] ∈ L∞, k1 = k[%1%?+%?%

∗
1] ∈

L∞, n2 = n[%2] ∈ L∞, k2 = k[%2] ∈ L∞, and

b =
n1 + n2

2n
− a

2

(
k1 + k2 −

∇
√
n√
n
∇(n1 + n2)

)
.

Finally, %(t, f(t)) ∈ C1((−t0, t0),J1) (resp. C1([0, t0),J1)).

The proof of Proposition 3.2 is fairly long and is postponed to Section 4.1.
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3.2 Step 2: The Euler-Lagrange equation

Regularization. We have constructed a proper parameterization of the feasible set in
the last section, and are now in position to derive the Euler-Lagrange equation. There is
a technical issue since the derivative of the entropy is singular at x = 0, and it is unclear
how to proceed without regularization. We then consider the smoothed entropy, for
η ∈ (0, 1],

sη(x) = (x+ η) log(x+ η)− x− η log(η), x ∈ R+,

with Sη(%) = Tr(sη(%)) for % ∈ E+. By adapting the techniques of [8] used in the proof
of Theorem 2.3, it can be shown that Sη admits a unique minimizer %?,η in A(n, k),
and we denote by {ρp,η}p∈N the nonincreasing sequence of eigenvalues of %?,η, and by
{φp,η}p∈N the associated eigenfunctions.

Proposition 3.2 applies to %?,η, and we denote by %η(t, f(t)) the corresponding per-
turbed operator with %1 = %1,η =

√
ρp,η|ϕ〉〈φp,η| (note that f depends on η but this fact

is omitted to alleviate notation). We set %2 = 0 in %η(t, f(t)) until further notice, and
then consider the function Fη : (−t0, t0) → R given by (t0 is the one coming from the
version of Proposition 3.2 for %?,η and depends on η),

Fη(t) = Tr
(
sη(%η(t, f(t)))

)
.

Before deriving the Euler equation for the regularized problem, we state the two
lemmas below, proved in Sections 4.2 and 4.3.

Lemma 3.3 The operator %?,η log(%?,η+η) is trace class, and there exists C independent
of η such that

‖n[%?,η log(%?,η + η)]‖L∞ ≤ C.

The second lemma concerns Fη.

Lemma 3.4 The function Fη belongs to C1((−t0, t0)), and we have

dFη(t)

dt

∣∣∣∣
t=0

= Tr
(
%?,η log(%?,η+η)(%1,η+%∗1,η)

)
−
〈
n[%?,η log(%?,η + η)]

n
, n1,η

〉
+〈γη, f ′3(0)〉,

where n1,η = n[%1%?,η + %?,η%
∗
1],

γη(x) = 2<
∑
j∈N

ρj,η∇φj,η(x)

∫ 1

x

φ∗j,η(y)

(
log(ρj,η + η)− n[%?,η log(%?,η + η)](y)

n(y)

)
dy,

and γη ∈ L∞.

The Euler-Lagrange equation for the regularized problem. In the lemma be-
low, L∗Kη is defined in (11)-(12), with K0 replaced by K0,η in (12), and K0,η is defined as
K0 with ρj,η and φj,η in place of the eigenvalues and eigenvectors of %?. With Remark
2.1, we can show that as K, Kη is bounded, with the estimate

‖Kη‖L∞×L∞ . ‖n‖L∞ + ‖k‖L∞ . (18)
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Lemma 3.5 (Euler-Lagrange for the regularized problem). For the γη ∈ L∞ defined in
Lemma 3.4, the adjoint problem

m0,η = L∗Kηm0,η − γη, (19)

admits a unique solution m0,η ∈ L∞. Introducing mη = am0,η/2, where a is defined in
(10), we have the Euler-Lagrange equation

Tr
(
%?,η log(%?,η + η)(%1,η + %∗1,η)

)
+ 〈mη, k1,η〉+ 〈Aη, n1,η〉

+

〈
mη
|∇
√
n|2

n
, n1,η

〉
−
〈
mη,
∇
√
n√
n
∇n1

〉
= 0, (20)

where

Aη = −n[%?,η log(%?,η + η)]

n
− k

n
mη,

and n1,η = n[%1%?,η + %?,η%
∗
1] ∈ L∞, k1,η = k[%1%?,η + %?,η%

∗
1] ∈ L∞.

Proof. Since %η(t, f(t)) ∈ A(n, k) for all t ∈ (−t0, t0), and %η(0, f(0)) = %?,η is the
minimizer of Sη in A(n, k), we have, since Fη is continuously differentiable on (−t0, t0)
according to Lemma 3.4,

dFη(t)

dt

∣∣∣∣
t=0

= 0.

With Lemma 3.4, this yields

Tr
(
%?,η log(%?,η + η)(%1,η + %∗1,η)

)
−
〈
n[%?,η log(%?,η + η)]

n
, n1,η

〉
+ 〈γη, f ′3(0)〉 = 0.

That (19) admits a unique solution in L∞ is a consequence of Lemma 4.4 further since
Kη and γη are bounded. Then, using (17) in Proposition 3.2, we simply remark that

〈γη, f ′3(0)〉 = −〈m0,η, f
′
3(0)− LKηf ′3(0)〉 = −〈m0,η, b〉

= −
〈
m0,η,

n1,η

2n
− a

2

(
k1,η −

∇
√
n√
n
∇n1,η

)〉
= 〈mη, k1,η〉 −

〈mη

n
(k − |∇

√
n|2), n1,η

〉
−
〈
mη,
∇
√
n√
n
∇n1,η

〉
,

where we recall that a−1 = k − |∇
√
n|2. This ends the proof.

Passing to the limit. We now pass to the limit η → 0 in (20) to obtain the Euler-
Lagrange equation for %?. We will need for this the following lemma, proved in Section
4.4.

Lemma 3.6 Let {η`}`∈N ⊂ (0, 1] be a sequence converging to 0 and denote %` = %?,η`.
Then:

1. {%`}`∈N converges to %? in J1, and {√%`}`∈N converges to
√
%? in J2.

2. {
√
H0
√
%`}`∈N converges to

√
H0
√
%? in J2.
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3. for any p ∈ N, the eigenvalues {ρp,η`}`∈N converge to ρp.

4. there exist a sequence of orthonormal eigenbasis {φp,η`}p,`∈N of %?,η`, and an or-
thonormal eigenbasis {φp}p∈N of %? such that, for any p ∈ N,

• {φp,η`}`∈N converges to φp in L2,

• {√ρp,η`∇φp,η`}`∈N converges to
√
ρp∇φp in L2.

5. {%` log(%` + η`)}`∈N converges to %? log(%?) in J1.

6. {√%` log(%` + η`)}`∈N converges to
√
%? log(%?) in L(L2).

Following Lemma 3.6, we suppose that the basis of eigenvectors that we were using
for %? is the one from item (4). We are now in position to establish the next results. In
the rest of the section, {η`}`∈N ⊂ (0, 1] is a sequence such that η` → 0 as `→∞.

Lemma 3.7 Kη` converges to K in L2 × L2 and γη` converges to γ? in L2, where γ? is
defined in (13).

Proof. Write
Kη −K = G1,η +G2,η,

where

G1,η(x, y) =
1

2n(x)
(K0,η(x, y)−K0(x, y))

G2,η(x, y) =
a(x)∇

√
n(x)

2
√
n(x)

(∇xK0,η(x, y)−∇xK0(x, y)) .

Since a,
√
n, n−1 are all bounded, we have the estimates

‖G1,η‖L2×L2 . ‖K0,η −K0‖L2×L2 , ‖G2,η‖L2×L2 . ‖∇xK0,η −∇xK0‖L2×L2 .

Writing K0 = 2<K̃0 and K0,η = 2<K̃0,η(with obvious notation), and remarking that K̃0

and ∇K̃0 (resp. K̃0,η and ∇K̃0,η) are the integral kernels of −%?∇ and −∇%?∇ (resp.
−%?,η∇ and −∇%?,η∇), which are all trace class, we have

‖K̃0,η` − K̃0‖L2×L2 = ‖%?,η`∇− %?∇‖J2 , ‖K̃0,η` − K̃0‖L2×L2 = ‖∇%?,η`∇−∇%?∇‖J2 .

Since %?,η∇ = (∇%?,η)∗, since moreover
√
%?,η` converges to

√
%? in J2 according to

Lemma 3.6 (1), and ∇√%?,η` converges to ∇√%? in J2 according to Lemma 3.6 (2)

(to see this, write e.g. ∇√%?,η` = ∇(I +
√
H0)−1(I +

√
H0)
√
%?,η`), both terms above

converge to zero. This proves the first result on Kη` . For the second one, we write

γη = c1,η + c2,η,

where

c1,η(x) = −2<
∫ 1

x

K1,η(x, y)dy, c2,η(x) = −2<
∫ 1

x

K2,η(x, y)
n[%?,η log(%?,η + η)]

n
(y)dy
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with

K1,η(x, y) =
∑
j∈N

ρj,η log(ρj,η+η)∇φj,η(x)φ∗j,η(y), K2,η(x, y) =
∑
j∈N

ρj,η∇φj,η(x)φ∗j,η(y).

We remark that K1,η and K2,η are the integral kernels of ∇%?,η log(%?,η + η) and ∇%?,η.
These two operators are in J2 since ∇%?,η log(%?,η + η) = ∇√%?,η

√
%?,η log(%?,η + η),

with ∇√%?,η ∈ J2,
√
%?,η log(%?,η + η) and

√
%?,η bounded. We already know that

∇√%?,ηk converges to ∇√%? in J2, which, together with Lemma 3.6 (6), shows that
K1,ηk converges in L2 × L2 to the kernel K1 of ∇%? log(%?). Hence,

lim
`→∞

c1,η` = c1 = −2<
∫ 1

x

K1(x, y)dy, in L2.

In the same way, since K2,ηk converges in L2 × L2 to K2 the kernel of ∇%?,

lim
`→∞

c2,η` = lim
`→∞

c′2,η` := −2 lim
`→∞
<
∫ 1

x

K2(x, y)
n[%?,η` log(%?,η` + η)]

n
(y)dy, in L2.

To conclude, we deduce from Lemma 3.6 (5) and Lemma 3.3 that n[%?,η` log(%?,η` + η`)]
converges weakly-∗ in L∞ to n[%? log(%?)]. Since K2 ∈ L2 × L2, we can conclude that
c′2,η` converges strongly in L2 to

−2<
∫ 1

x

K2(x, y)
n[%? log(%?)]

n
(y)dy.

This ends the proof.

We have all needed now to pass to the limit in (20) and obtain the Euler-Lagrange
equation for %?.

Proposition 3.8 (Euler-Lagrange equation). For γ? ∈ L∞ defined in (13), the adjoint
problem

m0 = L∗Km0 − γ?, (21)

admits a unique solution in L∞. With m? = am0/2, we have the Euler-Lagrange equa-
tion

Tr
(
%? log(%?)(%1 +%∗1)

)
+〈m?, k1〉+〈A?, n1〉+

〈
m?
|∇
√
n|2

n
, n1

〉
−
〈
m?,
∇
√
n√
n
∇n1

〉
= 0,

(22)
where

A? = −n[%? log(%?)]

n
− k

n
m?,

and n1 = n[%1%? + %?%
∗
1] ∈ L∞, k1 = k[%1%? + %?%

∗
1] ∈ L∞.

Proof. We denote %` = %?,η` . We remark first that (21) has a unique solution
m0 ∈ L∞ according to Lemma 4.4 since K ∈ L∞ × L∞ and γ? ∈ L∞. The first step of
the proof consists in taking the limit of mη` , and the second one to pass to the limit in
(20).
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Step 1: Consider m0,` = m0,η` which is the solution of (19). Taking the difference
between (19) and (21), we have

m0,` −m0 = L∗Kη` (m0,` −m0) + L∗Kη`−Km0 + γη` − γ?.

Since K is bounded and Kη` verifies (18), estimate (38) yields

‖m0,` −m0‖L2 . ‖L∗Kη`−Km0‖L2 + ‖γη` − γ?‖L2 .

Since ‖L∗Kη`−Km0‖L2 ≤ ‖Kη` − K‖L2×L2‖m0‖L2 , it follows from Lemma 3.7 that m0,`

converges to m in L2.
Step 2: We pass now to the limit in (20). Recalling that %1,η` =

√
ρp,η` |ϕ〉〈φp,`|, we

conclude from Lemma 3.6 (3) and (4) that %1,η` converges to %1 =
√
ρp|ϕ〉〈φp| in L(L2).

Lemma 3.6 (5) then yields

lim
`→∞

Tr
(
%` log(%` + η`)%1,`

)
= Tr

(
%? log(%?)%1

)
.

Moreover, Lemma 3.6 (5) shows that n[%k log(%k + ηk)] converges to n[% log(%)] in L1,
and because of Lemma 3.3, the convergence holds also weakly-∗ in L∞. This shows that
Aηk converges to A weakly-∗ in L∞. Finally, with

n1,η = 2ρ3/2
p,η <ϕ∗φp,η, k1,η = 2ρ3/2

p,η <∇ϕ∗∇φp,η,

and Lemma 3.6 (3)-(4), it follows that k1,η` converges to k1 in L2 and that n1,η` con-
verges to n1 in H1. With the fact that ∇

√
n/n is bounded, we have therefore sufficient

compactness to pass to the limit in (20) to recover (22). This ends the proof.

Remark 3.9 A by-product of the proof of Proposition 3.8 is that that mη` converges to
m? in L2, and that Aη` converges to A? in L1 and weakly-∗ in L∞. We will use these
facts further.

We prove in the next section that %? is full rank.

3.3 Step 3: The minimizer is full rank

Let ψ, ϕ ∈ H1, and define

Q?,η(ψ, ϕ) =

∫ 1

0

n(x)

(
∇

(
ψ∗(x)√
n(x)

)
∇

(
ϕ(x)√
n(x)

))
mη(x)dx+

∫ 1

0

Aη(x)ψ∗(x)ϕ(x)dx.

The fact that

n(x)

(
∇

(
ψ∗(x)√
n(x)

)
· ∇

(
ϕ(x)√
n(x)

))
= ∇ψ∗(x)∇ϕ(x) +

∣∣∣∣∣∇
√
n(x)√
n(x)

∣∣∣∣∣
2

ψ∗(x)ϕ(x)

−
∇
√
n(x)√
n(x)

· ∇ (ψ∗(x)ϕ(x)) ,

yields

〈mη,∇ψ∗∇ϕ〉+ 〈Aη, ψ∗ϕ〉+

〈
mη
|∇
√
n|2

n
, ψ∗ϕ

〉
−
〈
mη,
∇
√
n√
n
∇(ψ∗ϕ)

〉
= Q?,η(ψ, ϕ).

The following result is central in proving the full rank character.
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Proposition 3.10 Let ψ ∈ W 1,∞ and consider the rank one operator

P = |ψ〉〈ψ|.

Then, for any η ∈ (0, 1/2), the following inequality holds

Tr
(

log(%?,η + η)P
)

+Q?,η(ψ, ψ) ≥ 0. (23)

Proof. The proof is almost identical to (20), with the following differences: we set
%1 = 0, and %2 = P ; with such a choice %η(t, f(t)) belongs to the feasible set A(n, k) for
for positive t ∈ [0, t0) only. We therefore have now the inequality

lim
t→0+

Fη(t)− Fη(0)

t
≥ 0,

and not an equality. Replacing then %1,η + %∗1,η by P , n1,η by |ψ|2, and k1,η by |∇ψ|2 in
(20), and the equality by an inequality, we obtain (23).

We can now prove that the minimizer is full rank.

Proposition 3.11 The kernel of the minimizer %? is {0}.

Proof. The proof is based on a contradiction argument, as in [14, Section 5], by
differentiating in a direction related to a nonzero eigenfunction in the kernel of %?.
Step 1: We assume that the kernel of %? is not {0}, and consider an orthonormal basis
{ψp}p∈I of Ker (%?) (I may be empty, finite or infinite, and we write |I| for its cardinal).
Then, we denote by {ρj}1≤j≤N the nonincreasing sequence of nonzero eigenvalues of
%? (here N is finite or not), associated to the orthonormal family of eigenfunctions
{φj}1≤j≤N . We thus obtain a Hilbert basis {{ψj}1≤j≤|I|, {φj}1≤j≤N} of L2. Pick then
for instance ψ1, that we denote for simplicity by ψ. At this point, we only know that ψ
belongs in L2, which is not sufficient for our purpose. We regularize it by letting

ψε = (1 + εH0)−1ψ,

for any ε > 0. It follows that ψε ∈ H2 ⊂ W 1,∞, and ψε → ψ in L2.
Step 2: We now consider a sequence {η`}`∈N ⊂ (0, 1/2) such that η` → 0 as ` →
+∞. By using Lemma 3.6, we know that there exists a sequence of eigenfunctions
{ψj,`}1≤j≤|I|,`∈N of {%?,η`}`∈N, associated to a sequence of eigenvalues {λj,`}1≤j≤|I|,`∈N,
such that, for any 1 ≤ j ≤ |I|,

ψj,` →
`→∞

ψj and λj,` →
`→∞

0.

For clarity, we simply denote ψ` = ψ1,` and λ` = λ1,`. It can be shown with Remark
3.9 that Q?,η`(ψε, ψε) → Q?(ψε, ψε) when ` → ∞, and as a consequence, there exists
`1(ε) ∈ N such that

Q?,η`(ψε, ψε) ≤ |Q?(ψε, ψε)|+ 1,
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for any ` ≥ `1(ε). Furthermore, for Pε = |ψε〉〈ψε|, we have

Tr
(

log(%?,η` + η`)Pε
)

= log(λ` + η`)|〈ψε, ψ`〉|2 +

|I|∑
j=2

log(λj,` + η`)|〈ψε, ψj,η`〉|2

+
N∑
j=1

log(ρj,η` + η`)|〈ψε, φj,η`〉|2,

and there exists a `2 ≥ `1(ε) such that log(λ` + η`) ≤ 0 and log(ρN0,η` + η`) ≤ 0 for any
` ≥ `2 and a certain N0 ∈ N. This yields, for all ` ≥ `2,

Tr
(

log(%?,η` + η`)Pε
)
≤ log(λ` + η`)|〈ψε, ψ`〉|2 +

N0∑
j=1

log(ρj,η` + η`)|〈ψε, φj,η`〉|2.

Remarking that

|〈ψε, ψ〉| ≥ ‖ψ‖2
L2 − |〈ψε − ψ, ψ〉| ≥ 1− ‖ψε − ψ‖L2 ,

there exists ε0 ∈ (0, 1) such that |〈ψε, ψ〉| ≥ 1/2 for all ε ∈ (0, ε0). Moreover, since
ψ` → ψ as ` → ∞ in L2 and ‖ψε‖L2 ≤ ‖ψ‖L2 , there exists a `3 ≥ `2 such that
|〈ψε, ψ`〉| ≥ 1/4 for any ε ∈ (0, ε0) and any ` ≥ `3. Hence, for any ε ∈ (0, ε0) and ` ≥ `3,
we obtain that

Tr
(

log(%?,η` + η`)Pε
)
≤ 1

16
log(λ` + η`) + log(M + 1/2)

N0∑
j=1

|〈ψε, φj,η`〉|2,

where M = Tr(%?,η`) = ‖n‖L1 is such that ρj,η` ≤ M for all j and `. Thus, we deduce
the following inequality, for any ε ∈ (0, ε0) and ` ≥ `3,

Tr
(

log(%?,η` + η`)Pε
)

+Q?,η`(ψε, ψε) ≤
1

16
log(λ` + η`) + log(M + 1/2)‖ψε‖2

L2

+ |Qm(ψε, ψε)|+ 1.

This contradicts (23) by taking ` sufficiently large to make the r.h.s of the previous
inequality negative. This ends the proof.

Let

G?(ϕ) = −
∑
j∈N

log(ρj)|(φj, ϕ)|2,

where ρj and φj are the eigenvalues and eigenfunctions of %?. Note that log(ρj) is well-
defined according to the previous proposition. Sending η to zero in Proposition 3.10
gives the result below.

Corollary 3.12 Let ϕ ∈ H1. Then, we have

G?(ϕ) ≤ Q?(ϕ, ϕ). (24)
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Proof. We start from (23) and need to regularize ϕ. Let then ϕε = (I + εH0)−1ϕ ∈
H2 ⊂ W 1,∞. With Pε = |ϕε〉〈ϕε|, we have

Tr
(

log(%?,η` + η)Pε
)

=
+∞∑
j=1

log(ρj,η` + η`)|〈φj,η` , ϕε〉|2.

Let N0 = argmin {j ∈ N; − log(ρj + 1/2) > 0}. Since ρN0,η` converges to ρN0 according
to Lemma 3.6 (3), there is an `0 such that − log(ρN0,η` + 1/2) > 0 for ` ≥ `0. Then,
using Fatou’s lemma and Lemma 3.6 (3)-(4), we obtain that

lim inf
`→∞

+∞∑
j=N0

− log(ρj,η` + η)|(φj,η` , ϕε)|2 ≥
+∞∑
j=N0

− log(ρj)|(φj, ϕε)|2.

Moreover, Remark 3.9 implies that

Q?,η`(ϕε, ϕε) →
`→∞
Q?(ϕε, ϕε).

Thus, passing to the limit `→∞ in (23), we obtain the inequality

Q?(ϕε, ϕε) ≥ −
∑
j∈N

log(ρj)|(φj, ϕε)|2.

Since ϕε → ϕ in H1 as ε → 0, and since m?, A? and |∇
√
n|/
√
n are all bounded, we

can pass to the limit in the l.h.s above. Fatou’s lemma finally allows us to pass to the
limit in the r.h.s, which concludes the proof.

3.4 Step 4: Conclusion

To conclude the proof of Theorem 2.4, it remains to obtain the minimization principle
(15), to prove that u[%?] = 0, and that m? is nonnegative. The latter is addressed in
the corollary below, and is a consequence of Proposition 3.12.

Corollary 3.13 m? is nonnegative a.e. on [0, 1].

Proof. We proceed by contradiction. Let

S = {x ∈ (0, 1) : m?(x) < 0 a.e.},

and suppose the Lebesgue measure of S, denoted |S|, is not zero. Since

S =
∞⋃
`=1

{
x ∈ (0, 1) : −m?(x) ≥ `−1 a.e.

}
:=

∞⋃
`=1

S`,

there exists an `0 such that |S`0| > 0. Since m? is only in L∞, we cannot conclude
that S`0 is open. Nevertheless, by outer regularity of the Lebesgue measure, there
exists, for any δ > 0, an open set I such that S`0 ⊂ I and |S`0| ≥ |I| − δ. Let then
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B(ε0) = (x0 − ε0, x0 + ε0) ⊂ I. Consider ϕ ∈ C∞(R) with support in [−1, 1], and for
ε ∈ (0, ε0), introduce

ϕε(x) = ε−1/2ϕ

(
x− x0

ε

)
.

We remark that ‖ϕε‖L2 = ‖ϕ‖L2 . Since ϕε ∈ H1 and {ρj}j∈N is nonincreasing, we have,
from (24) and the fact that n is bounded above and below,

γ ≤ − log(ρ1)‖
√
nϕε‖2 ≤ Q?(

√
nϕε,

√
nϕε), (25)

where γ is finite, positive or negative depending on whether ρ1 < 1 or not. We now
split B(ε) ⊂ B(ε0) ⊂ I into B(ε) = B(ε)∩S`0 +R, where R = {x ∈ B(ε), x /∈ S`0}. By
construction, |R| ≤ δ. Write then∫ 1

0

n|∇ϕε|2m?dx =

∫
B(ε)∩Sn0

n|∇ϕε|2m?dx+

∫
R

n|∇ϕε|2m?dx

= T1 + T2.

We have
|T2| ≤ ε−2‖nm?‖L∞‖∇ϕ‖2

L∞ |R| ≤ C1δε
−2.

Choosing δ = ε2, we find, for some C2 > 0

Q?(
√
nϕε,

√
nϕε) ≤ T1 + C1 + ‖ϕ‖2

L2‖A?‖L∞ ≤ T1 + C2.

Since
T1 ≤ −

nm
`0ε2
‖∇ϕ‖2

L2 = −C4ε
−2, C4 > 0,

where nm = minx∈[0,1] n(x), there exists an ε > 0 sufficient small such thatQ?(
√
nϕε,

√
nϕε)

is less than γ, which contradicts (25). Hence S is of measure zero and the proof is ended.

The first step toward the minimization principle is the next lemma.

Lemma 3.14 Let ϕ ∈ H1. We have

Q?(φj, ϕ) = − log(ρj)〈φj, ϕ〉, ∀j ∈ N. (26)

Proof. We start from (22), and set ϕε = (1 + εH0)−1ϕ ∈ H2 ⊂ W 1,∞. With
%1 =

√
ρj|ϕε〉〈φj|, we find

n1 = n[%1%? + %?%
∗
1] = ρ

3/2
j (φ∗jϕε + ϕ∗εφj) = 2ρ

3/2
j <(φ∗jϕε) ∈ W 1,∞,

and

k1 = k[%1%? + %?%
∗
1] = −n[∇(%1%? + %?%

∗
1)∇] = 2ρ

3/2
j <(∇φ∗j∇ϕε) ∈ L∞.

Hence, by using (22) and the fact that ρj > 0 for all j according to Proposition 3.11,
we can see that

log(ρj)<
∫ 1

0

φ∗j(x)ϕε(x)dx+ < (Q?(φj, ϕε)) = 0.
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Following the same steps with %1 = i
√
ρj|ϕε〉〈φj|, we obtain

log(%j)=
∫ 1

0

φ∗j(x)ϕε(x)dx+ = (Q?(φj, ϕε)) = 0,

which gives, by adding both expressions,

Q?(φj, ϕε) = − log(ρj)〈φj, ϕε〉, ∀j ∈ N.

Since ϕε → ϕ in H1, and since m?, A? and |∇
√
n|/
√
n are all bounded, we can pass to

the limit in the equation above and conclude the proof.

With Lemma 3.14, we can now prove that u[%?] = 0. Choosing indeed ϕ = φjψ in
(26) for ψ real-valued and smooth, and taking the imaginary part, we find

0 = =Q?(φj, φjψ) =

∫ 1

0

=∇φ∗jφjψdx.

Since ψ is arbitrary, this implies that =∇φ∗jφj = 0 and therefore that u[%?] = 0 according
to (6).

Regarding (15), we find from (24), since {ρj}j∈N is a nonincreasing sequence,

− log(ρ1) ≤ inf
ϕ∈H1,‖ϕ‖L2=1

Q?(ϕ, ϕ).

According to Lemma 3.14, we have Q?(φ1, φ1) = − log(ρ1), and therefore the above
infimum is attained at φ1. At any order p > 1, we have, for any ϕ ∈ Kp,

− log(ρp)‖ϕ‖2
L2 ≤ G?(ϕ) ≤ Q?(ϕ, ϕ) so that − log(ρp) ≤ inf

ϕ∈Kp
Q?(ϕ, ϕ),

and, according to Lemma 3.14, the infimum is attained at φp. This proves (15), and
concludes the proof of Theorem 2.4.

4 Other proofs

4.1 Proof of Proposition 3.2

The proof is based on the implicit function theorem, and the first part consists in
establishing some regularity for the perturbation %(t, f). In the entire proof, {ρj}j∈N
and {φj}j∈N are the eigenvalues and eigenfunctions of %?.

Lemma 4.1 Let %1 =
√
ρp|ϕ〉〈φp| for ϕ ∈ W 1,∞ and some p ∈ N, let %2 ∈ E+, and let

f = (f2, f3) ∈ W 1,∞ × L∞. Then %(t, f) ∈ E for all t ∈ [−1, 1].

Proof. Since E is a Banach space, it suffices to show that each term in (16) belongs to
E , and since %? and %2 have identical roles, we only treat the term in %? and set %2 = 0.
We need first to properly define

√
H0%(t, f)

√
H0. This is done in the spirit of Lemma

3.1: first, we remark that∇%1 is bounded since ϕ ∈ W 1,∞; this shows that %1 : L2 → H1,
and subsequently that L(t, f) : H1 → H1 since f2 ∈ W 1,∞. Together with

√
%?L

2 ⊂ H1
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since %? ∈ E+, and with D(
√
H0) = H1, this shows that B =

√
H0(I + L(t, f))

√
%? is

bounded, and therefore that
√
H0%(t, f)

√
H0 is interpreted as BB∗ as in Lemma 3.1.

We now prove that %(t, f) ∈ E , that is (I+L(t, f))
√
%? ∈ J2 and B ∈ J2. According

to [19, Theorem 6.22, item (g)], it suffices to show that there are orthonormal basis
{ψj}j∈N and {ej}j∈N of L2 such that∑
j∈N

‖(I + L(t, f))
√
%?ej‖2

L2 <∞ and
∑
j∈N

‖
√
H0(I + L(t, f))

√
%?ψj‖2

L2 <∞.

Setting ej = ψj = φj , we find

(I + L(t, f))
√
%?φj =

√
ρj(φj + t%1φj + f2φj + Tf3φj) (27)

∇(I + L(t, f))
√
%?φj =

√
ρj(∇φj + t∇%1φj + (f2 + f3)∇φj +∇f2φj). (28)

This leads to, for all t ∈ [−1, 1],∑
j∈N

‖(1 + L(t, f))
√
%?φj‖2

L2 ≤ (1 + ‖%1‖L(L2) + ‖f2‖L∞ + ‖f3‖L∞)2
∑
j∈N

ρj‖φj‖2
H1

. ‖%?‖E < +∞,

showing that %(t, f) is trace class. Regarding the bound in E , we remark that ‖
√
H0ϕ‖L2 =

‖∇ϕ‖L2 for all ϕ ∈ H1, and that, with (28),

‖∇(I + L(t, f))φj‖L2 ≤ (1 + ‖f2‖L∞ + ‖f3‖L∞)‖∇φj‖L2 + (‖∇%1‖L(L2) + ‖∇f2‖L∞)‖φj‖L2

. (1 + ‖f2‖W 1,∞ + ‖f3‖L∞ + ‖∇%1‖L(L2))‖φj‖H1 .

Since we have seen above that ∇%1 is bounded, we deduce, for all t ∈ [−1, 1],∑
j∈N

‖
√
H0(1 + L(t, f))

√
%?φj‖2

L2 .
∑
j∈N

ρj‖φj‖2
H1 < +∞,

leading to %(t, f) ∈ E . This ends the proof.

We now consider the following function

G(t, f) =

G1(t, f)

G2(t, f)

 =

n[%(t, f)]− n

k[%(t, f)]− k

 .

Note that G is well-defined since %(t, f) ∈ E according to the preceding Lemma, and
that G is real-valued since %(t, f) is self-adjoint. In the next lemma, DfG denotes the
differential of G w.r.t f .

Lemma 4.2 Let %1 =
√
ρp|ϕ〉〈φp| for ϕ ∈ W 1,∞ and some p ∈ N, and let %2 ∈ E+ with

k[%2] ∈ L∞. Then:
(i) G is continuously Fréchet differentiable from [−1, 1]× L∞ ×W 1,∞ to L∞ ×W 1,∞.
(ii) DfG(0, 0) is an isomorphism from W 1,∞

r × L∞r to itself, where W 1,∞
r (resp. L∞r ) is

the space of real W 1,∞ (resp. L∞) functions.

22



The proof of Lemma 4.2 is somewhat long and given further. We recall below the
implicit function theorem on Banach spaces.

Theorem 4.3 Let X, Y, Z be three Banach spaces, O an open set of X × Y , and G :
O → Z be a continuously Fréchet differentiable mapping. If (x0, y0) ∈ O, G(x0, y0) = 0
and h 7→ DyG(x0, y0)[h] is a Banach space isomorphism from Y onto Z, then there exist
neighbourhoods U of x0 and V of y0 and a continuously Fréchet differentiable function
f : U → V such that G(x, f(x)) = 0, and G(x, y) = 0 if and only if y = f(x), for all
(x, y) ∈ U × V .

We are now in position to conclude the proof of Proposition 3.2: applying Theorem
4.3 to G(t, f) with x0 = 0, y0 = (0, 0), X = R, Y = Z = W 1,∞

r × L∞r , it follows that
there exists t0 > 0 and f ∈ C1((−t0, t0),W 1,∞

r × L∞r ) (both t0 and f depend on %1 and
%2) such that

n[%(t, f(t))] = n, k[%(t, f(t))] = k.

We then have that %(t, f(t)) ∈ A(n, k) when %(t, f(t)) is positive, which is the case
when %2 = 0 for all t, and when t ≥ 0 when %2 6= 0. Since moreover f is continuously dif-
ferentiable with values inW 1,∞×L∞, it is clear that L(t, f(t)) ∈ C1((−t0, t0),L(H1, L2)),
and as a consequence that ∂t%(t, f(t)) exists for t ∈ (−t0, t0) and is bounded. To obtain
that ∂t%(t, f(t)) is trace class, we proceed as in the proof of Lemma 4.1, and show that
∂tL(t, f(t))

√
%? belongs to J2.

Finally, to obtain the system (17) on f ′2(0) and f ′3(0), we differentiate the equation
G(t, f(t)) = 0, and find at t = 0,

∂tG(0, 0) +DfG(0, 0)[f ′(0)] = 0.

With

∂tG1(0, 0) = n[%1%? + %?%
∗
1] + n[%2], ∂tG2(0, 0) = k[%1%? + %?%

∗
1] + k[%2],

and by following the steps of the proof of (ii) in Lemma 4.2 with n1 +n[%2] and k1 +k[%2]
in place of −z1 and −z2, we recover the desired result and end the proof of Proposition
3.2 provided we prove Lemma 4.2.

Proof of Lemma 4.2. The function G is by construction a second order polynomial
of (t, f2, f3), and as such establishing continuity and differentiability is fairly direct for
functions f as regular as f = (f2, f3) ∈ W 1,∞×L∞. We will then simply prove for item
(i) that G ∈ W 1,∞ × L∞, and, denoting by DfG(t, f)[h] the differential of G w.r.t f
at the point (t, f) in the direction h, that ∂tG(t, f), DfG(t, f)[h] ∈ W 1,∞ × L∞ for any
h ∈ W 1,∞ × L∞, leaving the technical details about continuity and derivability out.

Since %? and %2 have an identical role in (16), we set %2 = 0 until further notice
without lack of generality. We start with the bounds on G. Lemma 4.1 shows that
%(t, f) ∈ E , and as a consequence

√
n[%(t, f)] ∈ H1 since %(t, f) is positive. This

yields n[%(t, f)] ∈ L∞ by a Sobolev embedding. Moreover, since the following pointwise
estimate holds, see Remark 2.2,

|∇n[%(t, f)|] ≤ 2
√
n[%(t, f)]k[%(t, f)],
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it suffices to show that k[%(t, f)] ∈ L∞ to conclude that G ∈ W 1,∞ × L∞. Since
%(t, f) ∈ E , Remark 2.1 shows that

k[%(t, f)] =
∑
j∈N

ρj|∇(1 + L(t, f))φj|2,

with convergence in L1 and almost surely. From (28), we deduce, x a.e.,

|∇(1 + L(t, f))φj| ≤ |∇%1φj|+ (1 + ‖f2‖L∞ + ‖f3‖L∞) |∇φj|+ ‖∇f2‖L∞|φj|. (29)

It is clear that
‖∇%1ϕj‖L∞ . ‖∇ϕ‖L∞ , (30)

and going back to (29), we find the estimate

|∇(1 + L(t, f))φj| . (1 + |φj|+ |∇φj|), a.e. (31)

This yields k[%(t, f)] . 1 + n+ k a.e., and therefore k[%(t, f)] is in L∞ since both n and
k are bounded according to Assumptions A. This yields G ∈ W 1,∞ × L∞.

We now consider the differential of G with respect to f in the direction h = (h2, h3) ∈
W 1,∞ × L∞ and prove some estimates. Direct calculations lead formally to

DfG1(t, f)[h] = 2<
∑
j∈N

ρj ((h2 + Th3)φj)
∗ (1 + L(t, f))φj

DfG2(t, f)[h] = 2<
∑
j∈N

ρj ((∇h2)φj + (h2 + h3)∇φj)∗∇
(
(1 + L(t, f))φj

)
,

where ρj and φj the eigenvalues and eigenfunctions of %?. We show first that the series
above converge almost everywhere. Since |Th3φj| ≤ ‖h3‖L∞‖∇φj‖L2 , we deduce

|(h2 + Th3)φj| ≤ ‖h2‖L∞|φj|+ ‖h3‖L∞‖∇φj‖L2

|∇(h2 + Th3)φj| ≤ ‖∇h2‖L∞|φj|+ (‖h2‖L∞ + ‖h3‖L∞)|∇φj|.

The above inequalities, together with (31), show that DfG1(t, f)[h], ∇DfG1(t, f)[h] and
DfG2(t, f)[h] all converge a.e. according to Remark 2.1. We have moreover the estimate

|DfG1(t, f)[h]|+ |∇DfG1(t, f)[h]|+ |DfG2(t, f)[h]| . 1 + n+ k a.e.,

leading to DfG1(t, f)[h] ∈ W 1,∞ and DfG2(t, f)[h] ∈ L∞ according to Assumptions A.
We now consider the time derivative of G, and do not assume anymore that %2 = 0.

We have formally

∂tG1(t, f) = 2<
∑
j∈N

ρj(%1φj)
∗(1 + L(t, f))φj +

∑
j∈N

ρj[%2]|(1 + L(t, f))φj[%2]|2

∂tG2(t, f) = 2<
∑
j∈N

ρj
(
∇
(
%1φj

))∗∇((1 + L(t, f))φj
)

+
∑
j∈N

ρj[%2]|∇(1 + L(t, f))φj[%2]|2,

and need to prove that the series converge almost everywhere to functions bounded
in W 1,∞ and in L∞, respectively. These facts are easily established by following the
same lines as above, using (27)-(28)-(30)-(31) and substituting (ρj, φj) by (ρj[%2], φj[%2])
when necessary. As mentioned at the beginning of the proof, we do not give more details
about the continuity of G and its derivatives as the proofs are essentially identical to
those of the bounds above. At that stage, we have therefore obtained (i), and we focus
now on (ii).
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Proof of (ii), step 1: We first simplify the expression of the differential. Let h =
(h2, h3) ∈ W 1,∞

r × L∞r . Since L(0, 0) = 0, we find

DfG1(0, 0)[h] = 2<
∑
j∈N

ρj
(
(h2 + Th3)φ

∗
jφj
)

DfG2(0, 0)[h] = 2<
∑
j∈N

ρj∇
(
(h2 + Th3)φ

∗
j

)
∇φj.

Furthermore, we can see that

2<
∑
j∈N

ρj (h2 + Th3)φ
∗
jφj = 2h2n+ LK0h3,

where LK0 is defined in (11)-(12), and, since ∇Th3φ∗j = h3∇φ∗j ,

2<
∑
j∈N

ρj∇
(
(h2 + Th3)φ

∗
j

)
∇φj = 2<

∑
j∈N

ρj((∇h2)φ∗j +∇Th3φ∗j)∇φj + ρjh2|∇φj|2

= 2<
∑
j∈N

ρj(∇h2)φ∗j∇φj + 2ρj(h2 + h3)|∇φj|2

= ∇n∇h2 + 2(h2 + h3)k,

where we used Remark 2.1 and (8). We now show that DfG(0, 0) is invertible.

Proof of (ii), Step 2: Set z = (z1, z2) ∈ W 1,∞
r × L∞r , and consider the equation

DfG(0, 0)[h] = z,

which can be recast as, according to step 1, 2nh2 + LK0h3 = z1,

∇n∇h2 + 2k(h2 + h3) = z2.
(32)

The above system can be reduced to a single equation on h3. Indeed, the first equation
of (32) leads to

h2 = −LK0h3

2n
+
z1

2n
. (33)

Differentiating, using that K0(x, x) = ∇n(x) and ∇LK0ϕ = (∇n)ϕ+ L∇xK0ϕ, we find

∇h2 = −∇n
2n2

(LK0h3 − z1) +
1

2n
(∇z1 − (∇n)h3 − L∇xK0h3) . (34)

With ∇n
2n

= ∇
√
n√
n

and K1(x, y) = − |∇n(x)|2
2n2(x)

K0(x, y)− ∇n(x)
2n(x)
∇xK0(x, y), we deduce

∇n∇h2 = −|∇n|
2

2n

(
h3 +

LK0h3

n

)
− ∇n

2n
L∇xK0h3 +∇n∇

( z1

2n

)
= −|∇

√
n|2

2
h3 − LK1h3 +∇n∇

( z1

2n

)
.
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By substituting the expression of h2 into the second equation of (32), and recalling that

2k − |∇n|
2

2n
= 2k − 2|∇

√
n|2 = 2a−1,

we finally obtain

k

n
z1 +∇n∇

( z1

2n

)
− LK1h3 +

2

a
h3 = z2,

which can be recast as a Volterra equation

h3(x) = LKh3(x) + r(x), x ∈ (0, 1), (35)

where K is defined in (11) and

r =
a

2

(
z2 −

k

n
z1 −∇

( z1

2n

)
∇n
)

= − z1

2n
+
a

2

(
z2 −

∇
√
n√
n
∇z1

)
.

Since all z1, n
−1, a, z2,∇

√
n and ∇z1 are bounded, it follows that r ∈ L∞ and that

equation (35) admits a unique solution in L∞ according to Lemma 4.4 further since
K ∈ L∞ × L∞ as mentioned below (11) (note that ∇xK belongs to L∞ × L∞ as well).
The solution is real since the coefficients in (35) are real. To conclude the proof of the
lemma, it remains to verify that h2 ∈ W 1,∞.

Proof of (ii), conclusion: It is clear from (33) that h2 is real and bounded since
K0, n

−1, h3 and z1 are bounded. Furthermore, we have just seen that ∇xK0 is bounded,
and so are ∇n and ∇z1. Equation (34) finally shows that ∇h2 ∈ L∞. It follows that
h2 ∈ W 1,∞

r and then that DG(0, 0) is an isomorphism from W 1,∞
r × L∞r to itself. This

ends the proof.

The next lemma provides us with the existence and uniqueness of solutions of integral
equations of the form (35).

Lemma 4.4 Consider a kernel N ∈ L∞ × L∞. Then, for any ψ ∈ Lp, p ∈ (1,∞], the
Volterra equation

ϕ(x) = LNϕ(x) + ψ(x) =

∫ x

0

N(x, y)ϕ(y)dy + ψ(x), x ∈ (0, 1), (36)

and its adjoint

ϕ(x) = L∗Nϕ(x) + ψ(x) =

∫ 1

x

N(y, x)ϕ(y)dy + ψ(x), x ∈ (0, 1), (37)

both admit a unique solution in Lp. Moreover, both solutions satisfy the estimate

‖ϕ‖L2 ≤ e(κ+1)2(κ+ 1)‖ψ‖L2 (38)

where κ is such that
‖N‖L∞×L∞ ≤ κ.
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Proof. For ϕ ∈ Lp and a given α > 0, consider the norm

‖ϕ‖Lpα = ‖ϕe−α·‖Lp ,

which is equivalent to ‖ϕ‖Lp since the domain of integration is bounded. With Hölder’s
inequality, we obtain that

‖LNϕ‖Lpα =

∥∥∥∥∫ ·
0

N(·, y)e−α(·−y)e−αyϕ(y)dy

∥∥∥∥
Lp

≤ κ sup
x∈(0,1)

∣∣∣∣∫ x

0

e−α(x−y)p′dy

∣∣∣∣p′ ‖ϕ‖Lpα =
κ

(αp′)1/p′

(
1− e−αp′

)1/p′

‖ϕ‖Lpα

≤ κ

(α)1/p′
‖ϕ‖Lpα .

Setting α = (κ+ 1)p
′
, it follows that LN is a contraction in Lp equipped with the norm

‖ · ‖Lpα . As a consequence, (36) admits a unique solution in Lp, which satisfies the
estimate

‖ϕ‖Lp
(κ+1)p

′
≤ κ

κ+ 1
‖ϕ‖Lp

(κ+1)p
′

+ ‖ψ‖Lp ,

and (38) is obtained by setting p = 2 and by remarking that ‖ϕ‖Lpα ≥ e−α‖ϕ‖Lp . The
proof for (37) follows from the same arguments by considering Lp−(κ+1)p′

.

4.2 Proof of Lemma 3.3

We first recall from [14, Lemma A.1] the following estimate, for any % ∈ E+,∑
j∈N

λjρj ≤ Tr
(√

H0%
√
H0

)
,

where {λj}j∈N is the nondecreasing sequence of eigenvalues of H0 with domain H2
Neu,

and {ρj}j∈N the eigenvalues of %. This yields in particular, using Hölder’s inequality,

∑
j≥N

(ρj)
2/3 ≤

(∑
j≥N

λjρj

)2/3(∑
j≥N

(λj)
−2

)1/3

. ‖%‖2/3
E , (39)

where we used that λj behaves like j2. With |ρj| ≤ ‖%‖J1 , we have then obtained the
estimate, for all % ∈ E+,

Tr(%2/3) . ‖%‖2/3
E . (40)

We are now in position to prove the Lemma. First, it is clear that %?,η log(%?,η + η) is
trace class since %?,η is trace class and log(%?,η + η) is bounded. Hence, n[%?,η log(%?,η)]
is well-defined in L1 and

n[%?,η log(%?,η + η)] =
∑
j∈N

ρj,η log(ρj,η + η)|φj,η|2,

with convergence in L1 and a.e. We will show that the series actually converges in
L∞. Above, ρj,η and φj,η are the eigenvalues and eigenvectors of %?,η. With the triangle
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inequality and the inequality ‖u‖2
L∞ . ‖u‖L2‖u‖H1 for u ∈ H1, we find

‖n[%?,η log(%?,η + η)]‖L∞ ≤
∑
j∈N

ρj,η| log(ρj,η + η)|‖φj,η‖2
L∞

.

(∑
j∈N

ρj,η| log(ρj,η + η)|2
)1/2(∑

j∈N

ρj,η‖φj,η‖2
H1

)1/2

.

The second term on the r.h.s is the square root of ‖%?,η‖E , and is uniformly bounded in
η since by construction

‖%?,η‖E = ‖n‖L1 + ‖k‖L1 . (41)

With x| log(x)|2 ≤ Cx2/3 for x ∈ [0, 1], where C = maxx∈[0,1] x
1/3| log(x)|2, we control

the first term of the r.h.s by the square root of Tr(%
2/3
?,η ), which is also uniformly bounded

in η thanks to (40) and (41). This ends the proof.

4.3 Proof of Lemma 3.4

First of all, it follows from Proposition 3.2 that %η(t, f(t)) is differentiable with respect
to t with values in J1, and a direct calculation shows that

d%η(t, f(t))

dt

∣∣∣∣
t=0

=
(
%1,η + f ′2(0)I + Tf ′3(0)

)
%?,η + %?,η

(
%∗1,η + f ′2(0)I + T ∗f ′3(0)

)
. (42)

Note that the last term above has to be interpreted as

√
%?,η
√
%?,η

(
%∗1,η + f ′2(0)I + T ∗f ′3(0)

)
,

where both operators are in J2. We have in particular, ∀ϕ ∈ L2, with convergence in
L2,

√
%?,ηT ∗f ′3(0)ϕ =

∑
j∈N

√
ρj,ηφj,η〈Tf ′3(0)φj,η, ϕ〉

=
∑
j∈N

√
ρj,ηφj,η

∫ 1

0

(∫ x

0

f ′3(0)(y)∇φ∗j,η(y)dy

)
ϕ(x)dx

=
∑
j∈N

√
ρj,ηφj,η

∫ 1

0

(∫ 1

y

ϕ(x)dx

)
f ′3(0)(y)∇φ∗j,η(y)dy,

where ρj,η and φj,η are the eigenvalues and eigenvectors of %?,η. We proceed now to the
proof of the Lemma: the fact that Fη ∈ C1((−t0, t0)) is a consequence of %η(t, f(t)) ∈
C1((−t0, t0),J1) that is obtained in Proposition 3.2, and of an adaptation of Lemma 5.3
in [14]: it is shown there that Sη(%) for % ∈ E+ is Gâteaux differentiable in any direction
of the form %+ tω, where ω ∈ J1, and the differential is DSη(%)(ω) = Tr(log(%+η)ω). It
suffices for our purpose to generalize the proof to the more general form of perturbations
%η(t, f(t)) that we consider here, and we then find, with (42),

dFη(t)

dt

∣∣∣∣
t=0

= Tr
(
log(%?,η + η)

(
%1,η + f ′2(0)I + Tf ′3(0)

)
%?,η
)

+ Tr
(

log(%?,η + η)%?,η

(
%∗1,η + f ′2(0)I + T ∗f ′3(0)

))
.
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The traces above are well-defined since log(%?,η + η) is bounded and (%1,η + f ′2(0) +
Tf ′3(0))%?,η and %?,η(%

∗
1 + f ′2(0) + T ∗f ′3(0)) are trace class. We now make the r.h.s above

more explicit and only dependent on f3, and treat first the terms involving f3. We find

Tr
(
Tf ′3(0)%?,η log(%?,η + η)

)
+Tr

(
log(%?,η + η)%?,ηT

∗
f ′3(0)

)
= 2<

∑
j∈N

ρj,η log(ρj,η + η)〈Tf ′3(0)φj,η, φj,η〉

= 〈c1,η, f
′
3(0)〉, (43)

where

c1,η(x) = 2<
∑
j∈N

ρj,η log(ρj,η + η)∇φj,η(x)

∫ 1

x

φ∗j,η(y)dy.

The series above converges almost everywhere to a bounded function since the partial
sum is controlled by

max
x∈[0,1]

| log(x+ η)|

(∑
j≤N

ρj,η|∇φj,η|2
)1/2

(Tr(%?,η))
1/2,

where the sum converges a.e. according to Remark 2.1, and the estimate c1,η .
√
k a.e.

yields the bound according to Assumptions A. For the term in f2, we use the expression
of f ′2(0) given in (17) to obtain that

Tr(f ′2(0)%?,η log(%?,η + η) + log(%?,η + η)%?,ηf
′
2(0)) = 2〈f ′2(0), n[%?,η log(%?,η + η)]〉

= −
〈
LK0,ηf

′
3(0),

n[%?,η log(%?,η + η)]

n

〉
−
〈
n1,

n[%?,η log(%?,η + η)]

n

〉
, (44)

where n1,η = n[%1,η%?,η + %?,η%
∗
1,η] and LK0,η is as in (11)-(12) with ρj,η and φj,η in place

of the eigenvalues and eigenvectors of %?. Recalling that, ∀ϕ ∈ L1,

L∗K0,η
ϕ(y) =

∫ 1

y

K0,η(x, y)ϕ(x)dx, K0,η ∈ L∞ × L∞,

we deduce that 〈
LK0,ηf

′
3(0),

n[%?,η log(%?,η + η)]

n

〉
= 〈c2,η, f

′
3(0)〉, (45)

with

c2,η(x) = −2<
∑
j∈N

ρj,η∇φj,η(x)

∫ 1

x

φ∗j,η(y)n[%?,η log(%?,η + η)](y)(n(y))−1dy.

Following the same lines as c1,η, it is direct to show that the series defining c2,η converges
in L∞. The proof is ended by collecting (43)-(44)-(45).
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4.4 Proof of Lemma 3.6

We only sketch the proof since most of the results can be found elsewhere. We prove
first that %?,η` converges to %? in J1. We know for this that %?,η` is bounded in E+

independently of ` since by construction

‖%?,η`‖E = ‖n‖L1 + ‖k‖L1 .

Then, according to [14, Lemma 3.1], there exists σ ∈ E+ and a subsequence (still denoted
η`) such that %?,η` → σ in J1 and

√
H0%?,η` →

√
H0σ in J2. We need to prove that

σ = %?. For this, we have, since %? ∈ A(n, k),

Sη`(%?,η`) ≤ Sη`(%?).

With [14, Lemma 5.2 (iv)], we can pass to the limit in the equation above to obtain

S(σ) ≤ S(%?). (46)

We are done if we can show that σ ∈ A(n, k) since S admits a unique minimizer. This
is done by following the steps of the proof of Theorem 2.3 obtained in [8]. It is shown
therein that the fact that σ ∈ A(n, k) is established by comparing ‖k[σ]‖L1 and ‖k‖L1 :
based on (46), it is proved that it is only possible that ‖k[σ]‖L1 = ‖k‖L1 , which is shown
in [8] to lead to the strong convergence of %?,η` in E , and as a consequence to the fact
that k[σ] = k. We refer the reader to [8] for more details. Since the minimizer is unique,
the entire sequence converges to %?. Once the convergence of %?,η` to %? is established,
items (1) and (2) follow from [14, Lemma 3.1]. Items (3) and (4) are proved in [14,
Lemma A.2] and [7, Lemma 3.7]. Item (5) is proved in [14, Lemma 5.2 (iv)]. Regarding
(6), we write, for any ϕ ∈ L2,

‖√%?,η` log(%?,η` + η`)ϕ‖2
L2 =

∑
j∈N

ρj,η`(log(ρj,η` + η`))
2|〈φj,η` , ϕ〉|2. (47)

We split the sum for j < N and j > N . The large j part is treated by using (39) as in
the proof of Lemma 3.3, and is controlled by

R(N)‖%?,η`‖
2/3
E . R(N),

where R is a function independent of ` which tends to 0 as N → ∞. With this, it is
sufficient to consider a finite number of terms in (47), and we use items (3)-(4) to pass
to the limit. This establishes the convergence of the L2 norm of

√
%?,η` log(%?,η` + η`)ϕ

to that of
√
%? log(%?)ϕ. The weak converge in L2 follows in the same manner, and since

weak convergence combined with convergence of the norm implies strong converge, item
(6) follows. This ends the proof.
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