Problems

Problems from the text:
page 12, problem 3
page 290 problems 5, 6, 7, 8
page 291 problems 10, 13, 14, 16, 17
page 292 problem 18
page 345 1, 2, 3, 4, 7
page 425 1 through 10 (Hint for 2 and 6: expand \(u(x,t) \) in terms of an appropriate family of eigenfunctions \(\{\phi_n(x)\} \))

1. (equivalence of definition of weak derivative)
 Show that for \(u \in L^2(\mathbb{R}^1) \), the following are equivalent:
 \[
 \begin{align*}
 (a) & \; \partial_x u \in L^2(\mathbb{R}^1) \\
 (b) & \; z \dot{u} \in L^2(\mathbb{R}^1) \\
 (c) & \; \frac{u(x+h) - u(x)}{h} \text{ converges in } L^2(\mathbb{R}^1) \text{ as } h \to 0 \\
 (d) & \; \text{there exists a sequence of test functions } \phi_n, \text{ such that } \phi_n \text{ converges to } f \text{ in } L^2(\mathbb{R}^1) \text{ and } \partial_x \phi_n \text{ converges in } L^2(\mathbb{R}^1)
 \end{align*}
 \]

2. For what values of \(s \) is the characteristic function of \(I = [0,1] \) in \(H^s(\mathbb{R}) \)?
 For what values of \(s \) is the characteristic function of \(I^2 = [0,1]^2 \) in \(H^s(\mathbb{R}^2) \)?

3. To which spaces \(H^m(U) \) do the following functions \(u \) belong?
 \[
 (a) \quad u(x) = \begin{cases}
 0 & \text{if } 0 < x < 1 \\
 x - 1 & \text{if } 1 \leq x < 2 \\
 x^3 - x^2 - 3 & \text{if } 2 \leq x < 3
 \end{cases}
 \]
 \[
 (b) \quad u(x, y) = \begin{cases}
 xy & \text{if } 0 < x < 1, 0 < y < 1 \\
 x(2-y) & \text{if } 0 < x < 1, 1 < y < 2 \\
 x & \text{if } 0 < x < .5, y = 1 \\
 4 & \text{if } x = .5, y = 1 \\
 x & \text{if } .5 < x < 1, y = 1
 \end{cases}
 \]
4) Let \(u(x) = \begin{cases} x & \text{if } 0 < x < 1, \\ 2-x & \text{if } 1 < x < 2, \end{cases} \) and \(v(x) = \sin \pi x \).

a) Determine whether \(u \) and \(v \) are orthogonal in \(L^2(0,2) \).

Are they orthogonal in \(H^1(0,2) \)?

b) Find the distance from \(u \) to \(v \) in \(L^2(0,2) \) and in \(H^1(0,2) \).

5. Use the Sobolev embedding theorem to show that the function

\[u(x,y) = \begin{cases} x^2y^2 & \text{if } x > 0, y > 0 \\ 0 & \text{otherwise} \end{cases} \]

is continuous on \(\Omega = (-1,1) \times (-1,1) \).

6. Suppose \(u \in H^4(U) \), \(v \in H^2(U) \). Show that

\[\int_U \nabla^2 u \nabla^2 v \, dx = \int_U (\nabla^4 u) v \, dx + \int_{\partial U} \left[(\nabla^2 u) \nabla n - (\nabla^2 u) v \right] \, dS \]

Here \(\nabla n = n \cdot \nabla \) where \(n \) = outward unit normal to \(\partial U \).

7. By evaluating the relevant integrals, show that:

- \(x \) and \(x \ln x \) \(\in H^1(0,1) \),
- \(\ln x \) \(\in L^2(0,1) \) but \(x^{-1} \notin L^2(0,1) \)
- \(x^{-1} \) \(\in H^{-1}(0,1) \) (a function belongs to \(H^{-1}(0,1) \) if it is the weak derivative of an element of \(L^2(0,1) \)).

8. Suppose \(u(x) \) is continuous for all \(x \) in \(R \). Show that for all test functions \(\phi(x) \),

\[\lim_{h \to 0} \frac{\int \phi(x)[u(x+h) - u(x)] \, dx}{h} = -\int u(x) \phi'(x) \, dx \]

9. Let \(U = (a,b) \) denote a bounded open set in \(R \).

a) Show that if \(u \in H^1_0(U) \), then \(u \) is absolutely continuous and \(u(a) = u(b) = 0 \).

b) Show that \(H^1(U) \) is the direct sum of \(H^1_0(U) \) and the space of functions \(v(x) = Ae^x + Be^{-x} \) for arbitrary constants \(A, B \); i.e., show that any \(v \) of this form is orthogonal to every function in \(H^1_0(U) \).

c) Show that for every \(u \) in \(C^0_0(U) \),

\[u(x)^2 = \int_a^x 2u'(z)u(z) \, dz \]

and then use the C-S inequality to show that for some constant \(C > 0 \),
\[
\int_a^b u(z)^2dz \leq C \int_a^b u'(z)^2dz
\]

d) Show that the previous inequality continues to hold for all \(u \) in \(H^1_0(U) \).

10. Let
\[
\begin{align*}
 u_1(x) &= \begin{cases}
 1 - |x| & \text{if } |x| < 1 \\
 0 & \text{if } |x| > 1
 \end{cases} \\
 u_2(x) &= \begin{cases}
 x^2 & \text{if } |x| < 1, \\
 0 & \text{if } |x| > 1
 \end{cases}
\end{align*}
\]
Find \(u'_1(x) \), the weak derivative of \(u_1(x) \) and show that it is a locally integrable function. Show that the weak derivative of \(u_2(x) \) is not locally integrable.

11. Show that for a bounded linear operator \(A \) on \(H \), if \(\|Ax\|_H \geq c\|x\|_H \) for all \(x \) in \(H \), then the range of \(A \) is a closed subset of \(H \).

12. Suppose \(u(x,y) \in H^m(R^2_+) \) and let
\[
v(x,y) = \begin{cases}
 u(x,y) & \text{if } y > 0 \\
 \sum_{k=1}^m a_k u(x,-ky) & \text{if } y < 0
\end{cases}
\]
where
\[
\sum_{k=1}^m (-k)^s a_k = 1 \quad \text{for } 0 \leq s \leq m - 1.
\]
Show that
\[
\partial_x^s \partial_y^q v(x,y) = \begin{cases}
 \partial_x^s \partial_y^q u(x,y) & \text{if } y > 0 \\
 \sum_{k=1}^m (-k)^s a_k \partial_x^s \partial_y^q u(x,-ky) & \text{if } y < 0
\end{cases}
\]
and that this implies
\[
\lim_{y \to 0^+} \partial_x^s \partial_y^q v(x,y) = \lim_{y \to 0^+} \partial_x^s \partial_y^q u(x,y) \quad \text{for } 0 \leq q \leq m - 1.
\]
Does this imply that the mapping defined by \(v(x,y) = Eu(x,y) \) maps \(H^m(R^2_+) \) continuously into \(H^m(R^2_+) \)?