The Trace and Embedding Theorems for a General Bounded Open Set

Now we show how the primitive versions of the results we have proved (i.e., when \(U = \mathbb{R}^n \)) can be used to deduce analogous results when \(U \) is a more general open set. We will describe now the special properties \(U \) must have if this extension of results is to work.

1. Flattening the Boundary

Suppose \(U \) is a bounded open set in \(\mathbb{R}^n \). Then \(U \) is said to be regular if:

- \(p_k \in C^m(\mathbb{R}^n) \) maps \(O_k \) onto open set \(Q \)
- \(q_k = p_k^{-1} \in C^m(\mathbb{R}^n) \) maps \(Q \) onto \(O_k \)
- \(p_k : O_k \cap U \to Q^+ = Q \cap \{ y_n > 0 \} \)
- \(p_k : O_k \cap \partial U \to Q_0 = Q \cap \{ y_n = 0 \} \)

Then \(\partial U \subset \bigcup_{k=1}^{M} O_k \) and we suppose also that \(\bar{U} \subset \bigcup_{k=0}^{M} O_k \), where \(O_0 \) denotes an open set in the interior of \(U \). This property of having a boundary that "looks like" \(\mathbb{R}^{n-1} \) near each of its points is what will allow us to extend our primitive versions of results to \(U \). We need one more devise to make this argument work.

We define a partition of unity subordinate to the open covering \(\{O_k : 0 \leq k \leq M\} \). This is a set of functions \(a_k(x) \in C_c^\infty(\mathbb{R}^n) \) such that

a. \(\text{supp} a_k \subset O_k \) (then \(a_0 \in C_c^\infty(U) \))

b. \(a_k \geq 0 \) on \(O_k \)

c. \(\sum_{k=0}^{M} a_k(x) = 1 \) \(\forall x \in U \)

Then for \(f \in H^m(U) \), we can write

\[
f(x) = a_0(x)f(x) + \sum_{k=1}^{M} a_k(x)f(x)\]
Lemma 2. \textit{Proof-} Recall the definition, for $g \in H^m(U)$ then
\[
\frac{\partial g}{\partial x} = \sqrt{a_0(x)} \left(f \sqrt{a_0} \right)(x) + \sum_{k=1}^{M} \sqrt{a_k(x)} q_{k}^{\#}(p_{k}^{\#}(f \sqrt{a_k})) (x)
\]

where
\[
H^m(U) \ni f \to p_{k}^{\#} f = f(q(y)) \in H^m(Q_+)
\]
\[
H^m(Q_+) \ni g \to q_{k}^{\#} g = g(p(x)) \in H^m(U).
\]

Then
\[
f \sqrt{a_0} \in H^m_0(U) \quad \text{and} \quad Z(f \sqrt{a_0}) \in H^m(R^n),
\]
\[
p_{k}^{\#}(f \sqrt{a_k}) \in H^m(R^n_+) \quad \text{with} \quad \text{supp} p_{k}^{\#}(f \sqrt{a_k}) \subset Q_+.
\]

Now define $A : H^m(U) \to H^m(R^n) \times H^m(R^n_+)^M$ as
\[
Af = \{ f \sqrt{a_0}, p_{1}^{\#}(f \sqrt{a_1}), \ldots, p_{M}^{\#}(f \sqrt{a_M}) \}
\]
and $B : H^m(R^n) \times H^m(R^n_+)^M \to H^m(U)$ as
\[
B[v_0, \ldots, v_M] = v_0 \sqrt{a_0} + \sum_{k=1}^{M} \sqrt{a_k} q_{k}^{\#}(v_k).
\]

Then $B[Af] = f \quad \forall f \in H^m(U)$.

Evidently, A decomposes $f \in H^m(U)$ into $M + 1$ pieces, one of which lives on O_0 and M others living on the sets $O_k \cap U$, $1 \leq k \leq M$. The mapping B reassembles these pieces into the original function, f.

Similarly, define $A' : H^m(\partial U) \to H^m(R^{n-1})^M$ and $B' : H^m(R^n_+)^M \to H^m(U)$ by
\[
A'f = \{ p_{1}^{\#}(f \sqrt{a_1}), \ldots, p_{M}^{\#}(f \sqrt{a_M}) \}
\]
\[
B'[v_1, \ldots, v_M] = \sum_{k=1}^{M} \sqrt{a_k} q_{k}^{\#}(v_k).
\]

These two mappings deal only with functions living on the boundary of U so A' decomposes $f \in H^m(\partial U)$ into M pieces, living on the sets $O_k \cap U$, $1 \leq k \leq M$. The mapping B' reassembles these pieces into the original function, f.

2. Basic Extension Lemma

Lemma 2.1 (Basic Extension lemma) For U a bounded, open and regular set in R^n, every $u \in H^m(U)$ can be extended to $\tilde{u} \in H^m_0(V)$ for $U \subset V$.

Proof- Recall the definition, for $u \in H^m(R^n_+)$,
\[
E_1 u(x', x_n) = \begin{cases}
 u(x', x_n) & \text{if } x_n > 0 \\
 a(x_n) Eu(x', x_n) & \text{if } x_n < 0
\end{cases}
\]

where
\[a(x_n) \in C^\infty(R^n), \quad a(x) = \begin{cases} 1 & \text{if } x_n > 0 \\ 0 & \text{if } x_n < -1 \end{cases} \]

Then \(E_1u \in H^m(R^n) \) for all \(u \in H^m(R^n) \) where \(R^n_1 = \{ (x', x_n) : x' \in R^{n-1}, \ -1 < x_n < \infty \} \). This modified extension operator smoothly extends the function \(u \in H^m(R^n) \) to a neighborhood of the boundary of \(R^n_1 \). Now for \(U \subset V \) we have

\[
\begin{align*}
H^m(U) & \longrightarrow A \longrightarrow H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow \text{id} & \downarrow E_1 \\
H_0^m(V) & < -B - - - H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow Z & \\
H^m(R^n) & \longrightarrow C^k(R^n) \rightarrow C^k(U)
\end{align*}
\]

i.e., \(E_1 \) extends each function in \(H^m(R^n) \) smoothly to a function in \(H^m(R^n_1) \). Since \(R^n_1 \subset R^n_2 \), applying the mapping \(B \) produces a smooth function with support in an open neighborhood of \(U \).

\section*{3. Trace and Embedding Theorems for a General Open Set}

\textit{Theorem 3.1 Sobolev Embedding Theorem}

For \(U \) a bounded, open and regular set in \(R^n \), every \(u \in H^m(U) \) can be identified with \(\tilde{u} \in C^k(\bar{U}) \), for \(m > k + \frac{n}{2} \):

i.e., \(e : H^m(U) \hookrightarrow C^k(\bar{U}) \), for \(m > k + \frac{n}{2} \) is a continuous injection.

Proof -

\[
\begin{align*}
H^m(U) & \longrightarrow A \longrightarrow H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow \text{id} & \downarrow E_1 \\
H_0^m(V) & < -B - - - H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow Z & \\
H^m(R^n) & \longrightarrow C^k(R^n) \rightarrow C^k(U)
\end{align*}
\]

where \(H^m(R^n) \longrightarrow C^k(R^n) \) denotes the continuous injection of theorem 2.1.

and \(C^k(R^n) \longrightarrow C^k(\bar{U}) \) denotes the restriction from \(R^n \) to \(U \).

\textit{Theorem 3.2 Rellich Embedding Theorem}

For \(U \) a bounded, open and regular set in \(R^n \), the embedding of \(H^m(U) \) into \(H^{m-1}(U) \) is compact; i.e. any sequence that is bounded in the norm of \(H^m(U) \) contains a subsequence that is convergent in the norm of \(H^{m-1}(U) \).

Proof -

\[
\begin{align*}
H^m(U) & \longrightarrow A \longrightarrow H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow \text{id} & \downarrow E_1 \\
H_0^m(V) & < -B - - - H^m(R^n) \times H^m(R^n_1)^M \\
\downarrow e & \\
e & \longrightarrow H^{m-1}(U)
\end{align*}
\]

where \(e : H_0^m(V) \longrightarrow H^{m-1}(V) \).
denotes the compact embedding of the corollary to theorem 2.2 and
\[H^{m-1}(V) \to H^{m-1}(U) \]
denotes the restriction from \(V \) to \(U \),

Theorem 3.3 The Smooth Approximation Theorem
For \(U \) a bounded, open and regular set in \(\mathbb{R}^n \), \(C^\infty(\overline{U}) \) is dense in \(H^m(U) \).

Proof-

\[
\begin{align*}
C^\infty(\overline{U}) & \to A \to H^m(\mathbb{R}^n) \times H^m(\mathbb{R}^n)_j^M \\
\downarrow \text{id} & \downarrow E_1 \\
U \subseteq V & \quad C^0_U(V) \to B \to H^m(\mathbb{R}^n) \times H^m(\mathbb{R}^n)_j^M \\
\downarrow i & \\
H^0_U(V) & \to H^m(U),
\end{align*}
\]

where
\[
C^\infty_U(V) \to C^0_U(V) \to H^m(U)
\]
is an injection with a dense image since \(C^\infty_U(V) \) is dense in both \(C^0_U(V) \) and \(H^0_U(V) \) so it follows that \(C^0_U(V) \) is dense in \(H^0_U(V) \) and
\[
H^0_U(V) \to H^m(U)
\]
denotes restriction from \(V \) to \(U \).

Theorem 3.4 The Trace Theorem.
For \(U \) a bounded, open and regular set in \(\mathbb{R}^n \),
\[
T_j : H^m(U) \to H^{m-j/2}(\partial U) \quad 0 \leq j \leq m - 1,
\]
is a continuous linear surjection and \(T_ju = 0 \) if and only if \(u \in H^m_U(V) \).

Proof

\[
\begin{align*}
H^m(U) & \to A \to H^m(\mathbb{R}^n) \times H^m(\mathbb{R}^n)_j^M \\
\downarrow 0 & \downarrow T_j = \text{Primitive Trace Operator} \\
H^{m-j/2}(\partial U) & \to B \to 0 \times H^{m-j/2}(\mathbb{R}^{n-1})^M
\end{align*}
\]

Note \(T_j(Au) = \langle T_j[u \sqrt{a_0}], T_j[p_1^u(u \sqrt{a_1})], \ldots, T_j[p_M^u(u \sqrt{a_M})] \rangle \)
\[
= \langle 0, \partial_n[p_1^u(u \sqrt{a_1})], \ldots, \partial_n[p_M^u(u \sqrt{a_M})] \rangle
\]
and
\[
\partial_n[p_k^u(u \sqrt{a_k})] \in H^{m-j/2}(\mathbb{R}^{n-1}) \text{ for } k = 1, 2, \ldots, M
\]

Since the components of A, B and the primitive trace maps are all continuous, the general trace map is continuous as well (i.e., the composition of continuous mappings is
continuous).

Often we will wish to extend a function defined only on the boundary of a set, into the interior of the set and be able to say that the extended function belongs to some Sobolev space on the large set. Here is a theorem that allows us to do this.

Theorem 3.5 Extension from the Boundary to the Interior

Suppose U is a bounded, open and regular set in \mathbb{R}^n. Then for any $f \in H^m(\partial U)$ there exists $\tilde{f} \in H^m(U)$ such that $T_0\tilde{f} = f$

Proof-

\[
\begin{align*}
H^m(\partial U) &\xrightarrow{A'} \{f_1^\#, \ldots, f_M^\#\} \in H^m(\mathbb{R}^{n-1})^M \\
\downarrow K &\quad H^m(U) < \xrightarrow{B'} \{Kf_1^\#, \ldots, Kf_M^\#\} \in H^m(\mathbb{R}^n)^M
\end{align*}
\]

Here, K denotes the continuous right inverse of the trace operator T_0.