By expressing basic physical principals in mathematical terms, we derive partial differential equations which are then said to model physical systems in the sense that solving the equations allows us to predict the behavior of the physical system under certain conditions. In beginning courses on modeling, such derivations are usually presented in a way that implies that one will always obtain a "good" mathematical problem which only has to be solved in order to proceed with the modeling process. Here we are going to see that a great deal of care must be taken to ensure that the mathematical problem that ensues is "good" in the sense that it has the desirable properties of:

1) **Existence** - a solution to the problem can be found
2) **Uniqueness** - the problem does not have more than one solution
3) **Continuous dependence on the data** - if the input to the problem is slightly changed, the corresponding output (solution) changes only slightly

A problem in partial differential equations that has all of these properties is said to be a **well posed problem**.

In addition to determining whether our modeling leads to well posed problems, we will consider the question of whether the mathematical properties of the solution to the partial differential equation make physical sense for the corresponding physical system and whether they reveal any unexpected information about the physical system.

Another issue that will be raised is the issue of modifying the setting for the formulation of the mathematical problems to bring them into closer agreement with physical reality. In particular, this refers to weakening the formulation of the problems to accomodate such things as discontinuous or nondifferentiable functions as solutions to partial differential equations. This endeavor requires the introduction of the notion of function spaces and spaces of generalized functions. Associated with these notions will then be the notions of "weaker solutions to partial differential equations". While we will not consider abstract proofs of existence of weak solutions in M545, we will discuss the various weak formulations of PDE’s and how such solutions are to be interpreted.

1. Qualitative Properties of Solutions to Linear PDE’s

A. Transport Equation
- Physical Interpretation
- Initial Value Problem
- Method of Characteristics

B. Laplace Equation
- Physical Interpretation
- Mean Value Property and Harmonic Functions
M-m principles
regularity of harmonic functions
Uniqueness for BVP's
M-m principles
energy methods
A Fundamental Solution for the Laplacian
A Solution for Poisson's equation
Green's function for Laplace operator
The Inverse Laplace Operator

C. Heat Equation
Physical Interpretation
M-m principles
on bounded sets
on unbounded sets
Uniqueness for IBVP's
M-m principles
energy methods
A Fundamental Solution for the heat operator
A Solution for Cauchy IVP
Green's formulas for the heat equation
Comparison of solutions for heat and Laplace equations

D. Wave Equation
Physical Interpretation: acoustic waves, E-M waves
D'Alembert sol'n \(n=1 \)
Wave equation in \(\mathbb{R}^n \)
Uniqueness for IBVP's
energy methods
Domain of dependence and finite prop speed
Wave-like evolution

E. General Remarks
Classification
Well Posed Problems
Some examples of ill posed problems

2. Elementary Theory for Linear PDE's

A. Function Spaces
Normed Linear spaces: \(L_p(U) \)
Inner product spaces L_2, l_2
Fourier transform on L_1 –
 definition and properties
 L_1 – inversion theorem
Fourier transform on L_2
 L_2 – inversion theorem
 applications, the L_2 derivative
 Sobolev embedding theorem

B. Applications of the Fourier Transform
Laplace’s and Poisson’s equation
 interpretation of equation and boundary conditions
 smoothing action of solution operator
Heat Equation
 interpretation of equation and initial conditions
 infinite speed of propagation
 diffusion-like propagation
Wave equation
 interpretation of pde and initial conditions
 finite speed of propagation
 wavelike propagation

C. Orthogonal families and generalized Fourier series in $L^2(U)$
 complete orthogonal families
 isometry of $L^2(U)$ onto l_2
 Sturm-Liouville problems
 Hilbert scales: $H^s(U)$

D. Applications of Eigenfunction expansions
Laplace’s and Poisson’s equation
 interpretation of equation and boundary conditions
 smoothing action of solution operator
Heat Equation
 interpretation of equation and initial conditions
 smoothing action of solution operator
Wave equation
 interpretation of pde and initial conditions
 lack of smoothing

Insert The Mollifier Theorem

E. Introduction to Distribution Theory
Test functions
Functionals
Distributions
 regular and singular distributions
differentiation
 convergence
 applications to PDE’s
Hilbert-Sobolev spaces
distributional Fourier transform
 applications of the distributional transform
Supplement

3. Weak Formulation of Linear PDE’s

A. Abstract Hilbert Space Results
 Subspaces- $H^1(U)$ and $H^1_0(U)$
 Projections
 Linear Functionals and Bilinear Forms
 Lax-Milgram lemma

B. Variational Principles for Physical Systems
 Equilibrium systems
 transverse deflection of an elastic membrane
 Quadratic functionals and gradients
 Variational formulation of BVP’s
 stable and natural boundary conditions
 Nonsymmetric problems
 Additional Variational Problems
 an interface problem
 the biharmonic equation

C. Approximate Solutions for Weak Boundary Value Problems
 Approximations subspaces
 Approximate problems
 Error estimates