Problems Chapter 4 Differentiation

1. Use the definition to find the derivative of the following functions:
 a. \(x^4 \)
 b. \(\frac{1}{x^2} \)
 c. \(\frac{1}{\sqrt{x}} \)
 d. \(\cos x \)

2. Use the rules for derivatives to find the derivative of the following functions:
 a. \(\frac{x}{1 + x^2} \)
 b. \(\sqrt{x^2 - 3x + 1} \)
 c. \(\tan(x^2) \quad |x| < \pi/2 \)
 d. \(\cos^{-1}(x) \)

3. Which of the following functions is differentiable at \(x = 0 \)? Which of the following functions is differentiable for \(x \neq 0 \)? Where the derivative exists, is it continuous?
 a. \(x|x| \)
 b. \(|x + 1| + |x - 1| \)
 c. \(x \cos \left(\frac{1}{x} \right) \)
 d. \(x^2 \cos \left(\frac{1}{x} \right) \)
 e. \(f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} \)

4. Let \(f(x) = \begin{cases} x^2 & \text{if } x \geq 0 \\ ax & \text{if } x < 0 \end{cases} \)
 a. For which values of \(a \) is \(f \) continuous at \(x = 0 \)?
 b. For which values of \(a \) is \(f \) differentiable at \(x = 0 \)?
 c. When \(f \) is differentiable at \(x = 0 \), does \(f''(0) \) exist?

5. Find all the points where \(f(x) = \sqrt{1 - \cos x} \) is not differentiable. Explain why the derivative fails to exist.

6. Let \(H(x) = 1 \) for \(x > 0 \) and \(H(x) = 0 \) for \(x \leq 0 \).
 a. For what values of \(p \in \mathbb{R} \) is the function \(F(x) = x^p H(x) \) continuous at \(x = 0 \)?
 b. For what values of \(p \in \mathbb{R} \) is the function \(F(x) = x^p H(x) \) differentiable at \(x = 0 \)?
 c. Compute \(F'(x) \) for each \(p \) and at each \(x \) where the derivative exists.
7. Find a function \(f(x) \) such that
\[
f'(-1) = f'(0) = f'(1) = 0 \\
f''(-1) > 0 \quad f''(0) < 0 \quad f''(1) > 0
\]

8. Give an example of a function \(f(x) \) that is continuous on \([-1, 1]\) such that:
 a. \(f \) has a maximum at some \(c \in (-1, 1) \) but \(f'(c) \neq 0 \)
 b. \(f'(c) = 0 \) at some \(c \in (-1, 1) \) but \(c \) is neither the max nor the min for \(f \) on \([-1, 1]\).
 c. \(f' \) is zero at both the max and the min for \(f \) on \([-1, 1]\).

9. Suppose \(f \) is continuous and differentiable on \([-1, 1]\) and that \(f'(x) \) is continuous on \([-1, 1]\) as well. Show that \(f \) is Lipschitz continuous.

10. A function \(F(x) \) is said to be periodic with period \(L \) if \(F(x + L) = F(x) \) for all \(x \). Suppose \(F \) is periodic and continuous on \(\mathbb{R} \). Then show that \(F \) is bounded and uniformly continuous on \(\mathbb{R} \).

11. Using 580 feet of fence wire, build a rectangular pen of maximum area by making use of the fixed walls of length 200 feet and 400 feet, respectively as shown below. Note that there are 3 different configurations that make use of the fixed walls. In each of these configurations, the area is equal to \(x_j y_j \) but in each case, \(x_j \) and \(y_j \) satisfy a different condition (e.g. in the second case the condition is, \(x_2 + y_2 = 580 \)).
 a. In each of the three configurations: express \(y \) in terms of \(x \); what are the max and min values for \(x \) and \(y \) in each configuration? express the area in terms of \(x \)
 b. determine the maximum area that can be achieved and explain how the Max-min theorem must be used in finding the maximum area in this problem.
 c. plot the graph of \(A(x) \) versus \(x \) and show where the max occurs.
12. Find all real values of a for which the function $f(x) = x^3 + ax^2 + 3x + 15$ is strictly increasing on $(0, 1)$.

13. Give an example of a function $f(x)$ which is differentiable with a differentiable derivative $f'(x)$ but whose second derivative $f''(x)$ is discontinuous.

14. Suppose f is differentiable at every x. Prove $g(x) = f(x)^2$ is differentiable at every x.

15. Suppose f is differentiable at every x. Prove $g(x) = f(x-1)f(x+1)$ is differentiable at every x.

16. Find all the critical points for $f(x) = x^4$.

17. Suppose $f \in C[a,b] \cap D(a,b)$ and $|f'(x)| \leq 2$ on $[a,b]$. Prove that f is uniformly continuous on $[a,b]$. Give an example of a function that is uniformly continuous on $[a,b]$ but its derivative is not bounded on $[a,b]$.

18. Suppose $f \in C[a,b] \cap D(a,b)$ and f has an absolute max at an interior point $c \in (a,b)$. Does this imply $f'(c) = 0$? If $f'(c) = 0$ at an interior point $c \in (a,b)$, does this imply that $f(x)$ has a max or a min at $x = c$?

19. If $x(t) = a \cos t$ and $y(t) = b \sin t$, find the extreme values for $\frac{dy}{dx}$, and $\frac{d^2y}{dx^2}$ and locate the points on the path where they occur.

20. Consider the function, $f(x) = 1 - (x - 1)^{2/3}$ on $[0, 2]$. Does Rolle’s theorem apply in this case? Explain.

21. Show that between any two zeroes of $e^x \sin x = 1$, there is at least one real zero of $e^x \cos x = -1$.

22. Show that if $0 < a < b$, then $(1 - a/b) < \ln(b/a) < b/a - 1$.

23. Prove that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi/2)$. Then prove that $0 \leq \sin x \leq 2x/\pi$ for $0 \leq x \leq \pi/2$.

24. If $a \beta > 0$ then show that $x^3 + ax^2 + \beta = 0$ has one real root.

25. If $f'(x) > c > 0$ for all $x \geq 0$, show that $\lim_{x \to \infty} f(x) = \infty$.

26. If $f \in C^2(R)$ and $f(x) = 0$ has 3 real roots, show that there is some $z \in R$ where $f''(z) = 0$.

27. Suppose $f \in C[a,b] \cap D(a,b)$ Let S denote the set of slopes of all possible secant lines for $y = f(x)$ for $x \in (a,b)$ and let D denote the set of all possible values for $f'(x)$ for $x \in (a,b)$. Show that $S \subset D$ but D need not equal S.

3.
28. Show that the conclusions of the mean value theorem may fail if we drop the condition that \(f \) is differentiable at every point of \((a, b)\). What if we allow \(f \) to be discontinuous at \(a \) or \(b \)?

29. Show that if \(f \in C[a, b] \) and \(f \) has first and second derivatives at each point of \((a, b)\), then there exists a \(c \in (a, b) \) such that
\[
 f(b) = f(a) + f'(a)(b - a) + \frac{1}{2}f''(c)(b - a)^2.
\]

30. If \(f\left(\frac{x+y}{2}\right) = \frac{f(x)-f(y)}{x-y} \) for \(x \neq y \), what can you say about \(f(x) \)?

31. Use what you know about geometric series and Taylor series to obtain the result,
\[
\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \xi^6 \quad \text{for} \quad 0 < \xi < x.
\]

32. Use the result of the previous problem to obtain,
\[
\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \frac{x^7}{7} \quad \text{for} \quad 0 < \xi < x.
\]

33. Use the result of problem 31 to obtain
\[
\frac{1}{(1+x)^2} = 1 - 2x + 3x^2 - 4x^3 + 5x^4 - 6x^5 + 7x^6 \quad \text{for} \quad 0 < \xi < x.
\]

34. We say \(f(x) = O(x^p) \) as \(x \to 0 \), if \(f(x)x^{-p} \) tends to a finite limit as \(x \to 0 \). In this case we say \(f(x) \) vanishes to order \(p \) at \(x = 0 \). Find the order for \(f(x) = \sin^2 2x \) and \(g(x) = 1 - \cos 3x \).

35. Find \(O(x^p) \) for \(f(x) = x^3 - \sin^3 x \) and \(g(x) = x - \ln(1+x) - 1 + \cos x \).

36. Find real numbers \(A \) and \(a \) such that
 \begin{enumerate}
 \item \(\lim_{x \to 0} \frac{1 - \cos x}{Ax^a} = 1 \)
 \item \(\lim_{x \to 0} \frac{\sin x - x}{Ax^a} = 1 \)
 \end{enumerate}

37. Can we use L’Hopital’s rule be used to determine the limit of the sequence, \(a_n = n^2e^{-n^2} \).

38. Can L’Hopital’s rule be used to find
\[
\lim_{x \to 0} \frac{x^2 \sin(1/x)}{\sin x}
\]

39. Suppose \(f \) is such that for some \(C > 0 \), \(|f(x) - f(y)| \leq C|x - y|^2 \). Prove that \(f \) is a constant function.

40. Attack or defend the statement “if \(f \) is differentiable at all \(x \) and \(f'(a) = 0 \) at some point \(x = a \), then \(f \) is not injective.”
41. Show \(f(x) = x^3 + x^2 + 8 \) has an inverse and find the derivative of \(f^{-1} \).

42. Suppose \(f, g \in D(R) \) and \(f(0) = g(0) \). Show that if \(f' \leq g' \) on \(R \) then \(f(x) \leq g(x) \) for all \(x \geq 0 \).

43. Suppose \(f \in D(R) \) and \(f(0) = 0 \). Show that if \(1 \leq f'(x) \leq 2 \) on \(R \) then \(x \leq f(x) \leq 2x \) for all \(x \geq 0 \).

44. Suppose \(f \in D(R) \) and \(|f'(x)| < 1 \) \(\forall x \) For \(s_0 \in R \) define \(s_n = f(s_{n-1}) \) for \(n = 1, 2, \ldots \)
Show that \(\{s_n\} \) is a Cauchy sequence.

45. Evaluate the following limit:
\[
\lim_{x \to 0} \left[\frac{1}{\sin x} - \frac{1}{x} \right]
\]

46. Evaluate the following limit:
\[
\lim_{x \to 0} \frac{1}{x^2}
\]

47. Evaluate the following limit:
\[
\lim_{x \to 0} \left[\frac{e^{2x} - \cos x}{\sin x} \right]
\]

48. Evaluate the following limit:
\[
\lim_{x \to 0} \left[x + e^x \right] \frac{1}{x}
\]

49. Evaluate the following limit:
\[
\lim_{x \to \infty} \left[1 + \frac{1}{x} \right]^{2x}
\]

50. Show that if \(f(x) = \begin{cases} \frac{e^{-1/x}}{x} & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases} \) then \(f^{(n)}(0) = 0 \) for \(n = 1, 2, \ldots \).