Additional Problems Sequences

1. Consider the sequence of prime numbers, 1, 2, 3, 5, 7, 11, . . . Is this really a sequence? How do you define \(a_n \)?

2. What is the next term in the sequence 3, 1, 5, 1, 7, . . . Give a definition for \(a_n \).

3. Find an \(N \) such that \(|a_n - L| \leq 10^{-3} \) for \(n > N \)
 a. \(a_n = \frac{2}{\sqrt{n} + 1} \)
 b. \(a_n = 1 - \frac{1}{n^3} \)
 c. \(a_n = 2 + 2^{-n} \)

4. Prove convergence/divergence for \(a_n = \frac{2n^2 + 5n - 6}{n^3} \)

5. Prove convergence/divergence for \(a_n = \frac{3n + 5}{6n + 1} \).

6. Prove convergence/divergence for \(a_n = \frac{n\sqrt{n} + 2 + 1}{n^2 + 4} \).

7. Prove convergence/divergence for \(a_n = \sqrt{n + 1} - \sqrt{n} \).

8. Prove convergence/divergence for \(a_n = \sqrt{n} (\sqrt{n + 1} - \sqrt{n}) \).

9. Suppose \(a_n \) assumes only integer values. Under what conditions does this sequence converge?

10. Show that the sequences \(a_n \) and \(b_n = a_{n+10^6} \) either both converge or both diverge.

11. Let \(s_1 = 1 \) and \(s_{n+1} = \sqrt{s_n + 1} \). List the first few terms of this sequence. Prove that the sequence converges to \((1 + \sqrt{5})/2\).

12. A subsequence \(\{a_{n_k}\} \) is obtained from a sequence \(\{a_n\} \) by deleting some of the terms \(a_n \), and retaining the others in their original order. Explain why this implies that \(n_k \geq k \) for every \(k \).

13. Which statements are true? Explain your answer.
 a. If \(\{a_n\} \) is unbounded then either \(\lim_{n \to \infty} a_n = \infty \) or else \(\lim_{n \to \infty} a_n = -\infty \)
 b. If \(\{a_n\} \) is unbounded then \(\lim_{n \to \infty} |a_n| = \infty \)
 c. If \(\{a_n\} \) and \(\{b_n\} \) are both bounded then so is \(\{a_n + b_n\} \)
 d. If \(\{a_n\} \) and \(\{b_n\} \) are both unbounded then so is \(\{a_n + b_n\} \)
 e. If \(\{a_n\} \) and \(\{b_n\} \) are both bounded then so is \(\{a_n b_n\} \)
 f. If \(\{a_n\} \) and \(\{b_n\} \) are both unbounded then so is \(\{a_n b_n\} \)

14. Which statements are true? Explain your answer.
 a. If \(\{a_n\} \) and \(\{b_n\} \) are both divergent then so is \(\{a_n + b_n\} \)
 b. If \(\{a_n\} \) and \(\{b_n\} \) are both divergent then so is \(\{a_n b_n\} \)
 c. If \(\{a_n\} \) and \(\{a_n + b_n\} \) are both convergent then so is \(\{b_n\} \)
 d. If \(\{a_n\} \) and \(\{a_n b_n\} \) are both convergent then so is \(\{b_n\} \)
 e. If \(\{a_n\} \) is convergent then so is \(\{a_n^2\} \)
If \(\{a_n\} \) is convergent then so is \(\{1/a_n\} \).

If \(\{a_n^2\} \) is convergent then so is \(\{a_n\} \).

15. Either give an example of a sequence with the following property or else state a theorem that shows why no such example is possible.
 a. a sequence that is monotone increasing but is not bounded
 b. a sequence that converges to 6 but contains infinitely many terms that are not equal to 6 as well as infinitely many terms that are equal to 6
 c. an increasing sequence that is bounded but is not convergent
 d. a sequence that converges to 6 but no term of the sequence actually equals 6.
 e. a convergent sequence with all negative terms whose limit is not negative
 f. an unbounded increasing sequence containing a convergent subsequence
 g. a convergent sequence whose terms are all irrational but whose limit is rational.

16. How are the notions of accumulation point of a set and limit point of a sequence related? How does this relate to the two formulations of the Bolzano-Weierstrass theorem?

17. Prove: If the Cauchy sequence \(\{a_n\} \) contains a subsequence \(\{a_{n_k}\} \) which converges to limit \(L \), then the original sequence must also converge to \(L \).

18. Show that \(1 + a + a^2 + \cdots + a^n = \frac{1-a^{n+1}}{1-a} \) for \(a \neq 1 \) and any positive integer \(n \).
 Find \(\lim_{n \to \infty} (1 + a + a^2 + \cdots + a^n) \) for \(|a| < 1 \). What is the limit if \(|a| \geq 1 \)?

19. Let \(\{s_n\} \) be such that \(|s_{n+1} - s_n| \leq 2^{-n} \) for all \(n \in \mathbb{N} \). Prove that this is a Cauchy sequence. Is this result true under the condition \(|s_{n+1} - s_n| \leq \frac{1}{n} \)?

20. Let \(s_1 = 1 \) and \(s_{n+1} = \frac{1}{3}(s_n + 1) \) for \(n \geq 1 \). Find the first few terms of this sequence. Use induction to show that \(s_n > \frac{1}{2} \) for all \(n \). Show that this sequence is nonincreasing. Prove that the sequence converges and find its limit.

21. Let \(s_1 = 1 \) and \(s_{n+1} = \left(1 - \frac{1}{4n^2} \right)s_n \) for \(n \geq 1 \). Determine if the sequence converges and, if it does, find the limit.

22. For each of the following sequences state a theorem which establishes the convergence/divergence:
 a. \(a_n = n^{1/3} \)
 b. \(a_n = \frac{n^2 + 3}{n + 2} \)
 c. \(a_n = (2 + 10^{-n})(1 + (-1)^n) \)
d. \(a_n = \frac{1}{n^2 + 3n + 2} \)

e. \(a_n = 1 + 2^{-n} \)

f. \(a_n = \sqrt{n + 1} \)

g. \(a_n = \sum_{k=1}^{n} \frac{1}{k} \) (hint: show that \(a_{2n} - a_n \) does not tend to 0 as \(n \to \infty \))

h. \(\{a_n\} = \{1, \frac{1}{2}, 1, \frac{1}{4}, 1, \frac{1}{8}, \ldots\} \)

23. Let
\(a_1 = 0.1, a_2 = 0.101, a_3 = 0.101001, a_4 = 0.1010010001, a_5 = 0.101001000100001, \ldots \)
Show that this is a sequence of rational numbers that converges to a limit \(L \). Is the limit \(L \) rational?

24. Which statements are true?:
 a. a sequence is convergent if and only if all its subsequences are convergent.
 b. a sequence is bounded if and only if all its subsequences are bounded.
 c. a sequence is monotone if and only if all its subsequences are monotone.
 d. a sequence is divergent if and only if all its subsequences are divergent.

25. The sequence \(\{a_n\} \) has the property, \(\forall \varepsilon > 0, \exists N_\varepsilon \) such that \(|a_{n+1} - a_n| < \varepsilon \) when \(n > N_\varepsilon \). Is the sequence necessarily a Cauchy sequence?