1. Under what conditions is $\sup(A)$ not an accumulation point for A?

If $a = \sup(A)$ is an isolated point of A (in which case, it must belong to A)
For example $a = 3 = \sup\{1, 2, 3\}$ is not an accumulation point of the set.

2. Give an example of a set with the following properties or explain why no such set is possible:
 a) an infinite set with no accumulation points
 \mathbb{N} the natural numbers has no acc pts
 b) a bounded set with no accumulation points
 $A = \{1, 2, 3\}$ is bounded and has no acc pts
 c) an interval (a, b) containing only irrational numbers
 not possible, between any two real numbers $a < b$, there is an irrational
 d) a set $A \subset \mathbb{R}$ that contains its \sup but not its \inf
 $(1, 2) \cup \{10\}$ contains its \sup, 10, but not its \inf, 1
 e) a finite set that does not contain its \sup
 not possible, the \sup of a finite set is just the largest number in the set.

3. Show that every irrational number is an accumulation point of \mathbb{R}

Let $x =$ irrational number and let $\varepsilon > 0$ denote an arbitrary positive number. Then by the Archimedes principle, there exists a rational number, r, between $x - \varepsilon$ and $x + \varepsilon$.
Since r is rational, it does not equal x so $\forall \varepsilon > 0, \exists r, r \in \tilde{N}_\varepsilon(x)$.
