1. Define:
 a) the **Least Upper Bound** of a nonempty set \(A \subset R \).

 \[a = \text{Lub}(A) \iff \begin{align*}
 & \text{(i) } a = \text{UB}(A) \text{ and } a \leq \beta, \forall \beta = \text{UB}(A) \\
 & \text{(ii) } a = \text{UB}(A) \text{ and } \forall \varepsilon > 0 \ a - \varepsilon \neq \text{UB}(A)
 \end{align*} \]

 b) an **accumulation point** of a nonempty set \(A \subset R \)

 \[p = \text{acc pt of } A \iff \forall \varepsilon > 0, \ \hat{N}(p) \cap A \neq \emptyset \]

 c) an **isolated point** of a nonempty set \(A \subset R \)

 \[p = \text{isol pt of } A \iff \exists \varepsilon > 0, \ \hat{N}(p) \cap A = \emptyset \]

2. Prove ONE of the following:
 a) If \(p \) is the least upper bound for a nonempty set \(A \subset R \), but \(p \) does not belong to \(A \), then \(p \) must be an accumulation point for \(A \).

 If \(\alpha = \text{Lub}(A) \) then \(\forall \varepsilon > 0, \ \alpha - \varepsilon \neq \text{UB}(A) \)

 Then there exists \(x \in A \) such that \(\alpha - \varepsilon < x \leq \alpha \).

 But \(\alpha \notin A \), so \(x \neq \alpha \).

 That means \(\alpha - \varepsilon < x < \alpha \) so \(\forall \varepsilon > 0, \ \hat{N}(a) \cap A \neq \emptyset \)

 b) If \(A \) is a nonempty open set in \(R \), then \(\sup(A) \) does not belong to \(A \).

 If \(A \) is open then all pts in \(A \) are interior pts.

 If \(\sup(A) \in A \) then since \(\forall p \in A, \ \exists \varepsilon > 0, N_{\varepsilon}(p) \subset A \), i.e., \((p - \varepsilon, p + \varepsilon) \subset A \).

 But if \(p + \varepsilon \in A \) then \(p \neq \sup(A) \), so \(p = \sup(A) \) cannot belong to \(A \)

 c) If \(p \) is an accumulation point for \(A \) then \(A \) contains a sequence \(\{a_n\} \) converging to \(p \).

 If \(\text{acc pt of } A \) then \(\forall n, \ \hat{N}_{1/n}(p) \cap A \neq \emptyset \)

 For each \(n \), choose \(a_n \in \hat{N}_{1/n}(p) \).

 Then \(\forall n, \ |a_n - p| < \frac{1}{n} \) if \(n > \frac{1}{n} \) so \(a_n \rightarrow p \)

3. a) For the sequence \(a_n = \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2} \), choose an \(L \) and find an \(N \) such that \(|a_n - L| < 10^{-5} \) for \(n > N \).

 For large \(n \), \(a_n \approx 4 \) so
\[|a_n - 4| = \left| \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2} - 4 \right| \]
\[= \left| \frac{4n^3 + n^2 + 2}{n^3 + n^2 + 2} - \frac{4(n^3 + n^2 + 2)}{n^3 + n^2 + 2} \right| \]
\[= \left| \frac{-3n^2 - 6}{n^3 + n^2 + 2} \right| \leq \frac{3}{n} < 10^{-5} \text{ if } n > 3 \cdot 10^5 \]

b) For \(\lim_{x \to 2} \frac{x^2}{x^2 + 1} \), choose an \(L \) and a \(\delta > 0 \) such that \(\left| \frac{x^2}{x^2 + 1} - L \right| < 10^{-5} \) for \(|x - 2| < \delta \)

For \(x \approx 2, \frac{x^2}{x^2 + 1} \approx 4/5 \) so
\[\left| \frac{x^2}{x^2 + 1} - \frac{4}{5} \right| = \left| \frac{5x^2 - 4(x^2 + 1)}{5(x^2 + 1)} \right| \]
\[= \left| \frac{x^2 - 4}{5(x^2 + 1)} \right| < \frac{x + 2}{5} |x - 2| \]

If \(|x - 2| < 1 \), then \(\frac{x^2}{10} \leq \frac{1}{10} \), so
\[\left| \frac{x^2}{x^2 + 1} - \frac{4}{5} \right| < \frac{1}{10} |x - 2| < 10^{-5} \text{ if } |x - 2| < 10^{-4} \]

4. Is the sequence \(a_n = \frac{(-1)^n n^2}{n^2 + 1} \) bounded?
\[|a_n| = \frac{n^2}{n^2 + 1} < 1, \text{ so it is a bounded sequence.} \]

Does the sequence contain a convergent subsequence?

The B-W theorem asserts that every bounded sequence contains a cvg subsequence

Does the sequence \(\{a_n\} \) converge?

Clearly \(a_{2n} \) converges to 1 while \(a_{2n+1} \) converges to -1, so by the uniqueness of limits theorem,
\(\{a_n\} \) is not convergent.

State theorems which justify your answers.

5. Find the following function limits and state a theorem that proves the limit or one that asserts the limit fails to exist:

a) \(\lim_{x \to \infty} \sin x \)

Let \(a_n = 2n\pi \) and \(b_n = 2n\pi + \pi/2 \). Then \(\sin(a_n) = 0 \) and \(\sin(b_n) = 1, \forall n. \)

Then by the uniqueness of limits theorem, the limit fails to exist.
b) \[\lim_{x \to 0} \frac{e^{-x}}{e^x + e^{-x}} = \lim_{x \to 0} \frac{e^{-2x}}{1 + e^{-2x}} = \frac{\lim_{x \to 0} e^{-2x}}{\lim_{x \to 0}(1 + e^{-2x})} = \frac{0}{1} \]

by the arithmetic with limits theorem

alternatively, \(0 < \frac{e^{-x}}{e^x + e^{-x}} < e^{-x}\) so the limit is 0 by the squeeze theorem

c) \[\lim_{x \to 0} x^2 \cos x \]

\(-x^2 \leq x^2 \cos x \leq x^2\) so the limit is 0 by the squeeze theorem

alternatively,

\[\lim_{x \to 0} x^2 \cos x = \lim_{x \to 0} x^2 \lim_{x \to 0} x^2 \cos x = 0 \cdot 1 \text{ by the arithmetic with limits theorem} \]