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A few references to Bayesian inversion;

[KS ] Jari Kaipio and Erkki Somersalo, “Statistical and Computational Inverse Problems”

[FNT ] “Physics 707 (Inverse Problems)” lecture notes by Colin Fox, Geoff Nicholls and S.M.
Tan (Univ. of Auckland) (available at
http://www.math.auckland.ac.nz/ phy707/)
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What are inverse problems?

Typical “measurement problems”; estimate the quantity of interest
x ∈ R

n from (noisy) measurement of

A(x) ∈ R
nm ,

where A is a known mapping.

Inverse problems are those where the relation from the measured
data to the sought quantity x is ill-posed;

1. The problem is non-unique (and/or)

2. Solution is extremely sensitive (instable) w.r.t measurement errors.
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Examples of inverse problems; 2D deconvolution (image deblurring)

Given noisy and blurred image

m = Ax + e, m ∈ R
n

the objective is to reconstruct original image x ∈ R
n.

Forward model

x 7→ Ax

implements discrete convolution (here the convolution kernel is Gaussian blurring kernel
with std of 3 pixels). The forward problem is well-posed.

Applications; photography, remote sensing, etc ...
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Left; true image x. Right; Noisy, blurred image m = Ax + e.
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Example (cont.)

Inverse problem is ill-posed; matrix A has trivial null-space null(A) = {0} ⇒ ∃A−1 but
the solution is sensitive w.r.t measurement noise (singular values of A decay
“exponentially”).

Figure shows the LS-solution

xLS = arg min
x
‖m− Ax‖2 ⇒ xLS = A−1m

The least squares solution is totally useless!
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Left; true image x. Right; LS solution xLS = arg minx ‖m−Ax‖2
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Examples of inverse problems; limited angle x-ray tomography in dental implantology
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Forward model of limited angle x-ray tomography

Each pixel value in the projection model correpond to the total attenuation

log I0 − log Ij =

∫

Lj

x(s)ds

along the line Lj between the source and detector pixel. The whole data set consists of
j = 1, . . . , nm line integrals (nm = # projection directions×# detector pixels)

Discretization of attenuation function x(s); x(s) ≈
∑n

i=1 xiχΩi
(s)⇒ Line integrals

become
∫

Lj

x(s)ds =
n
∑

i=1

xi |Ωi ∩ Lj |

Object

X−ray source

Detector

Left; Illustration of the projection model. Right; discretization of the image volume to n

disjoint volume elements (Ω =
⋃n

i=1 Ωi).
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Arranging all the nm observed pixel values into a single vector, we obtain forward model
in matrix form

x 7→ Ax, A : R
n 7→ R

nm

Forward problem is well-posed.

Inverse problem (i.e, reconstruction of x, given noisy observation of Ax) is ill-posed;

Typically underdetermined (nm � n).

Even if we had enough measurements for full column rank of A, the solution is still
sensitive w.r.t measurement noise (see Figure).
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Limited angle tomography. Left; true image x. Middle; noisy projection data m = Ax + e (in
sinogram form, 100 projections from opening angle of 100◦). Right; LS-solution.
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Examples of inverse problems; EIT
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Electrical impedance tomography (EIT);

L electrodes are attached on the surface ∂Ω of
the body Ω.

Electric currents are injected through the
electrodes into the body Ω, resulting voltages are
measured using the same electrodes.

Goal is to reconstruct the conductivity inside Ω

based on the voltage measurements at the
boundary.

Top left; phantom in a laboratory experiment. Bottom
left; measured voltages (V ∈ R

256).
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Forward model of EIT;

∇ · (σ∇u) = 0 in Ω

u + zlσ
∂u

∂ν
= Ul, on el ⊂ ∂Ω, l = 1, 2, . . . , L

∫

el

σ
∂u

∂ν
dS = Il, on el, l = 1, 2, . . . , L

σ
∂u

∂ν
= 0, on ∂Ω \

L
⋃

l=1

el ,

with the conditions
L
∑

l=1

Il = 0,
L
∑

l=1

Ul = 0 .

The forward problem of EIT; compute the electrode voltages {U`}, given conductivity σ

and the injected currents {I`}.
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Discretization of the PDE system by the finite element method (FEM). Conductivity
approximated in a finite dimensional pixel basis σ =

∑n
i=1 σiχΩi

.

Forward solution becomes

σ 7→ U(σ), U : R
n 7→ R

nm

Forward problem is well-posed.

Inverse problem; reconstruct σ given noisy observation of U(σ). The problem is
ill-posed.
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Solutions to inverse problems; Regularization techniques

The ill posed problem is replaced by a well posed approximation. Solution “hopefully”
close to the true solution.

Typically modifications of the associated least squares problem

‖m−A(x)‖2.

Examples of methods; TSVD, Tikhonov regularization, truncated iterations, etc ...

Example; Consider the problem

xLS = arg min
x
{‖m− Ax‖22} ⇒ (ATA)

︸ ︷︷ ︸

B

xLS = ATm

Uniqueness; ∃B−1 if null(A) = {0}. Stability of the solution?
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Solutions to inverse problems; Regularization techniques

Example (cont.); In Tikhonov regularization, the original LS problem is replaced with

xTIK = arg min
x
{‖m−Ax‖22 + α‖x‖22} ⇒ (ATA + αI)

︸ ︷︷ ︸

B̃

xLS = ATm

Uniqueness; α > 0⇒ null(B̃) = {0} ⇒ ∃B̃−1. Stability of the solution quaranteed by
choosing α “large enough”.

Regularization poses always (implicit) prior assumptions about the solution!. These
assumptions are often well hidden.
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Left; true image x. Right; Tikhonov solution xTIK.
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Solutions to inverse problems; Bayesian inversion.

The inverse problem is reformulated as a problem of Bayesian inference.

The key idea is to extract information and assess uncertainty about the unknowns based
on

Measured data

Model of measurement process

Model of a priori information

Ill posedness removed by explicit use of prior models!

These lectures give introduction to Bayesian inversion. Focus on computational aspects.
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Left; true image x. Right; Bayesian point estimate xCM for the 2D deconvolution problem
(Model and implementation will be explained later).
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Bayesian inversion.

All variables in the model are considered as random variables. The

randomness reflects our uncertainty of their actual values.

The degree of uncertainty is coded in the probability distribution models of
these variables.

The complete solution of the inverse problem is the posterior distribution

π(x | m) =
πpr(x)π(m |x)

π(m)
, m = mobserved (1)

where

π(m |x) is the likelihood density (based on models of the measurement
and noise processes)

πpr(x) is the prior density (model for the prior information)

π(m) is normalization constant
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The posterior density is a function on n dimensional space;

π(x | m) : R
n 7→ R+

Dimension n usually large for inverse problems. Direct visual interpretation of
the posterior not possible.

Even if n is small, the whole posterior may not be convenient for analysis &
decisions.

⇒ The posterior need to be summarized by different estimates. Examples of

typical questions;

“What is the most probable value of x, given the data and prior? ”

“In what interval are the values of x with 90% probability, given the data and

prior? ”

Graduate Student Workshop on Inverse Problems, July 30 - August 3, 2007, CSU, Fort Collins – p. 16



Typical summary estimates

“Representative solutions”;

Maximum a posteriori (MAP) estimate:

π(xMAP | m) = arg max
x

π(x | m).

Conditional mean (CM) estimate:

xCM =

∫

Rn

xπ(x | m)dx.

Uncertainty & interval estimates;

Covariance:

Γx|m =

∫

Rn

(x − xCM)(x − xCM)Tπ(x | m) dx
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Uncertainty & interval estimates (cont.);

Confidence intervals; Given 0 < τ < 100, compute ak and bk s.t.
∫ ak

−∞

πk(xk) dxk =

∫ ∞

bk

πk(xk) dxk =
100 − τ

200

where πk(xk) is the marginal posterior density

πk(xk) =

∫

Rn−1

π(x | m) dx1 · · · dxk−1dxk+1 · · · dxn.

The interval Ik(τ) = [ak bk] contains τ % of the mass of the marginal

density.
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Summary of Bayesian Inversion

In summary, Bayesian solution of an inverse problem consist of the
following steps:

1. Construct the likelihood model π(m|x). This step includes the
development of the model x 7→ A(x) and modeling the
measurement noise.

2. Based on the available a priori information, construct the prior
model πpri(x).

3. Develop computation methods for the summary statistics.
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Summary of Bayesian Inversion (cont)

The posterior π(x | m) is our model for all the available information and

uncertainty we have on the unknowns x. The soundness of this model is
dictated by the likelihood and prior models.

The construction of the likelihood is often the most “straightforward” task;

model of measurement process (i.e., A(x)) is usually well known and noise
properties can be measured.

The construction of the prior model is typically the most challenging task;
The prior knowledge is typically in qualitative form. The problem is then

how to translate this information into a (computationally feasible)
mathematical model.

The computation of the summary statistics require large scale optimization &

numerical integration. Practicality of the solution becomes a problem of
computational efficiency and resources available (computation time, computer

resources).
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Examples of likelihood models:

Additive noise model:

m = A(x) + e, e ∼ πe(e).

If x and e mutually independent, we get

π(m | x) ∝ πe(m − A(x))

Most commonly used noise model; Gaussian noise e ∼ N (e∗, Γe) ⇒

π(m |x) ∝ exp

(

−
1

2
(m − A(x) − e∗)

TΓ−1
e (m − A(x) − e∗)

)

.

Let LT
e Le = Γ−1

e , then

π(m |x) ∝ exp

(

−
1

2
‖Le(m − A(x) − e∗)‖

2
2

)
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Examples of likelihood models (cont.):

Counting process data; Poisson distibution

π(mj | x) =
(A(x))

mj

j

mj !
exp(−(A(x))j), (A(x))j ≥ 0

If the components mj have mutually independent fluctuation, we get

π(m | x) =

nm
∏

j=1

(A(x))
mj

j

mj !
exp(−(A(x))j)

∝ exp(mT log(A(x)) − 1
T(A(x)))

Examples; SPECT, PET, Particle counters (e.g., measuring
athmospheric aerosol concentrations), etc ...
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Examples of prior models: Positivity prior

Non-negativity prior:

π+(x) =

n
∏

k=1

θ(xk), θ(t) =







1, t ≥ 0

0, otherwise

Simple, has often significant impact and applies for most physical
parameters!

Obviously, θ(t) may be replaced by

θk(t) =







1, t ∈ [ak, bk]

0, otherwise

if range of possible values for x is known.
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Examples of prior models: Generic (qualitative) models.
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1

L1 (red), L2 (blue).

White noise prior (L2 prior):

πpri(x) ∝ exp

(

−
1

2σ2

n
∑

k=1

(xk − x∗,k)2

)

= exp

(

−
1

2σ2
‖x− x∗‖

2
2

)

where x∗ is the prior mean.

Outlier prior (L1-prior):

πpri(x) ∝ exp

(

−α
n
∑

k=1

|xk − x∗,k|

)

= exp (−α‖x− x∗‖1)

Other impulse priors: maximum entropy, Cauchy
distribution prior.
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Neighborhood priors (MRF priors). General form;

πpri(x) ∝ exp



−α
n
∑

k=1

∑

j∈Nk

h(xk, xj)





where Nk ⊂ {1, 2, . . . , n} is the neighborhood of xk. For example, in a N ×N = n

image, the usual 4-point neighborhood is Nk = {k − 1, k + 1, k −N, k + N}.

Choosing h(xk, xj) = 0.5(xk − xj)
2, we get the smoothness prior

πpri(x) ∝ exp



−
α

2

n
∑

k=1

∑

j∈Nk

(xk − xj)
2





= exp

(

−
1

2
‖Lx‖22

)

Graduate Student Workshop on Inverse Problems, July 30 - August 3, 2007, CSU, Fort Collins – p. 25



Total variation (TV) prior;

πpri(x) ∝ exp (−αTV(x)) , TV(x) =
n
∑

k=1

∑

j∈Nk

|xk − xj |

TV-prior model is concentrated around piecewise regular (“blocky”) images, i.e., the
pixels are clustered in blocks with almost equal value and short boundary. See Figure.

Images having total variations (from left to right) 18, 28 and 40.
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Of the previous models, smoothness and TV priors are improper.

Proper (integrable) distributions can be obtained by conditioning

πpri(x) = πpri(xI | x−I)πpri(x−I)

where

xI ∈ R
n−p is vector of “non-specified” elements.

x−I ∈ R
p vector of “specified” elements (e.g., boundary elements of an

image).

The model πpri(x−I) can be used to include information about the quantitative
values of x−I into the prior model (e.g., the boundary values of an image may

be approximately known).
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MRF priors are useful for designing structural priors.

Consider an example of multimodality CT/SPECT imaging. Segmentation of the target
body to different tissue types (organs) can be obtained from the CT reconstruction.

Reasonable to expect jumps in the SPECT image on the same locations as in the CT
image (radionuclide concentration has different magnitude in different organs).

Let variable τk ∈ {1, 2, . . . , Norg} denote the tissue type in image pixel k.

Left: CT reconstruction. Right: Segmentation of the CT image.
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Based on the segmentation of the CT-image, we construct an anisotropic
non-homogeneous smoothness prior

πpri(x) ∝ exp



−
α

2

n
∑

k=1

∑

j∈Nk

λk,j(xk − xj)
2





= exp

(

−
1

2
‖ΛLx‖22

)

where

λk,j =







1, τk = τj

β, τk 6= τj

and β � 1 (in the following example β = 10−3).
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SPECT data acquired concurrently with the CT data. SPECT data consist of 12
projections from total view-angle of 165◦.

Gaussian likelihood model

π(m |x) ∝ exp

(

−
1

2
‖Le(m− A(x))‖22

)

with noise variance σi =
√

Ni.
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Left: Example of activity distribution. Right: Noisy SPECT data (sinogram)
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Simulation 1: “Healthy case”.

xMAP = arg maxx π(m | x)πpri(x)

Left: True activity distribution.

Middle: conventional (homogeneous isotropic) smoothness prior
πpri(x) = exp

(

− 1
2
‖Lx‖22

)

Right: structural (non-homogeneous anisotropic) smoothness prior
πpri(x) = exp

(

− 1
2
‖ΛLx‖22

)
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Simulation 2: “Diseased case” (right lung not ventilated).

xMAP = arg maxx π(m | x)πpri(x)

Left: True activity distribution.

Middle: conventional (homogeneous isotropic) smoothness prior
πpri(x) = exp

(

− 1
2
‖Lx‖22

)

Right: structural (non-homogeneous anisotropic) smoothness prior
πpri(x) = exp

(

− 1
2
‖ΛLx‖22

)

(same as above, i.e., based on segmented CT that shows
the right lung!)
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Visualization of priors.

Sampling and visualization can be used to
verify the qualitative nature of the prior
model πpri(x).

Left: random samples from prior model
πpri(x). Columns from left to right;

1. white noise prior

2. smoothness prior

3. impulse (L1) prior

4. TV-prior.

The samples of smoothness and TV prior
were drawn from

πpri(xI | x−I)

with boundary pixels x−I = 0.
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.

Visualization of prior covariances

(cov(xi, x1), cov(xi, x2), . . . , cov(xi, xn))T ∈ R
n

reveal the prior covariance structures.

Left; examples of (conditional) covariances

cov(xI | x−I)

corresponding to the smoothness prior in an
EIT application.

The covariance values of the conditioned
pixels x−I are set to zero (dark blue) and
the highest correlation (autocorrelation) is
printed with red.
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.

Examples of (conditional) covariances

cov(xI | x−I)

corresponding to a nonhomogeneous
anisotropic smoothness prior in an EIT
application.

The locations of the scalp-skull and
skull-brain interfaces were assumed known
from MRI scan in the constuction of the
prior.

The covariance values of the conditioned
pixels x−I are set to zero (dark blue) and
the highest correlation (autocorrelation) is
printed with red.
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Computation of the estimates

Gaussian distributions; General form

π(x | m) ∝ π(m |x)πpri(x)

= exp

(

−
1

2
(m−Ax− e∗)TΓ−1

e (m−Ax− e∗)−
1

2
(x− x∗)TΓ−1

x (x− x∗)

)

MAP and CM same point for Gaussian posterior.

Posterior π(x | m) fully determined by mean and covariance:

xCM = Γx|m(ATΓ−1
e (m− e∗) + Γ−1

x x∗)

Γx|m = (ATΓ−1
e A + Γ−1

x )−1

Let LT
e Le = Γ−1

e and LT
x Lx = Γ−1

x , then we can write π(x |m) ∝ exp{− 1
2
F (x)},

where

F (x) = ‖Le(m− Ax− e∗)‖22 + ‖Lx(x− x∗)‖22

and

xMAP = arg min
x

F (x)

⇒ Connection to Tikhonov regularization!

Graduate Student Workshop on Inverse Problems, July 30 - August 3, 2007, CSU, Fort Collins – p. 36



Example

Consider the original form of Tikhonov regularization;

xTIK = arg min
x
{‖m−Ax‖22 + α‖x‖22} ⇒ xTIK = (ATA + αI)−1ATm

From the Bayesian viewpoint, xTIK correspond to the posterior mode with the following
assumptions

Measurement model m = Ax + e, x and e mutually independent with e ∼ N (0, I).

x is assumed a priori mutually independent zero mean white noise with variance 1/α.

The original idea of the Tikhonov method was to approximate ATA with a matrix
ATA + αI that is invertible and produces stable solution.
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About solving the Gaussian problem ...

When dimension n is large (∼ 103 and more), the inversion of Γ−1
x|m

may not fit to the

computer memory. In these cases, the solution can be computed neatly with standard
iterative solvers (CG,MINRES,GMRES) applied to linear system

Γ−1
x|m
︸ ︷︷ ︸

n×n matrix

xCM = (ATΓ−1
e (m− e∗) + Γ−1

x x∗)
︸ ︷︷ ︸

n×1 vector

Columns of Γx|m respectively; to obtain column j, solve

Γ−1
x|m

c = b, b = (0, . . . , 0
︸ ︷︷ ︸

1:j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

j+1:n

)TR
n

Can be implemented matrix free; needs only function that returns product

Γ−1
x|m

x

Examples; use of GPUs in x-ray tomography, FFTs in image deconvolution, etc..
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Computation of the estimates: MAP

Generally, solving MAP estimate

xMAP = arg max
x

π(x | m)

is an optimization problem.

Example;

π(x | m) ∝ π+(x) exp

(

−
1

2
‖Le(m−A(x))‖22 −W (x)

)

Then

xMAP = arg min
x≥0
{
1

2
‖Le(m−A(x))‖22 + W (x)}

⇒ Similarity to (Tikhonov) regularized LS-estimation.

Large variety of applicable solution methods.
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Computation of the estimates: MAP

The literature on (numerical) optimization methods is vast. As general reference see e.g.,
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Computation of the estimates; Integration based estimates

Most of the summary estimates are of the form

f̄(x) =

∫

Rn

f(x)π(x | m)dx

Examples:

f(x) = x  xCM

f(x) = (x− xCM)(x− xCM)T  Γx|m

etc ...

Analytical evaluation in most cases impossible

Traditional numerical quadratures not applicable when n is large (number of points
needed unreasonably large, support of π(x | m) may not be well known)

⇒ Monte Carlo integration.
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Computation of the estimates; Monte Carlo integration

Monte Carlo integration

1. Draw an ensemble {x(k), k = 1, 2, . . . , N} of i.i.d samples from π(x).

2. Estimate
∫

Rn

f(x)π(x)dx ≈
1

N

N
∑

k=1

f(x(k))

Convergence (law of large numbers)

limN→∞
1

N

N
∑

k=1

f(x(k))→

∫

Rn

f(x)π(x)dx (a.c)

Variance of the estimator f̄ = 1
N

∑N
k=1 f(x(k)) reduces

∝
1

N
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Simple example of Monte Carlo integration

Let x ∈ R
2 and

π(x) =







1
4
, x ∈ G, G = [−1, 1]× [−1, 1]

0, x /∈ G.

The task is to compute integral g(x) =
∫

R2 χDπ(x)dx where D is the unit disk on R
2.

Using N = 5000 samples, we get estimate g(x) = 0.7814 (true value π/4 = 0.7854)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1
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−0.2
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0.2

0.4

0.6

0.8

1

Example of Monte Carlo integration. Red marks denote samples inside D
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Computation of the estimates; MCMC

Direct sampling of the posterior usually not possible⇒ Markov chain Monte Carlo
(MCMC).

MCMC is Monte Carlo integration using Markov chains (dependent samples);

1. Draw {x(k), k = 1, 2, . . . , N} ∼ π(x) by simulating a Markov chain (with equilibrium
distribution π(x)).

2. Estimate
∫

Rn

f(x)π(x)dx ≈
1

N

N
∑

k=1

f(x(k))

For the conditions that the law of large numbers holds, see e.g. ([KS], Chapter 3.6,
Proposition 3.11) or Kaipio et al, “Statistical inversion and Monte Carlo sampling
methods in EIT” Inverse Problems 16, 1487-1522,2000, Proposition 3.1. (later referred
as [Kaipio 2000])

Algorithms for MCMC;

1. Metropolis Hastings algorithm

2. Gibbs sampler
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Variance of the estimator f̄ = 1
N

∑N
k=1 f(x(k)) reduces as

∝
τ

N

where τ ≥ 1 is the integrated autocorrelation time of the Markov chain, defined by

τ = 1 + 2
∞
∑

j=1

ρ(s), ρ(s) =
C(s)

C(0)
, C(s) = cov(x(`), x(`+s))

Interpretation; τ correspond to the number of samples with same variance reduction
power as one independent sample.
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Metropolis-Hastings algorihtm (MHMCMC)

Generation of the ensemble {x(k), k = 1, . . . , N} ∼ π(x) using Metropolis Hastings
algorithm;

1. Pick an initial value x(1) ∈ R
n and set ` = 1

2. Set x = x(`).

3. Draw a candidate sample x′ from proposal density

x′ ∼ q(x, x′)

and compute the acceptance factor

α(x, x′) = min

(

1,
π(x′)q(x′, x)

π(x)q(x, x′)

)

.

4. Draw t ∈ [0, 1] from uniform probability density (t ∼ uni(0, 1)).

5. If α(x, x′) ≥ t, set x(`+1) = x′, else x(`+1) = x. Increment `→ ` + 1.

6. When ` = N stop, else repeat from step 2.
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Normalization constant of π do not need to be known.

Great flexibility in choosing the proposal density q(x, x′); almost any density would do
the job (eventually). For conditions needed ensuring convergence, see e.g. [KS,
Proposition 3.12], [Kaipio 2000, Proposition 3.2]).

However, the choice of q(x, x′) is a crucial part of successful MHMCMC; it determines
the efficiency (autocorrelation time τ ) of the algorithm⇒ q(x, x′) should be s.t. τ as
small as possible

No systematic methods for choosing q(x, x′). More based on “intuition & art”. The goal
to choose q(x, x′) s.t.

1. q(x, x′) would respect the known properties of π(x) as well as possible (obviously
with q(x, x′) = π(x) we would have τ = 1, i.e, i.i.d samples)

2. q(x, x′) computationally efficient to sample
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The updating may proceed

All unknowns at a time

Single component xj at a time

A block of unknowns at a time

The order of updating (in single component and blockwise updating) may be

Update elements chosen in random (random scan)

Systematic order

The proposal can be mixture of several densities

q(x, x′) =

t
∑

i=1

piqi(x, x′),

t
∑

i=1

pi = 1
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Proposal parameteres are usually calibrated by pilot runs; aim at finding parameters
giving best efficiency (minimal τ ).

“Burn-in”; The chain takes some time to converge to the desired distribution. The actual
collection of the samples begins after the burn-in period.

Determining the burn-in; Trial runs (e.g, running several chains & checking that they are
close by). Often determined from the plot of “posterior trace” {π(x(k)), k = 1, . . . , N}

(see Figure).

The acceptance ratio (number of proposals x′ accepted per total number of samples) is
useful indicator for the efficiency of the chain.

Determination of burn-in period. The burn-in was chosen at the location of the vertical line
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Example 1;

Let x ∈ R
2 and posterior

π ∝ πD(x) exp

{

−10(x2
1 − x2)2 − (x2 −

1

4
)4
}

,

where πD is

πD(x) =







1, x ∈ D

0, otherwise
D = [−2 2]× [−2 2] ⊂ R

2.

Intensity plot of π(x)
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Example 1; Metropolis Hastings

Sample distribution π(x) using the Metropolis Hasting algorithm. Choose proposal as
(random walk Metropolis-Hastings)

q(x, x′) =

2
∏

i=1

1
√

2γ
exp

{

−
1

2γ2
(x′

i − xi)
2

}

.

Consider the effect of the proposal parameter γ on the efficiency of the algorithm.
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Sampling with γ = 0.02

τ = 187.3, acceptance ratio 95%.

Chain moves too slowly (very small steps→ long correlation), inefficient.

 acceptance = 94.999%

Samples
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1
scaled autocovariance function ρ (s)

 τ = 187.2905

Left; samples. Middle; Posterior trace {π(x(k))} (400 states). Right; scaled autocovariance function.
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Sampling with γ = 0.4

τ = 7.4, acceptance ratio 40%.

Chain is moving optimally.

 acceptance = 39.7714%

Samples
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scaled autocovariance function ρ (s)

 τ = 7.3871

Left; samples. Middle; Posterior trace {π(x(k))} (400 states). Right; scaled autocovariance function.
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Sampling with γ = 1.8

τ = 33.8, acceptance ratio 7%.

Proposal too wide; most proposals x′ rejected, chain gets “stuck” to single state for long
periods (→ long correlation).

 acceptance = 39.7714%
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scaled autocovariance function ρ (s)

 τ = 7.3871

Left; samples. Middle; Posterior trace {π(x(k))} (400 states). Right; scaled autocovariance function.
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γ = 0.4 τ = 7.3871, a = 39.7714%

Summary of the example; Left
image shows τ vs γ and right image
shows acceptance ratio vs. γ.

Rule of thumb (when q(x, x′) Gaus-
sian); Aim at acceptance ratio 20 −

50%.

Graduate Student Workshop on Inverse Problems, July 30 - August 3, 2007, CSU, Fort Collins – p. 55



Example 1 (cont.)

Improve the proposal. Let us draw samples as

x′
i = xi + δi(x) + εi, εi ∼ N (0, γ2), i = 1, 2,

where δi : R
2 7→ R is deterministic mapping. Now

q(x, x′) =
2
∏

i=1

1
√

2γ
exp

{

−
1

2γ2
(x′

i − (xi + δi(x))2
}

.

Choose δi(x) = (h∇π(x))i, where h is constant.
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Sampling with γ = 0.4, h = 0.02

τ = 6.9, acceptance ratio 44%.

 acceptance = 44.1108%
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Left; samples. Middle; Posterior trace {π(x(k))} (400 states). Right; scaled autocovariance function.
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Gibbs sampler algorithm

Generation of the ensemble {x(k), k = 1, . . . , N} ∼ π(x) using Gibbs sampler;

1. Pick initial value x(0) and set j = 1.

2. Generate x(j) a single variable at a time:

draw x
(j)
1 from the density t 7→ π(t, x

(j−1)
2 , . . . , x

(j−1)
n ),

draw x
(j)
2 from the density t 7→ π(x

(j)
1 , t, x

(j−1)
3 , . . . , x

(j−1)
n ),

...

draw x
(j)
n from the density t 7→ π(x

(j)
1 , . . . , x

(j)
n−1, t).

3. If j = N , stop, else set j ← j + 1 and go to 2.
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Illustration of the componentwise sampling with the Gibbs sampler.

Conditionals can be sampled as follows;

1. Determine the cumulative function

Φj(t) =

∫ t

−∞
π(x | x−j)dxj , x−j = (x1, . . . , xj−1, xj+1, . . . , xn) ∈ R

n−1

2. Draw random sample ξ ∼ uni([0 1]). Sample yj is obtained as

yj = Φ−1
j (ξ)
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Illustration of sampling from the 1D conditionals.

1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600
0
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0.4
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0.8

1

1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600
0

0.2

0.4

0.6

0.8

1

Top; π(x | x−j)

Bottom; cumulative function
Φj(t) =

∫ t

−∞ π(x | x−j)dxj .

ξ ∼ uni([0 1]) (location of horizontal line)

Sample yj = Φ−1
j (ξ) (location of the vertical

line)
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Posterior typically in non-parametric form, normalization constant unknown⇒ Numerical
approximation (e.g. trapezoidal quadrature)

Φj(tm) = C

∫ tm

a

π(xj | x−j)dx ≈ C

r
∑

k=1

wkπ(tk | x−j)

where wk are the quadrature weights.

Support [a, b] of the conditional π(xj | x−j) has to be “forked” carefully. C chosen s.t.
Φ(b) = 1.

Sample can be obtained by interpolation. Let Φj(tp) < ξ < Φj(tp+1), then linear
interpolation gives

yj = tp +
ξ − Φj(tp)

Φj(tp+1)− Φj(tp)
(tp+1 − tp)
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Some features of Gibbs sampler;

Acceptance probability always 1. No need to tuning the proposal.

Determination of burn-in similarly as for Metropolis Hastings.

If π(x) has high correlation, can get inefficient (τ increases)

Numerical evaluation of the conditionals can get computationally infeasible (e.g. high
dimensional cases with PDE based forward models).
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Example 1 (cont.); Gibbs sampling

τ = 1.9.

Computation time longer than for Metropolis Hastings.

Gibbs sampler, τ = 1.8941
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Left; samples. Middle; Posterior trace {π(x(k))} (400 states). Right; scaled autocovariance function.
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Example 1; Estimates (Gibbs sampling)

xCM ≈ (0.00, 0.35)T

Marginal densities π(x1) =
∫

π(x)dx2 and π(x2) =
∫

π(x)dx1

Solid vertical lines show the mean, dotted the 90% confidence limits.

E(x
1
) = −0.0094962, E(x

2
) = 0.3537
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Left; Contours of π(x). xCM is shown with +. Middle; marginal density π(x1). Right;
marginal density π(x1).
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A few references to MCMC;

The collection by Gilks et al. General overview to MCMC.

“Physics 707 (Inverse Problems)” lecture notes by Colin Fox, Geoff Nicholls and S.M. Tan
(Univ. of Auckland) (available at http://www.math.auckland.ac.nz/ phy707/).
Presentation of the theory (disrete state space) and practical computations.
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Example 2; 1D deconvolution problem

x ∈ R
50, m ∈ R

50. Measurement model

m = Ax + e, e ∼ N (0, Γe)

where elements of matrix A are

Ai,j = exp{−0.05|ti − tj |}.

Left figure shows xtrue and right figure shows noisy, blurred observation m.

Level of noise e is 1%.
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Example 2; 1D deconvolution problem (cont.)

Inverse problem; unique (null(A) = {0} ⇒ ∃A−1) but sensitive to the measurement
errors.

Figure shows the solution

x = arg min
x
{‖m− Ax‖22} (⇒ x = A−1m)

0 5 10 15 20 25 30 35 40 45 50
−6

−4

−2

0

2

4

6

8
 ML estimate (red) 

xtrue (blue), x = arg minx{‖m−Ax‖22} (red).
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Example 2; 1D deconvolution problem (cont.)

Likelihood model

π(m|x) ∝ exp

(

−
1

2
‖Le(m− Ax)‖22

)

,

where LT
e Le = Γ−1

e .

We assume a priori that the target is

Non-negative

Piecewise constant

We model this information by prior model

πpri(x) ∝ π+(x) exp



−α

n−1
∑

j=1

|xj+1 − xj |




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Example 2; 1D deconvolution problem (cont.)

Posterior density;

π(x|m) ∝ π+(x) exp



−
1

2
‖Le(m− Ax)‖22 − α

n−1
∑

j=1

|xj+1 − xj |





We compute

MAP estimate

xMAP = arg min
x≥0
{
1

2
‖Le(m− Ax)‖22 + α

n−1
∑

j=1

|xj+1 − xj |}

by quadratic programming.

CM estimate, covariances and marginal confidence limits; MCMC (Gibbs sampler).
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Example 2; 1D deconvolution problem (cont.)

CM estimate (red). MAP estimate (black). CM with 3 std confidence limits (green).

The limits correspond approximately to 90% confidence limits (Chebychev inequality)

5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

xtrue (blue), xMAP (black), xCM (red), xCM ± 3σx|m (green).
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Example 2; 1D deconvolution problem (cont.)

Marginal posterior densities

πk(xk) =

∫

Rn−1

π(x | m)dx−k

for elements x22 and x35. Value of xMAP (black) and xCM (red) vertical lines.

Dashed lines show the 90% condidence intervals
∫ ak

−∞
πk(xk) dxk =

∫ ∞

bk

πk(xk) dxk = 0.05
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Marginal posterior densities for x22 (left) and x35 (right).
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Example 3; Emission tomography in brachytherapy

Brachytherapy source pellets.

Brachytherapy (sealed source radiotherapy);
radioactive source pellets are placed inside the
tumor for radiation treatment.

Used in treatment of cancers of prostata, breast,
head and neck area, etc...

Thin hollow tubes are placed inside the cancerous
tissues. The radioactive source pellets are inside
the tubes.

The tubes are connected to a (pneumatic) loader ma-
chine that can be used to control the location of the
pellets inside the tubes.
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Example 3 (cont.)

1 2 3 4 5 6

5

10

15

20

25

30

35

40

TLD emission data (6 projec-
tions). Data from Kuopio Univer-
sity hospital.

Objective of the experiment to test the feasibility of
(limited data) emission tomography for verification of
the correct placement of the source pellets inside
tissues.

Phantom experiment. 6 projections with projection
interval of 30◦

Data collected with a termoluminescent dosimeter
(TLD) with a parallel beam collimator geometry. 41
readings in each projection (i.e., m ∈ R

246)

The model for the expectation of the observed
photon count

m̄j =

∫

Lj

x(s)ds

where Lj is the “line of sight” detected from the j:th
detector position.

The model neglects scattering phenomena and
attenuation correction.
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Example 3 (cont.)

Discretization; the domain Ω of interest is divided to regular 41× 41 pixel grid (i.e.,
f ∈ R

1681).

The forward model becomes

x 7→ Ax, A : R
1681 7→ R

246

The inverse problem is to reconstruct the activity distribution x, given the vector of
observed photon counts m.
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Example 3 (cont.)

Likelihood model; the observations {mj , j = 1, . . . , nm} are Poisson distributed random
variables. The fluctuations are assumed mutually independent⇒ we use likelihood
model

π(m | x) =

nm
∏

j=1

(Ax)
mj

j

mj !
exp(−(Ax)j)

∝ exp(mT log(Ax)− 1
T(Ax))

The model neglects electronic noise of the data acquisition system.

We know a priori that the activity distribution is;

Non-negative

The source pellets are small and inside the hollow tubes⇒ all the activity is in small
pixel clusters of approximately constant activity.

We model this knowledge by prior model

πpri(x) ∝ π+(x) exp (−αTV(x)) , TV(x) =
n
∑

k=1

∑

j∈Nk

|xk − xj |
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Example 3 (cont.)

Posterior density;

π(x|m) ∝ π+(x) exp(mT log(Ax)− 1
T(Ax)− α

n
∑

k=1

∑

j∈Nk

|xk − xj |)

We compute CM estimate by Metropolis-Hastings MCMC.

Proposals x′ are drawn with the following single component random scan;

Step 1: choose update element xi ∈ R by drawing index i with uniform probability

1

n

Step 2: Generate x′ by updating xi s.t.:

x′
i = |xi + ξ|, ξ ∼ N (0, ε2)
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Example 3 (cont.)

Left image; Tikhonov regularized solution

xTIK = arg min
x
{‖m−Ax‖22 + α‖x‖22}

Right image; CM estimate xCM =
∫

Rn xπ(x|m)dx.

The source pellets (3 pcs.) are localized correctly in the CM estimate.
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Example 3 (cont.)

Left image; CM estimate xCM.

Right image; posterior variances diagΓx|m
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Example 4; 2D deconvolution (image deblurring)

We are given a blurred and noisy image

m = Ax + e, m ∈ R
n

Forward model

x 7→ Ax

implements discrete convolution (the convolution kernel is Gaussian blurring kernel with
std of 6 pixels).

Assume that we know a priori that the true solution is binary image representing some
text.
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Left; true image x. Right; Noisy, blurred image m = Ax + e.
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Example 4 (cont.)

The prior knowledge is considered consistent with;

x can obtain the values xj ∈ {0, 1}

Case xj = 0 (black, background), case xj = 1 (white, text).

The pixels with value xj = 1 are known to be clustered in alphabets which have clear
and short boundaries.

We model the prior knowledge with

πpri(x) ∝ exp



α
n
∑

i=1

∑

j∈Ni

δ(xi, xj)





where δ is the Kronecker delta

δ(xi, xj) =







1, xi = xj

0, xi 6= xj
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Example 4 (cont.)

Noise e ∼ N (0, Γe), e and x mutually independent. Likelihood model becomes

π(m|x) ∝ exp

(

−
1

2
‖Le(m− Ax)‖22

)

,

where LT
e Le = Γ−1

e .

Posterior model for the deblurring problem;

π(x|m) ∝ exp



−
1

2
‖Le(m−Ax)‖22 + α

n
∑

i=1

∑

j∈Ni

δ(xi, xj)





Posterior explored with the Metropolis Hastings algorithm.
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Example 4 (cont.)

The proposal is a mixture q(x, x′) =
∑2

i=1 ξiqi(x, x′) of two move types.

Move 1: choose update element xi ∈ R by drawing index i with uniform probability 1
n

and
change the value of xi.

Move 2: Let N∗(x) denote the set of active edges in image x (edge lij connects pixels xi

and xj in the lattice; it is active if xi 6= xj ). Pick an active update edge w.p.

1

|N∗(x)|

Pick one of the two pixels related to the chosen edge w.p 1
2

and change the value of
the chosen pixel.
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Example 4 (cont)

Left image; True image x

Middle; Tikhonov regularized solution

xTIK = arg min
x
{‖m−Ax‖22 + α‖x‖22}

Right image; CM estimate xCM =
∫

Rn xπ(x|m)dx.
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Left; true image x, Middle; xTIK. Right; xCM.
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Example 4 (cont)

Left image; xCM

Posterior variances diag(Γx|m)

Right; A sample from π(x | m)
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Left; xCM, Middle; posterior variances diag(Γx|m). Right; A sample x from π(x | m).
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Example 5; Bayesian Inversion of EIT data

Joint work with Colin Fox and Geoff Nicholls
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Bayesian inversion of EIT data

Target conductivity

50 100 150 200 250

−0.15

−0.1

−0.05

0

0.05

Measured voltages

Measured voltages V ∈ R
256

Measurement model

V = U(σ) + e, e ∼ N (0,Γe)

where V denotes the measured voltages and U(σ)

FEM-based forward map.

Γe estimated by repeated measurements.

Posterior model

π(σ | V ) ∼ exp

{

−
1

2
(V − U(σ))TΓ−1

e (V − U(σ))

}

πpr(σ)

We compute results with four different prior models
πpri(x).

Sampling carried out with the Metropolis-Hasting
sampling algorithm.
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Prior models

Smoothness prior

πpr(σ) ∝ π+(σ) exp

(

−α
n
∑

i=1

Hi(σ)

)

, Hi(σ) =
∑

j∈Ni

|σi − σj |
2.

Material type prior (Fox & Nicholls,1998)

The possible material types {1, 2, . . . , C} inside the body are known but the
segmentation to these materials is unknown. The material distibution is represented
by an (auxliary) image τ ∈ R

n (pixel values τj ∈ {1, 2, . . . , C}).

The possible values of conductivity σ(τ) for different materials are known only
approximately.

The different material types are assumed to be clustered in “blocky structures” (e.g.,
organs, etc)
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We model this information by

πpr(σ|τ)∝ π+(σ) exp

(

−α
n
∑

i=1

Gi(σ)

)

n
∏

i=1

exp

(

−
1

2ξ(τi)2
(σi − η(τi))

2

)

,

where Gi implements the structural (“segmented”) MRF prior:

Gi(σ) =
∑

i

∑

j∈{k|k∈Niandτk=τi}

(σi − σj)
2

For the material type image τ we use an Ising prior:

πpr(τ) ∝ exp

(

β
n
∑

i=1

Ti(τ)

)

, Ti(τ) =
∑

j∈Ni

δ(τi, τj), (1)

where δ(τi, τj) is the Kronecker delta function.
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Circle prior

Domain Ω with known (constant) background conductivity σbg is assumed to contain
unknown number of circular inclusions

The inlcusions have known contrast

Size of inclusions unknown

For the number N of the circular inclusions we write the point process prior:

πpr(σ) = βN exp(−βA)δ(σ ∈ A),

where

β = 1/A (A is the area of the domain Ω)

A is set of feasible circle configurations (the circle inclusions are disjoint)

δ is the indicator function

δ(σ ∈ A) =







1, σ ∈ A

0, σ /∈ A
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CM estimates with the different prior models;

Top left; target

Top right; σCM (smoothness prior)

Bottom left; σCM (material type
prior)

Bottom right; σCM (circle prior)
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ExampleExample 6; 6; BayesianBayesian inversion in 3D inversion in 3D dentaldental xx--rayray imagingimaging

joint work with

Samuli Siltanen, Matti Lassas, Jari Kaipio, Antti Vanne, 
Seppo Järvenpää and Martti Kalke



Background; Implant planning in dental Background; Implant planning in dental implantologyimplantology

•Accurate measurements are needed for 
thickness & orientation of solid bone for 
optimal attachment of the implants
•Mandibular area; the location of the nerve 
canal need to be known (avoiding damage 
to the facial nerve)



• Maxilla area; distance to sinus cavities need to be known



• These measurements that are needed for safe and successful 
implantation cannot be obtained from a single projection radiograph.

• Our objective is to retrieve the needed 3D information using regular 
(digital) dental panoramic x-ray device

Left: x-ray imaging with digital panoramic device. Middle: Projection 
radiograph of the mandibular area. Right: drilling of implant hole. 



We consider the following limited angle experiment with the panoramic 
device:

ROI

X−ray source

CCD detector

Jaw bone• 11 projection images of the 
mandibular area

• 1k x 1k pixels per image

Projection geometry (maximal
opening angle available ~40 
deg)

Projection images of the mandibular area



• Quantitative and qualitative prior knowledge in dental 
radiology:

Different tissue types (bone, gum, pulp chamber) and 
possible artificial materials (amalgam, previous implants) 
are approximately homogeneous
Attenuation (density) of tissues is non-negative (X-
radiation does not intensify inside tissue)
There are crisp boundaries between the different tissues.



• We model the prior knowledge by the following prior 
models: 

Positivity prior:

Approximate total variation (aTV) prior

where



Likelihood model for xLikelihood model for x--ray imaging ray imaging 

• Measurement model 

where the noise is assumed independent of the unknown 

likelihood model:

For justification of the Gaussian noise model, see Siltanen et al
"Statistical inversion for medical x-ray tomography with few radiograph:
1. General theory, Phys. Med. Biol. 48: 1437-1463 (2003)



Posterior model;

Computation of the MAP estimate;

• Number of data ~ 1 million, number of unknowns ~ 7 
millions.

• To obtain solution in clinically acceptable time, we
– solve the problem with gradient based optimization 

methods. Positivity constraint implemented via an exterior 
point method

– Efficient implementation via parallelization / GPU computing



In exterior point method, the constrained optimization problem
is replaced with a sequence of unconstrained problems that use
asymptotic penalty ("barrier") for the positivity;

where

is the "barrier" function and                       is sequence of increa
sing parameters.

Solution by the Barzilai-Borwein optimization method;



• Reconstruction from the limited angle data of the mandibular
area  (10 projections from 40 degrees opening angle). 

Reconstruction from the limited angle data of the mandibular area. Left:
Tomosynthetic reconstruction (current standard in dental imaging). 
Right: MAP estimate. Yellow arrow indicates the location of the 
mandibular nerve canal. The measurements for implantation are reliably 
available in the MAP estimate.



The 3D limited angle modality for implantology has been 
implemented as an add-on “volumetric tomography (VT)” 
product to the panoramic x-ray equipment by PaloDEX group 
(http://www.instrumentariumdental.com/).

The system has:
Low cost
Low dose
Well suited to the dental 

workflow

http://www.instrumentariumdental.com/


About interpretation of the results ...

Consider the following “counter example”; Let m,A, true solution x and e as in the 1D
deconvolution example (example 2).

Assume that our prior model would be Gaussian white noise prior, leading to posterior

π(x | m) ∝ exp

(

−
1

2
(m−Ax)TΓ−1

e (m−Ax)−
1

2
xTΓ−1

x x

)

where Γe = I and Γx = α−1I. Figure shows the CM estimate with 99% posterior
confidence limits.
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1

xCM ± 3σx|m corresponding to ∼ 99% posterior confidence intervals
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About interpretation of the results ...

Here the true value is outside the 99% posterior confidence limits for most elements of x!

Keep in mind that the model π(x | m) reflects our information and uncertainty on x

based on measured data and

Model of measurement process π(m|x)

Model of a priori information πpri(x)

The reliability of the estimates and confidence intervals depend on both models; the
confidence intervals can be misleading if the models are not carefully constructed
respecting the measurement process and a priori information.
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