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A Provably accurate efficient optimal decoding algorithm for block codes on channels with
BSC input and output is given. But extremely careful choice of a possibly highly redundant

parity check matrix is required. A variety of examples are presented.

The fact that such matrices actually exist seems to be new. It demonstrates that trade off
between design complexity and implementation cost is possible.
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Background

Binary error correcting block codes with rate k/n

- - -Encoder Channel

Information Codeword
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2
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c ∈ C ≤ Fn
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Decoder Unencoder- - -
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m := x+e ĉ = m + ê î

The encoder multiplies i by the generating matrix G ∈ Matk ,n(F2).
It has the code C as row space.

The channel adds a random error e.

The decoder determines a most likely error ê and removes it.
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Background

Decoding

A parity check matrix: H has maximal rank such that GHT = 0: The
syndrome s := mHT = (x+e)HT = eHT depends only on the error e.

The (Hamming) weight wt(e) of e ∈ Fn
2 counts non-zero coordinates

and distance of e, f ∈ Fn
2 is d(e, f ) := wt(e + f ).

Say e, f are Hamming neighbors when d(e, f ) = 1.
The most likely errors, coset leaders are those with smallest weight.

If a coset has many coset leaders, there are several equally likely code
words given the message.
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Background

Optimal vs complete decoding, Gradient functions

The Voronoi region V(C) of a code C is the set of messages m ∈ Fn
2

that are coset leaders. Its interior is the subset that have 0 as the
unique closest codeword.

A decoder is optimal if it correctly decodes all messages with coset
leader in the interior of V(C). It is complete or a list decoder if further,
it returns a list of nearest codewords other messages.

An iterative decoding algorithm A is guided by the function
γ : Fn

2 → Z if given a received sequence m for which γ(m) > γ(0),
A searches the Hamming neighbors of m for one that satisfies its
selection criterion CA. Then replaces m with the found neighbor.

A gradient function is a function γ : Fn
2 → Z such that γ(m) is an

increasing function of the weight of (any) coset leader of m + C.
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Background

Quick and Greedy

Call the algorithm A quick if its selection criterion CA is: the first
neighbor for which γ(n) < γ(m) and it never “looks back.” If no such
neighbor exists A fails.

Call the algorithm A greedy if CA requires that γ(n) is as small as
possible.

NOTES: Greedy A can fail to converge but only if γ is not gradient.

If γ is gradient and A quick, A only fails for messages in the boundary
of V(C), so it is optimal. Also the probability of s-steps in decoding is
nps, where p is the bit error probability, so decoding complexity
depends on error weight.
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Background

Contrast with classical decoding, The dual code
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Use the bilinear form x ◦ y := xyT on Fn

2 to define the dual code C⊥ .
It is the row space of (any) parity check matrix transpose H for C.

For a vector space W of dimension d , call 1-dimensional (d–1
dimensional) subspaces points ∈ P1(W ) (hyperplanes ∈ P1(W )).

There is a natural bijection β between the points of C⊥ =: P1(C⊥)
and the hyperplanes of Fn

2/C =: P1(Fn
2/C) given by

p
β↔ p⊥ := {m : p ·m = 0}; where m := m + C.
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Gradient functions exist

Incidence matrices, Fn
2/C; The weight vector

Given an incidence relation I ⊂ A× B, the associated incidence
matrix N has rows labeled by A and columns labeled by B and
Na,b = 1 if (a, b) ∈ I and 0 else.
Note that NNT

(x ,y) counts elements of B incident with both x , y ∈ A.

Let A = P1(Fn
2/C), B = P1(Fn

2/C) and I be the does NOT contain

NT N = 2s−2 (I + J) = NNT s:=n-k (1)

where I is the identity matrix on X and J is all ones.

Define the weight vector wt ∈ ZP1(Fn
2/C) to have as m-th coordinate

the Hamming weight of (any) coset leader of m.
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Gradient functions exist

A widest parity check matrix; Notation

Set s = n − k . Build a (highly redundant) parity check matrix HT with n
rows and 2s–1 columns indexed by B = P1(Fn

2/C) (in the same order
as columns of N) having p-th column pT ; p ∈ Fs

2 \ {0}.
No parity check matrix can have more columns without repeats.

Consider the “characteristic crossing” function N : Fs
2 → Zs that

maps 0 to 0 and 1 to 1. (here s is determined by context).
Use the companion H for reduction modulo 2 from Z to F2.

We use row vectors, so matrices act on the right.
Also sometimes use subscripts to emphasize the characteristic of
various objects.
For example, for MZ ∈ Matc,s(Z), write M2 = NMZH for the same
matrix the entries in F2.
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Gradient functions exist

Gradient function construction

Suppose the received sequence m has coset leader e, so
m = e ∈ P1(Fn

2/C). Then mHT N = eHT N ∈ Z2n−k–1 has h-th
coordinate 1 iff the corresponding hyperplane h misses e and 0 else.

Thus mHT
2 N has coordinates indexed by P1(Fn

2/C) AND matches the
e-th row of NT

Z . Therefore

mHT
2 N = χ(e)NT

Z (2)

where χ(e) the characteristic function of e ∈ B = P1(Fn
2/C).

Use equation (2) and the incidence matrix equation (1):

(mHT
2 N)(Nwt) = (χ(e)NT )(Nwt) = χ(e)(NT N)wt

= χ(e)(2n−k−2(I + J))wt = 2n−k−2(wt(e) + K ).

where K =
∑

f∈P1(Fn
2/C) wt f is a constant.
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Gradient functions exist

A Theorem; History

This completes the proof of

THEOREM µ(m) := mHT NNwt is a gradient function relative to
Hamming weight of coset leaders.

NOTES: The quick algorithm guided by µ is “one step majority logic
decoding” (from the 50’s) exactly when the code is a Hamming code.

Justensen, Horholdt and Hjaltason (2005) call the function
m 7→ mHT NjT syndrome weight . They observe that the greedy
algorithm guided by syndrome weight is gradient for the [73,45,10]
code with parity check matrix the incidence matrix of the projective
plane of order 8.
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Gradient functions exist

Complete decoding; The challenge

It may be of theoretical interest to point out where the above argument
uses Hamming weight of e, for coordinates of wt , one could use any
numerical tag.

In particular, one could tag each e with a number whose binary
expansion is a list of coset leaders with “commas” removed. This
number is sufficient to construct a list of most likely errors.

Unfortunately H has rows of length |C⊥| which is deadly for fast
decoding.

The challenge is to find ways to reduce the size of H dramatically
without giving up provably optimal decoding guided by µ.
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Engineering gradient Syndrome weight

Counting unsatisfied checks with Syndrome Weight

Consider the parity check matrix as an incidence matrix of a bipartite
Tanner graph T

HT =

0BBBBBBB@

1 0 1 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 0 1

1CCCCCCCA
If the received
sequence is 11010000

then the check
vector is 00110000

Here greedy guided by syndrome weight has a severe dilemma:
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Engineering gradient Syndrome weight

Koetter, Li, Vontobel, and Walker’s “dumbell”

The symmetry group of T is dihedral of order 8 (generated by the
received sequence bit permutations (16)(2537) and (23)).

Orbit representatives, orbit size and syndrome weight of the coset
leaders in the Voronoi region are:

0000000 1 0 1001000 2 4
1000000 2 2 1000100 4 4 1001100 4 4
0100000 4 2 1000010 1 4 1001010 1 6
0001000 1 2 0101000 4 2 0101100 4 2

0100100 4 4

This syndrome weight is NOT gradient. The red entries indicate
Hamming neighbors where the one of higher weight has lower
syndrome weight.
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Engineering gradient Syndrome weight

The Dumbbell Check State Digraph/ Aut(T )

The Check State Digraph has as vertices the possible parity check
vectors and arcs from determined by the greedy algorithm guided by
syndrome weight.

Note looping occurs with black arrows so the algorithm fails to
converge.
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Engineering gradient Syndrome weight

An “Engineered” Smartbell

Apply the construction in our theorem’s proof. The elements of C⊥

have weight multiplicity distribution: (241, 206, 1624). After scaling, an
alternative parity check matrix and Tanner multi-graph emerges.0BBBBBBB@

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0

1CCCCCCCA

This parity check matrix has associated syndrome weight that is a
gradient function. The descent algorithm converges in at most 3 steps.

Bonus: This Tanner multi-graph admits the full symmetry group,
S3 o S2.
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Highly symmetric codes

Choosing codes

For what codes is it easy to construct a practical gradient
function of coset leader Hamming weight?
Because we do optimal decoding, classical parameters. like minimum
distance, are not necessarily indicators of value.

How do you enumerate of the Voronoi region of a code?.
A practical implementation need not be linear in Hamming weight but
cannot use more than a small fraction of the possible parity check
functions. How to choose possible parity check functions?

Published Heuristic: concentrate on low weight words in C⊥

Both of these questions are made easier when the codes considered
have large symmetry groups.
Also codes arising from well understood combinatorial structures fall in
families and earlier cases give partial answers to these questions.
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Highly symmetric codes

The Code of the Projective plane of order 4

Consider the incidence map of η : ZP1(F3
4) → ZP1(F3

4), and let H be
its matrix. Take HH2 to be the parity check matrix of a binary code C.

The simple group G = L3(4) of order 20160 acts as an automorphism
group. This well known code C has parameters [21,11,6].

The minimum weight code words are hyperovals.
(The tangents to a non-degenerate conic are concurrent in PG(2, 2e).
The resulting set of 2e + 2 points has the property that any line that is
not a secant is exterior and contains none of its points.
Any set with this combinatorial property is called a hyperoval .)
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Highly symmetric codes

The Code of the Projective Plane of order 4 (cont)

The Voronoi region can be identified by first computing the number of
G-orbits on the elements of P1(F21

2 /C). This number is the same as
the number of G-orbits on the elements of P1(C⊥).

There are 8 orbits. Data listed in the table: descriptions, orbit size,
coset leader weight, number of coset leaders, syndrome weight

null 1 0 1 0 triangle 280 3 4 9
point 21 1 1 5 four, three collinear 280 4 12 12
two points 210 2 1 8 four collinear 21 4 5 16
three collinear 210 3 1 13 five collinear 1 5 21 21

This syndrome weight function is not gradient. Nonetheless greedy
guided by syndrome weight decoding is optimal and ends in ≤ 5 steps.
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Lander Codes

The Lander codes for the Projective Plane of order 4

There is a less well known construction of a second binary code D
associated with this plane. To understand this [21,9,8] code, use the
characterization:

x ∈ C ⇔
{

(the support of) x intersects every
line in an even number of points

}
;

that is C = (Im(ηT )H2)
⊥.

Let L be the set of 6 exterior lines to a hyperoval O. Then LηT
is the

multi-set 2E where E is the formal sum of the 15 points not in O.
Therefore (the characteristic function of)

1
2
LηT

= E ∈ Λ :=
1
2

[
Im(ηT ) ∩ 2ZP1(F3

4)
]
.
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Lander Codes

Lander codes defined

Moreover (the support of) any element of D := (ΛH2)
⊥ must meet every

line AND every hyperoval complement in an even number of points.
There are only two G-orbits on D⊥ ∩ C and every non-trivial coset
leader for a D coset in C is a hyperoval.

For e ≤ n, I call codes like these of the form

1
2e

[
Im(ηT ) ∩ 2eZP1(F2n , m)

]
Lander Codes because E. Lander introduced them and worked out

their parameters in the late 1970’s (unpublished masters thesis at
Oxford 1978?).
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Lander Codes

Lander Codes arising from higher dimensional finite
projective geometries.

Let H be incidence map of ZP1(F4
4) → ZP1(F4

4). The parameters of
the code C are [85,68,6], [85,60,8] and they admit the group L4(4).

There are 10 L4(4)-orbits on P1(F85
2 /C). These are (listed with

descriptions, coset leader weight, number of coset leaders and
syndrome weight):

null 0 1 0 triangle 3 4 37
point 1 1 21 four collinear 4 21 64
two points 2 1 40 four, 3 collinear 4 12 48
three collinear 3 1 53 four, indep. 4 27 40

five collinear 5 100 85
five, gen. pos. 5 135 35

Syndrome weight isn’t gradient but greedy syndrome weight descent
decoding is optimal.
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Lander Codes

Future work?

The second Lander code D has parameters [85,60,8] and (again) only
two L4(4)-orbits on P1(C/D). The nontrivial orbit (still) has hyperovals
(in a plane) as coset leaders.
One can decode the second code by computing the syndrome weight
for the first code and only when it takes this value, µC = 9 use a
second set of parity checks (possibly based on an L3(4)-orbit of
hyperovals) and the associated syndrome weight function to determine
which bit to flip.

null 1 0 1 0 triangle 280 3 4 9
point 21 1 1 5 four, three collinear 280 4 12 12
two points 210 2 1 8 four collinear 21 4 5 16
three collinear 210 3 1 13 five collinear 1 5 21 21
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Lander Codes

Future work?

The rate and lengths of the first few binary Lander codes:

The challenge of Shannon’s channel coding theorem.
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Earlier Work

Earlier work of which I have become aware

Lucas, Bossert and Breitbach (1998) study a “soft output channel” but
use only parity check matrices generated from the minimum weight
dual code words.
They define a “gradient function” γ that reduces to something
equivalent to “syndrome weight” for a BSC but use the Gallager update
rule where All b are revised at every step using γ. The algorithm
iterates until stability or time runs out. Their function does not have
property we have taken for the definition of a gradient function.

Kim, Lin and Fossorier (2001) seem to be the first to suggest an
algorithm that updates the syndrome after each bit flip.

If you are aware of other historical connections,
PLEASE LET ME KNOW.
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