Semifields arising from irreducible semilinear transformations

William M. Kantor*
and
Robert A. Liebler

Abstract

A construction of finite semifield planes of order n using irreducible semilinear transformations on a finite vector space of size n is shown to produce fewer than $\sqrt{n} \log _{2} n$ different nondesarguesian planes.

1 Introduction

Let $V=V_{K}$ be a d-dimensional vector space over a finite field K. Suppose that $T \in \Gamma \mathrm{~L}\left(V_{K}\right)$ is an irreducible semilinear transformation: 0 and V are the only T-invariant subspaces of V. (The simplest example is $V=K$ and $T \in \operatorname{Aut}(K)$.) Then $\sum_{0}^{d-1} T^{i} K$ is a presemifield [5], so that there is a corresponding semifield plane π_{T} (see Section 2 below). While it appears that there might be quite a few projective planes obtained in this manner, the purpose of this note is to show that this is not the case:

Theorem 1.1 Fewer than $\sqrt{n} \log _{2} n$ pairwise nonisomorphic nondesarguesian semifield planes π_{T} of order n are obtained from irreducible semilinear transformations T on vector spaces of size n.

A weaker bound announced in [6] highlighted remarks concerning the relatively small number of known semifield planes. Many standard results concerning linear transformations have been generalized to semilinear ones [4, 2], but these do not appear to give the desired information concerning irreducible ones. In Section 3 we develop enough machinery concerning semilinear transformations to deduce the theorem.

[^0]
2 Semifield planes

A finite presemifield is a finite vector space V together with a product $a * b$ that is left and right distributive and satisfies the condition $a * b=0 \Rightarrow a=0$ or $b=0$. This produces an affine plane (a semifield plane [1, Sec. 5.3]) with point set V^{2} and lines $x=c$ and $y=m * x+b$. There is a simple, elegant construction of finite presemifields due to Jha and Johnson [5], using an irreducible semilinear transformation T on a d-dimensional vector space V over a finite field K. Namely, the set $\mathcal{S}_{T}:=\sum_{0}^{d-1} T^{i} K$ consists of $|V|$ additive maps $V \rightarrow V$, with all nonzero ones invertible; define $a * b=$ $f(a)(b), a, b \in V$, for an arbitrary additive isomorphism $f: V \rightarrow \mathcal{S}_{T}$. This produces a presemifield and hence also an affine plane π_{T}. Different choices for f produce isomorphic planes π_{T} [1, p. 135].

We repeat the elementary proof in [6] that, if at least one of the $k_{i} \in K$ is not 0 , then the element $\sum_{0}^{d-1} T^{i} k_{i}$ of \mathcal{S}_{T} is invertible. If this transformation is not invertible then there is some nonzero vector v such that $\sum_{0}^{d-1} T^{i}\left(k_{i} v\right)=0$. Then there is some j such that $1 \leq j \leq d$ and $0 \neq$ $T^{j}\left(k_{j} v\right)=-\sum_{0}^{j-1} T^{i}\left(k_{i} v\right)$. Since $T K=K T$, we have $T\left(K T^{j-1}(v)\right)=$ $K T\left(T^{j-1}\left(k_{j} v\right)\right) \subseteq \sum_{0}^{j-1} K T^{i}(v)$, so that the latter is a proper T-invariant subspace, whereas T is irreducible.

If T is a linear transformation then this construction produces a field in the standard manner. In general, unlike in the case of fields, if T and T^{\prime} generate the same cyclic group then the planes π_{T} and $\pi_{T^{\prime}}$ might not be isomorphic since \mathcal{S}_{T} is not T-invariant.

However, $\Gamma \mathrm{L}(V)$-conjugates of T produce $\Gamma \mathrm{L}(V)$-conjugate sets \mathcal{S}_{T} and hence isomorphic planes π_{T} (but not conversely, as is easily seen using $\mathrm{GF}(|V|))$. Therefore, in the next section we focus on conjugacy of irreducible semilinear transformations.

3 Proof of Theorem 1.1

We begin with the following
Proposition 3.1 Let T be an irreducible σ-semilinear transformation on a finite vector space V over a finite field K. Then there is a decomposition

$$
\begin{equation*}
V=V_{1} \oplus \cdots \oplus V_{t} \tag{3.2}
\end{equation*}
$$

of V into subspaces V_{i} permuted cyclically by T such that $\left.T^{t}\right|_{V_{1}}$ is a 1dimensional semilinear map over an extension field of K. Moreover, t divides the order of σ, and the map $\left.T^{t}\right|_{V_{1}}$ uniquely determines T up to GL (V) conjugacy.

Proof. We will proceed in several steps. Throughout the proof, V will always denote a vector space over K. Whenever a subspace of V is viewed as a vector space over another field, or the field involved needs to be emphasized, we will add that field as a subscript.

Step 1. Let s be the order of σ and $E:=C_{K}(\sigma)$. Clearly V is a vector space over E and $T^{s} \in \mathrm{GL}(V) \leq \mathrm{GL}\left(V_{E}\right)$. Let $\mu(x) \in E[x]$ be the minimal polynomial of T^{s} on V_{E}. We claim that $\mu(x)$ is irreducible. For, if $g(x) \in E[x]$ is a proper nontrivial divisor of $\mu(x)$, then $\operatorname{Ker} g\left(T^{s}\right)$ is a proper nontrivial subspace of V_{E}. Since both K and T commute with $g\left(T^{s}\right)$, they leave invariant the K-space $\operatorname{Ker} g\left(T^{s}\right)$, contrary to the irreducibility of T on V.

Step 2. Let $\mu_{1}(x) \in K[x]$ be an irreducible factor of $\mu(x)$. Then $\mu(x)=$ $\prod_{i=1}^{t} \mu_{i}(x)$ for some $t \mid s$, where the polynomials $\mu_{i}(x):=\mu_{1}^{\sigma^{i-1}}(x) \in K[x]$ are distinct irreducibles. For $1 \leq i \leq t$, let $V_{i}:=\operatorname{Ker}\left(\mu_{i}\left(T^{s}\right)\right)$. Then (3.2) holds with $T\left(V_{i}\right)=V_{i+1}($ subscripts are $\bmod t)$, and T^{s} has minimal polynomial $\mu_{i}(x)$ on $\left(V_{i}\right)_{K}$. Moreover, $m_{1}:=\left.T^{s}\right|_{V_{1}}$ is K-linear with irreducible minimal polynomial $\mu_{1}(x) \in K[x]$, so that $L:=K\left[m_{1}\right]$ is a subfield of $\operatorname{End}\left(V_{1}\right)$ and V_{1} is a vector space over L.

We always let v_{1} denote an arbitrary nonzero vector of V_{1}. We have $T^{t}\left(k m_{1} v_{1}\right)=k^{\sigma^{t}} T^{t}\left(T^{s}\left(v_{1}\right)\right)=k^{\sigma^{t}} T^{s}\left(T^{t}\left(v_{1}\right)\right)=k^{\sigma^{t}} m_{1} T^{t}\left(v_{1}\right)$ for $k \in K$. It follows that $T^{t}{ }_{V_{1}}$ is ρ-semilinear on V_{1} for an automorphism ρ of $L=K\left[m_{1}\right]$ that coincides with σ^{t} on K, fixes $m_{1}=T^{s}$, and hence has the same order s / t as σ^{t}.
Step 3. Most of the proof now focuses on the semilinear transformation $T_{1}:=\left.T^{t}\right|_{V_{1}}$ of V_{1}, rather than on T and V.

The map T_{1} acts irreducibly on the K-space V_{1}. For, let W_{1} be a nonzero T_{1}-invariant subspace of V_{1}. Then $W_{i}:=T^{i-1}\left(W_{1}\right)$ is a subspace of V_{i} for $1 \leq i \leq t$, and $T\left(W_{t}\right)=T^{t}\left(W_{1}\right)=T_{1}\left(W_{1}\right)=W_{1}$. By (3.2), $W_{1} \oplus \cdots \oplus W_{t}$ is a nonzero T-invariant subspace of V, and hence $W_{1}=V_{1}$, as required.

Step 4. By Step 2, T_{1} is semilinear on $\left(V_{1}\right)_{L}$ with associated field automorphism ρ of order $n:=s / t$. The "polynomial algebra" $L\left[T_{1}\right]$ (cf. [4]) is not commutative if $\rho \neq 1$. This leads us to consider the set R of polynomials $f(x)=\sum_{0}^{d} x^{j} f_{j}$ with $f_{j} \in L$, using the twisted product $x^{j} a=a^{\rho^{j}} x^{j}$ for $a \in L$. Then R is a (noncommutative) L-algebra having $L\left[T_{1}\right]$ as a homomorphic image under the substitution $x \mapsto T_{1}$. Jacobson [4] viewed V as an R-module, but we will not need this point of view. We only need to know that each $f \in R$ has a degree in the usual manner, and that $f\left(T_{1}\right)\left(v_{1}\right)=\sum_{0}^{d} T_{1}^{j} f_{j}\left(v_{1}\right)$, where $T_{1}^{j} f_{j}$ is a composition of additive maps on V_{1}. Then $f\left(T_{1}\right)$ is an additive map on V_{1}, but it need not be K-semilinear.

Step 5. Let $0 \neq f(x)=\sum_{0}^{d} x^{j} f_{j} \in R, f_{j} \in L, f_{d}=1$, have minimal degree d such that $f\left(T_{1}\right)\left(V_{1}\right)=0$. Then $d \leq n$ since $\left(T_{1}^{n}-m_{1} I\right)\left(V_{1}\right)=$ $\left(T^{s}-m_{1} I\right)\left(V_{1}\right)=0$ (by the definition of m_{1} in Step 2). We claim that $d=n$; in fact we will show that $f(x)=x^{n}-m_{1}$.

Take $a \in L$ lying in no proper subfield, so that $a \neq a^{\rho^{j}}$ for $0<j<n$. Consider $g(x):=a^{\rho^{d}} f(x)-f(x) a \in R$. On the one hand, $g\left(T_{1}\right)\left(v_{1}\right)=$ $a^{\rho^{d}} f\left(T_{1}\right)\left(v_{1}\right)-f\left(T_{1}\right)\left(a v_{1}\right)=a^{\rho^{d}} 0-0=0$. On the other hand, calculating in R we find that

$$
g(x)=\sum_{0}^{d}\left(a^{\rho^{d}} x^{j}\right) f_{j}-\sum_{0}^{d} x^{j}\left(f_{j} a\right)=\sum_{0}^{d} x^{j}\left(a^{\rho^{d-j}}-a\right) f_{j}
$$

has degree $<d$ since $a^{\rho^{d-d}}-a=0$. Now $g\left(T_{1}\right)\left(V_{1}\right)=0$ and our choice of $f(x)$ imply that $\left(a^{\rho^{\rho-j}}-a\right) f_{j}=0$ for $0 \leq j<d$. Then $f_{j}=0$ for $0<j<d$ (since $a^{\rho^{d-j}} \neq a$), so that $f(x)=x^{d}+f_{0}$. If $d<n$ then $a^{\rho^{d-0}} \neq a$, so that $f_{0}=0$, whereas $T_{1}^{d}\left(V_{1}\right) \neq 0$. Thus, $d=n$ and $f(x)=x^{n}+f_{0}$. Finally, since $\left(f_{0}+m_{1}\right)\left(V_{1}\right)=0$ we have $f_{0}=-m_{1}$, as claimed.
Step 6. We next claim that V_{1} has dimension 1 as a vector space over L. Since T_{1} acts irreducibly on V_{1} by Step 3, it suffices to exhibit a 1-dimensional subspace of $\left(V_{1}\right)_{L}$ fixed by T_{1}.

By Step 2, $m_{1} \in F:=C_{L}(\rho)$, where $[L: F]=|\rho|=s / t=n$. Consequently, if $N_{L / F}: L \rightarrow F$ is the norm map, then there is an element $a \in L$ such that $N_{L / F}(a):=\prod_{0}^{n-1} a^{\rho^{j}}$ equals m_{1}^{-1}.

Since $h(x):=\sum_{0}^{n-1}(a x)^{j} \in R$ has degree less than n, by Step 5 we have $h\left(T_{1}\right)\left(V_{1}\right) \neq 0$. Let $v \in V_{1}$ with $w:=\sum_{0}^{n-1}\left(a T_{1}\right)^{j}(v) \neq 0$. Then

$$
\left(a T_{1}\right)^{n}(v)=N_{L / F}(a) T_{1}^{n}(v)=N_{L / F}(a) m_{1} v=v
$$

and hence

$$
\left(a T_{1}\right)(w)=\sum_{1}^{n-1}\left(a T_{1}\right)^{j}(v)+\left(a T_{1}\right)^{n}(v)=\sum_{1}^{n-1}\left(a T_{1}\right)^{j}(v)+v=w
$$

Thus, $T_{1}(L w)=L w$, so that $L w$ is the required T_{1}-invariant 1 -space over L, and hence $\operatorname{dim}\left(V_{1}\right)_{L}=1$.
Step 7. Finally, we need to show that the action of T_{1} on V_{1} determines T up to GL(V)-conjugacy. For, if $\mathbf{B}:=\left\{v_{i 1} \mid i=1, \ldots, d\right\}$ is a K-basis of V_{1} and $v_{i j}:=T^{j-1}\left(v_{i 1}\right)$, then $\left\{v_{i j} \mid i=1, \ldots, d\right\}$ is a K-basis of V_{j} for $1 \leq j \leq t$. If A is the matrix of $T_{1}=\left.T^{t}\right|_{V_{1}}$ with respect to \mathbf{B} then

$$
v_{1 i} \mapsto v_{2 i} \mapsto \cdots \mapsto v_{t i} \mapsto A v_{1 i}, 1 \leq i \leq d
$$

uniquely describes T up to GL(V)-conjugacy.
Observe that, in the notation of Steps 1 and $2,|K|=\left|C_{K}(\sigma)\right|^{s}=|E|^{n t}$, so $|V|=|L|^{t}=\left(|K|^{\operatorname{deg} \mu_{1}}\right)^{t}=|E|^{n t^{2} \operatorname{deg} \mu_{1}}$.

Proof of Theorem 1.1. We are given a vector space V of size $n=p^{r}$ over the prime field $\operatorname{GF}(p)$. We will imitate the preceding proposition in order to construct semilinear transformations over subfields of $\operatorname{End}(V)$ that include all irreducible ones but also include many others. Thus, we will need a decomposition (3.2), a subfield L of $\operatorname{End}\left(V_{1}\right)$ implicit in the statement of Proposition 3.1, a field K, automorphisms of K and L (cf. Step 2 of the proposition), and a semilinear transformation $T_{1}=\left.T^{t}\right|_{V_{1}}$ on V_{1}.

Choose a factorization $r=t e$ with $e>1$ and $t \mid e$; the number of these is the number $\tau(r)-1$ of positive divisors of r other than 1 . Fix a decomposition (3.2) of V into subspaces V_{i} of size p^{e}. Fix a subfield $L \cong \mathrm{GF}\left(p^{e}\right)$ of $\operatorname{End}\left(V_{1}\right)$, so that V_{1} is an L-vector space. Given e, all such decompositions and fields are GL (r, p)-conjugate.

Choose a subfield $K \neq \mathrm{GF}(p)$ of L.
Choose $1 \neq \sigma^{\prime} \in \operatorname{Aut}(L)$ such that $\left.\sigma^{\prime}\right|_{K} \neq 1$ has order divisible by t. Let $\rho:=\sigma^{\prime t}$. (Thus, $\sigma:=\left.\sigma^{\prime}\right|_{K} \in \operatorname{Aut}(K)$ and $\rho \in \operatorname{Aut}(L)$ satisfy $\sigma^{t}=\left.\rho\right|_{K}$, as required in Step 2 of the proof of Proposition 3.1. According to that step we should also require that $\left|\sigma^{t}\right|=|\rho|$, but we will ignore this restriction in our estimates.)

Extend the action of K from V_{1} in order to make V and all V_{i} vector spaces over K. All such extensions are GL (r, p)-conjugate.

Choose $\ell \in L^{*}$, and let $T_{1} \in \operatorname{End}\left(V_{1}\right)$ be $v \mapsto \ell v^{\rho}, v \in V_{1}$ (cf. Proposition 3.1). We can restrict the choice of ℓ as follows. If $M_{a}: v \mapsto a v$, $a \in L^{*}$, then $M_{a}^{-1} T_{1} M_{a}: v \mapsto \ell a^{\rho-1} v^{\rho}$. Since we require different conjugacy classes of transformations T_{1}, we can restrict ℓ to a set $\Lambda(e, \rho)$ of $\left|L^{*} /\left(L^{*}\right)^{\rho-1}\right|=\left|C_{L^{*}}(\rho)\right|=p^{e /|\rho|}-1$ coset representatives of $\left(L^{*}\right)^{\rho-1}$ in L^{*}.

Up to conjugacy in GL (r, p), the choices made above uniquely determine $T_{1}=\left.T^{t}\right|_{V_{1}}$, and hence also T by the last part of Proposition 3.1. (However, we emphasize that a σ-semilinear map obtained in this manner need not be irreducible on V_{K}.) Thus, the number of $\mathrm{GL}(r, p)$-conjugacy classes of pairs K, T, with T an irreducible K-semilinear transformation that is not linear, is at most

$$
\begin{equation*}
\sum_{e \mid r, e \neq 1} \sum_{\sigma^{\prime} \neq 1}\left|\Lambda\left(e, \sigma^{\prime t}\right)\right|\left(\# K \subseteq L,\left.\sigma^{\prime}\right|_{K} \neq 1\right) . \tag{3.3}
\end{equation*}
$$

There are $\tau(r)-1$ choices for e and L, then at most $e-1$ choices for σ^{\prime}, at most $\tau(e)-1$ subfields K, and $p^{e /|\rho|}-1$ elements in $\Lambda(e, \rho)$, where again $\rho=\sigma^{\prime t}$. Clearly, $p^{e /|\rho|}-1$ dominates the corresponding term in (3.3). This
is at most $p^{r / 3}-1$ unless σ^{\prime} has order 2 and either (i) $|L|=p^{r}, t=1, \rho=\sigma^{\prime}$ has order 2 and $|\Lambda(e, \rho)|=p^{r / 2}-1$; or (ii) $|L|=p^{r / 2}, t=2, \rho=1,\left|\sigma^{\prime}\right|=2$ and $|\Lambda(e, \rho)|=p^{r / 2}-1$. Possibilities (i) and (ii) together contribute at most $2\left(p^{r / 2}-1\right)(\tau(r)-\tau(r / 2))$ to (3.3). Then (3.3) is easily bounded as required in the theorem if r is not too small, leaving a few cases to be handled by a slightly more detailed and tedious examination of (3.3).

4 Concluding remarks

We conclude with some elementary observations concerning the semifields \mathcal{S}_{T} and our arguments.

Remark 1 Note that $\pi_{k T} \cong \pi_{T}, \pi_{T+k I} \cong \pi_{T}$ and $\pi_{T^{-1}} \cong \pi_{T}$ for all $k \in$ K^{*}, since $\mathcal{S}_{k T}=\mathcal{S}_{T}, \mathcal{S}_{T+k I}=\mathcal{S}_{T}$ and $\mathcal{S}_{T^{-1}} T^{d-1}=\mathcal{S}_{T}$. Thus, as in the desarguesian case, there are isomorphisms among the planes π_{T} that do not arise from conjugate semilinear transformations.

Remark 2 As in Section 2, if we fix $0 \neq e \in V$ then we obtain a presemifield operation on V from \mathcal{S}_{T} via $a * b=g(a)(b), a, b \in V$, using the additive isomorphism $g: V \rightarrow \mathcal{S}_{T}$ defined by $g(A(e))=A$ for $A \in \mathcal{S}_{T}$. Then

$$
A(e) * v=A(v) \text { for all } A \in \mathcal{S}_{T}, v \in V
$$

gives a simple description of our operation. In fact, this turns V into a semifield with identity element e, since $e * v=I(e) * v=I(v)$ and $A(e) * e=$ $A(e)$ for all v and A.

Remark 3 It is straightforward to extend the action of L in Proposition 3.1 from V_{1} to all of V so as to make all V_{i} into 1-dimensional L-spaces. However, as has been pointed out to us by Dempwolff via an example [3], there can be irreducible semilinear transformations over K that are not semilinear over any such extension field L.

Nevertheless, a simple way to obtain a candidate for an irreducible σ semilinear map on a vector space V over a field K is to use σ-semilinearity together with the requirement

$$
\begin{equation*}
T: v_{1} \mapsto v_{2} \mapsto \cdots \mapsto v_{t} \mapsto m v_{1} \tag{4.1}
\end{equation*}
$$

for some basis $\left\{v_{1}, \ldots, v_{t}\right\}$ of V and some $m \in K$. If $t>1$ in (4.1), it is easy to check that the corresponding semilinear map has no invariant 1 -space if and only if $m \notin K^{1+\sigma+\cdots+\sigma^{t-1}}$. In this case, if $t=2$ then the corresponding semifield was discovered by Knuth [7].

Remark 4 Similarly, we can obtain many irreducible semilinear transformations by assuming σ-semilinearity in (4.1):

Proposition 4.2 Let V be a vector space over K with basis v_{1}, \ldots, v_{t}, and let $\sigma \in \operatorname{Aut}(K)$ and $\rho=\sigma^{t}$. If $m \in K$ with $m^{\sigma^{j}-1} \notin K^{\rho-1}$ for $1 \leq j<$ t, then (4.1) defines an irreducible σ-semilinear transformation on V with associated field automorphism σ.

Proof. Suppose that W is a nonzero T-invariant subspace of V. Let $0 \neq \sum_{1}^{t} k_{i} v_{i} \in W, k_{i} \in K$, with the minimum number of $k_{i} \neq 0$. Using T we may assume that $k_{1}=1$. By (4.1) and the fact that W is T^{t}-invariant,

$$
T^{t}\left(\sum_{1}^{t} k_{i} v_{i}\right)-m \sum_{1}^{t} k_{i} v_{i}=\sum_{2}^{t}\left(k_{i}^{\rho} m^{\sigma^{i-1}} v_{i}-k_{i} m v_{i}\right)
$$

lies in W and has smaller support, hence is 0 . Then $k_{i}^{\rho} m^{\sigma^{i-1}}=k_{i} m$ for $2 \leq i \leq t$. If some such $k_{i} \neq 0$ then $m^{\sigma^{i-1}-1}=1 /\left(k_{i}^{\rho-1}\right)$, contradicting our condition on m.

Thus, $v_{1} \in W$. Applying T shows that all $v_{i} \in W$, so that $W=V$.
Remark 5 We conclude with a very elementary but weaker version of Theorem 1.1 (compare [6, Theorem 6.2]) having a less informative proof:

Proposition 4.3 Given a vector space V of size n over a prime field $\operatorname{GF}(p)$, there are fewer than $n \log _{p}^{2} n$ conjugacy classes of pairs (K, T) consisting of a field $K \subseteq \operatorname{End}(V)$ over which V is a vector space and an irreducible semilinear transformation T on V_{K}.

Proof. Let $d=\operatorname{dim}_{K} V$. Let T be an irreducible σ-semilinear transformation of V_{K}. Fix a nonzero vector v. Then $\left\{T^{i}(v) \mid 0 \leq i<d\right\}$ is a basis of V (in Section 2 we saw that $\sum_{0}^{d-1} k_{i} T^{i}(v)=0, k_{i} \in K$, implies that all $k_{i}=0$).

Write $T^{d}(v)=\sum_{0}^{d-1} k_{i} T^{i}(v)$ with $k_{i} \in K$. Since $T^{i}(k v)=k^{\sigma^{i}} T^{i}(v)$ for each i and each $k \in K$, the k_{i} completely determine T.

Thus, T is completely determined by the following choices: a field $K=$ $\operatorname{GF}\left(p^{e}\right)$ over which V is a vector space, an automorphism σ of K, and a choice of $d=r / e$ elements $k_{i} \in K$, where $|V|=p^{r}$. There are at most r divisors e of r, at most e choices for σ, and then $|V|$ choices for the k_{i}. Choosing a K-basis of V amounts to conjugating in $\mathrm{GL}\left(V_{K}\right)$ and hence in $\mathrm{GL}(r, p)$. Consequently, the number of $\mathrm{GF}(p)$-conjugacy classes of pairs (K, T) is less than $r r|V|=|V| \log _{p}^{2}|V|$, as required.

Unlike in the proof of Proposition 3.1, this argument used all $|K|^{d}=p^{r}$ possible d-tuples $\left(k_{1}, \ldots, k_{d}\right)$, independent of the choice of K and σ.

Acknowledgement: We are grateful to U. Dempwolff for very helpful comments.

References

[1] P. Dembowski, Finite Geometries. Springer, Berlin-Heidelberg-New York 1968.
[2] U. Dempwolff, Normalformen semilinearer Operatoren. Math. Semesterber. 46 (1999) 205-214.
[3] U. Dempwolff, private communication, 2008.
[4] N. Jacobson, Pseudo-linear transformations. Ann. Math. 38 (1943) 484507.
[5] V. Jha and N. L. Johnson, An analog of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman's subplane problem. Algebras, Groups and Geometries 6 (1989) 1-35.
[6] W. M. Kantor, Finite semifields, pp. 103-114 in: Finite Geometries, Groups, and Computation (Proc. Conf. at Pingree Park, CO, Sept. 2005; Eds. A. Hulpke et al.), de Gruyter, Berlin-New York 2006.
[7] D. E. Knuth, Finite semifields and projective planes. J. Algebra 2 (1965) 182-217.

Department of Mathematics
University of Oregon
Eugene, OR 97403
Department of Mathematics
Colorado State University
Fort Collins, CO 80523

[^0]: *This research was supported in part by NSF grant DMS 0753640.
 2000 Mathematics Subject Classification: Primary 51E15; Secondary 15A04, 17A35

