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Preface

Patterns may be found everywhere where there is not total disorder. In the
simplest sense, a pattern may be viewed simply as one or more relations
present in a signal or collection of signals. Patterns may extend spatially
or temporally, or both. For example, the diurnal temperature variation of
the earth at any given location is a temporal pattern. Clearly there are also
temporal patterns occurring at longer time scales, i.e., seasonal variations.
On the other hand, a snapshot of the temperature distribution of the entire
earth is an example of a spatial pattern with warmer temperatures at the
equator growing cooler towards the poles. The evolution of temperatures over
the planet is an example of a complicated spatio-temporal pattern which is
the subject of intense study.

To apply a mathematical procedure for analyzing a collection of patterns it
is first necessary to obtain some measurement, or signal, which quantifies the
information in some form. One of the primary sources of patterns represent-
ing physical phenomena is the high-speed computer. It is a major dilemma
that these numerical simulations often produce more information than can
be digested or understood. Furthermore, as computers continue to become
faster, this situation only promises to become worse.

Hence, this text is intended for students and researchers whose work in-
volves analyzing patterns in high-dimensional raw data sets. In particular, we
are concerned with data the produced by the modeling of complicated physical
phenomena. It has grown out of a course entitled “Pattern Analysis” which
has been taught several times at Colorado State University and once at the
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Technical University of Vienna. The typical audience has ranged from first
year graduate students to faculty from a broad variety of disciplines including
Computer Science, Physics, Engineering, Medicine, Atmospheric Sciences and
Mathematics. It offers a selection of approaches, classical and contemporary,
all of which are actively applied in the literature.

The main emphasis in the following pages is on developing an array of tech-
niques for the low-dimensional representation of data. The somewhat unusual
collection of topics was motivated by the idea that it is by comparison that the
virtues and short-comings of any given technique can be fully understood and
appreciated. It is the aim of the author to demonstrate that the methodolo-
gies presented, when taken as a whole, provide an even more powerful toolkit
for extracting information out of data sets. Essentially every technique that
we consider is an approach for decomposing such a signal in a manner which
simplifies its study.

The methods are compared in terms of their primary mathematical char-
acteristics. We shall take great efforts to distinguish methods in these terms.
We will be primarily interested the properties of global and local representa-
tion. In addition, we characterize methods as linear or nonlinear and consider
the problem of deciding which class of technique is most suitable for a given
problem. Thus, one objective of this text is to encourage the reader to aban-
don the one tool for all problems approach and to replace it, hopefully, with
some mathematical insight into the methodology selection procedure.

In the brief first Chapter the underlying concepts and the associated math-
ematical framework of dimensionality reduction are presented. Data sources
such as numerical simulations of physical models, laboratory experiments and
digital imaging systems are discussed as are general issues concerning the
nature of data.

In Chapter 2 the mathematical background required for the later chapters
is established. Coordinate transformations, change of bases, inner product
spaces, subspace operations and finally the spectral theorem are presented.
Even though some of the material is probably familiar to the reader it is hoped
that this summary can be read, or returned to, with benefit, as it emphasizes
the presentation within the context of applications to pattern analysis. Old
questions may be asked in new ways, such as: Does a collection of digital
images of human faces form a vector space?

In Chapter 3.1 we introduce one of the most important tools for dimen-
sionality reduction, namely, the Karhunen-Loéve (K-L) transform. We begin
the discussion of an example from Pearson’s 1901 paper. After a detailed
theoretical presentation which develops the procedure for high-dimensional
multivariate data sets, we present an application high-resolution image rep-
resentation in the context of human face identification. The benefits of the
exploitation of symmetry are also discussed and a methodology for comput-
ing symmetric eigenpictures is presented and applied. The main approaches
developed i.e., the snapshot method and the direct method, are discussed in
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terms of the singular value decomposition, This Chapter concludes with a
local extension of the K-L procedure.

Chapter 4 continues the discussion of the K-L procedure with more appli-
cations. In particular we consider the problem of reducing the dimensionality
of the dynamical description of physical models. We also present an applica-
tion to the processing of sequences of time-dependent high-resolution digital
images.

Part II begins with Chapter 5 which introduces one of the most important
tools in applied mathematics and pattern analysis, i.e., the discrete Fourier
transform. The presentation is done within the framework of finite orthog-
onal expansions and is shown to be a special case of an optimal expansion.
The short-time Fourier transform is developed to show its poor time-frequency
resolution properties and motivate the discussion of an adapted window trans-
form, or wavelets. The continuous wavelet transform and the idea of time-scale
analysis is presented.

Chapter 6 introduces the discrete wavelet transform and multi-resolution
analysis. It begins with a presentation of the Haar wavelet and develops the
multi-resolution idea in this setting. The pyramidal decomposition procedure
is also presented and applications to signal analysis using several different
types of wavelet are given.

Part III concerns biologically motivated computational paradigms, i.e., ar-
tificial neural networks. Chapter 7?7 is an introduction to the supervised
approximation of non-linear functions. We focus primarily on feed-forward
networks and the well-known back-propagation training procedure. The tech-
niques in this Chapter are global in nature.

Chapter 77 presents more computational tools for function approximation
and clustering. Local transfer functions for neural networks, i.e., radial basis
functions, are introduced. The self-organizing feature map is presented as a
clustering routine based on a competitive learning algorithm. The techniques
in this Chapter are local in nature.

The last Chapter entitled Hybridology consists of several sections, each
of which is a “multiple methodology” application. Hopefully, the pay-off of
having developed so many disparate approaches is now apparent. We combine
the ideas of optimal expansions, wavelets and neural networks by means of
several examples. It is seen that unsupervised neural networks can learn the
K-L basis. Constrainted nonlinear reduction networks provide an excellent
new tool for pattern analysis. Radial basis functions can be implemented
efficiently using the clustering techniques developed in Chapter ??7. Neural
networks can be implemented to construct data dependent wavelets.

Most of the algorithms presented require a computer for implementation
and students have been required to complete an extensive application of one
of the techniques on the computer. This approach allows students to become
more familiar with a methodology than solving routine exercises would permit.
Some suggestions for projects are included at the end of each Chapter.
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The text is essentially self-contained with an extensive review of the ele-
ments of linear algebra which are relevant to the analysis of patterns. Some
knowledge of Hilbert spaces is helpful for the Sections on the continuous
Karhunen-Loéve expansion and for the Chapter on Wavelets. It is possible,
however, to investigate most of the basic ideas within the context of discrete
data which makes a detailed development of Hilbert spaces less critical. While
it is hoped that the presentation of any single methodology will be sufficient
to get the reader started, extensive references to recent literature are included
to aid in supplementing the material in the text.

MICHAEL KIRBY

Fort Collins
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In this Chapter we will be concerned with representing data in terms of
its frequency content. We will be interested in the analysis of signals with
both continuous- and discrete-time representations. In addition, we will con-
sider the transition from one representation to the other in terms of Shannon’s
Sampling Theorem. We will investigate continuous and discrete Fourier repre-
sentations and develop the ideas required to apply transformations to signals
in either the time- or frequency domain.

One of the characterizing features of Fourier analysis is its global nature.
In particular, if the signal under investigation is changed locally in the time
(frequency) domain then the frequency (time) domain representation is ef-
fected globally. We shall consider the pros and cons of this property and
contrast this feature with the wavelet transform in Chapter 6. We begin our
discussion by introducing some necessary classical definitions from the field of
digital signal processing.

5.1 THE DISCRETE FOURIER TRANSFORM

We return to our approach of considering a pattern x as point in a vector
space V where x = (z1,...,2zn). This can be expressed in almost a trivial
way as a finite orthogonal expansion with respect to the standard basis vectors
{ej} 0, ie,

X =x1€1 +...TNEN.

In this instance we view the decomposition of V as
V=W ---&oWxn

where
W; = Span(e;).

There is nothing special about this representation given that the expansion
coefficients z; do not reflect any specific features of the data. In addition, the
coeflicients may share information about the pattern and in fact they generally
are redundant. For example, consider a digital image which has uniform pixel
values. There may be thousands of these pixels but if we knew they all had
the same value we would only need to store one number. This is a trivial
example of information shared by coefficients. However this can be the case
in much more subtle situations.

One of the main goals of the K-L analysis was to develop alternative sub-
space decompositions V = W @ --- ® Wy which package the information
content of a pattern vector x in an informative and systematic way. The
K-L procedure resulted in what we referred as an empirical basis since the
eigenvectors were seen to be data dependent. In this section we will see that
for special types of data the K-L basis is a collection of well known functions
(sinusoids). We will be especially interested in the discrete case which will
lead us to the discrete Fourier transform.
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5.1.1 Finite Fourier Expansion

In this section we will be considering a complex inner product space CV with
inner product

N-1
(f7 g) = Z f]E
j=0
where g; stands for the complex conjugate of g;. We consider in detail the
finite orthogonal expansion
N—

£=Y fv0

Jj=0

[u

where the v(9) are the Fourier vectors defined as
v — (1,zj,z2j,z31',___,Z(N—l)j)
with z = e2™/N and i = /—1. Using the relationship
2™ = e2™m/N = cos(2rm/N) + isin(2rm/N)
we see that the 2¥, k =0,..., N — 1 are in fact the N-N’th roots of unity.

Proposition 5.1. The set of N Fourier vectors {v() };.V:_Ol forms a basis for
CcN.

Proof. Tt is enough to show that the Fourier vectors are orthogonal, i.e.,
(v, vk = adj, where o is some constant to be determined. First, we

write the [th component of the jth Fourier vector as vl(j ) = 24, Then

N-1 N-1
S =W v#)y) = Z ik — Z L=k
1=0 1=0

In other words, § = Z;.V:_Ol 2'? with p = j — k. This is just a geometric sum
and can be computed using standard techniques, i.e.,

S=1+2P+ 2% + ... +2N-1p

PSS = P44 4P
Subtracting the second equation above from the first,
S(1—2F)=1-2N7,
Using the fact 2P = 1 we have the result

S(1-2°)=0.
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If 1 — 2P # 0 then we must conclude S = 0. Thus S will be nonzero iff 2P = 1.
This is true for p = 0,+N,+2N,.... Thus the inner product S is nonzero iff
j =kt mN, where m is any integer. Note, in this case S = Zfigl 1=Nso
we can conclude

(v, v®)) = NG gy

O

The orthogonality of the Fourier vectors and the fact that we have N of
them means we a constructed a basis for CV. Next we show how this basis
can be used. In view of the above, let us now reconsider the expansion of a
complex N-tuple in terms of Fourier vectors which we now write

1 N-1

f=—
N
b=

fov®,

[=4

To compute the value of the expansion coefficients we apply the orthogonality
property of the Fourier vectors. Taking the inner product of f with v(9) we
have

. 1=, .
(F,v\D) = ~ Fr(v® v
k=0
1 N1
= 2. [Nk

k=0

>

)

From which we have . .
fi = (Ev)

which we interpret as the projection of the discrete data vector f onto the jth
Fourier vector. Evaluating the complex inner product above we write

N-1  ____ N-1 ]
fi= 3 fod =37 fuemiribN
k=0 k=0

We note that using this normalization for the Fourier expansion we have
Plancherel’s relation 1

f.g) = —(f¢g

(f.g) = y(£.8)

and in particular
1 -
fl| = =||f
Il = Il

a fact know as Parseval’s equality. It says that the magnitude of the original
vector is related to the magnitude of the Fourier transformed sequence by a
fixed scalar multiple.
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In summary we define the discrete Fourier transform pair:

Definition 5.1. The discrete Fourier transform (DFT) of the sequence {f,}
of length N is given by

N-1
fi= 3 fre2mikIN, (5.1)
E=0
where j = 0,..., N — 1. The inverse transform is
PN
fo= g 3 Sy, (5.2)
3=0

withk=0,...,N —1.

The DFT is generally referred to as a global transform since each coef-
ficient the transform space depends on all of the data in the periodic data
sequence. Similarly, all the inverse coefficients are a function of all of the
transformed coefficients. This situation is contrasted later with function ex-
pansions, i.e., wavelets, with have coefficients which have a local rather than
global dependecy.

Sometimes we will find it convenient to use the notation

F(fe) =1
and the inverse transform .
FH ) = fr-
Note that the summation for both the forward and backward DFT is over

a finite number of points. However, by examining the sums in equations (5.1-

5.2) we observe that the quantities fr and fj are defined for all k£ and j in
7.

5.1.2 Properties of the DFT

Property 5.1.1. Periodicity. The Fourier transform and inverse Fourier
transform of a sequence of length N is a periodic sequence of period N, i.e.,

fo=Totin  fi=fitin

This may be established directly from the definition in equation (5.2) by
substituting the index k& + [N, i.e.,

2

1
frtin = N 2

~

f]e27rm+zn/N

71
Dyt

fje27rz]k/Ne27rz]l

2|~

LY
Il
=

Il
=
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Fig. 5.2 This figure shows the discrete Fourier transforms corresponding to the dis-
crete sequences displayed in Figure 5.1. The 2 frequencies appear as spikes in the top
figure. The added noise contributes additional low amplitude frequencies as shown in
the middle figure. The bottom transform shows the effect of replacing the tail of the
2 frequency data with zeros. The additional components are referred to as leakage.

70
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Also, the transformed sequence may be seen to be periodic proceeding as
above but using equation (5.1)

N-1
Frvin = Y fe2misnnt/N

>
Il
=

2

fke—27rz]k/Ne—27rzlk

>
Il

0
= fj

In fact, any finite sequence may be viewed as an infinite sequence by ex-
tending it periodically. This extension occurs automatically for sequences
computed via a Fourier transform or its inverse. We will assume that by con-
vention that the periodic extensions of the DFT are taken to be zero. We
will refer to the periodically extended transform as the discrete Fourier series
(DFS) of a finite sequence.

Property 5.1.2. Shifting Properties
F(fn-m)= z_mkfk
Proof.

1 N-1
_ = £ 2mwi(n—m)k/N
fn—m - N kz_o fke (

-1

ke27rznk/Ne—27rzmk/N

2

2=

k=0

N-1
£ _—2mimk/N\ 2mink/N
(fre Je

2|~

£E=0
In other words, .
f(fn—m) = z_mkfk
O
In alternate notation,

f=(fo,...,fn-1) & (fo,---,fN—1) =f
£ = (fomy s fN—1om) © (27 fo, .., 27V Iy ) = £
Using the same approach it can also be shown that
F(f#2™) = fin-
Specifically,
f=(fo,....fn1) & (fo,- s fvo1) =1

(f—ma .. '7fN—1—m) A (sz07- .. 7z(N_1)mfN—1)
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Property 5.1.3. The circularity property states

N N+4+m
§ :akezl:27rz]k/N — § : akezl:27rz]k/N
k=1 k=14+m

where {ay} is periodic sequence, for any integer m € Z.

5.1.3 The DFT as an Optimal Basis

We saw in Chapter 2 that certain kinds of operators could be used to determine
a complete set of basis vectors which spanned invariant subspaces. These
subspaces collectively described the vector space and the basis allow us to
decompose the operator into the superposition of operations on the subspaces.
When have also seen in the section how Fourier vectors form a complete basis
for CV. We might now ask, is there an operator from which this basis can be
determined ? As you might suspect, the answer is yes.
Let C be a circulant matrix

Co CN—-1 CN—2 ... C1
C1 Co CN—-1 ... Co

c=| . . o (5.3)
¢CN-1 C€N-2 CN-3 ... O

Note that (C)yn = €m—rn where ¢, = cprin-

Proposition 5.2. The eigenvectors of any circulant matriz C are the Fourier
vectors, and the eigenvalues are the discrete Fourier coefficients ¢ defined by
the DET of ¢ = (c1,¢2,...,CN)-

Proof. The N Fourier vectors are given by

vk = 1,2z, .. .,z(N_l)k)

As before, write v](k) = 2/ where 2" = 1. Then

(Cv®) =" enjo
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Substituting the exponential notation for z,

N-1
(Cv(k))n _ (2mink/N Z cn_je—2m'k(n—j)/N
j=0

= )\k’UT(Lk)

where we have defined A\, as

N-1

Ap = Z cn_je—Zﬂ-ik(n—j)/N-
=0
O
We leave it as an exercise to show that Ay = F(c) where ¢ = (¢1,¢a,...,¢Nn)-

5.1.4 The Convolution Theorem.
Let {a,} and {b,} be periodic sequences each with period N.

Definition 5.2. The periodic convolution of these sequences is given by

N-1
(axb), = Z Ap—mbm.
m=0

Theorem 5.1. The Convolution Theorem: The discrete Fourier transform
of the periodic convolution is the product of the discrete Fourier transforms of
the individual sequences.

Proof.
N-1
Flaxd) = (a* b)ke_2”jk/N
E=0
N-1 N-1
— (Z ak_mbm)e—27rijk/N
k=0 m=0
N-1

N-1
bme—27rz]m/N Z ak_me—%m](k—m)/N-
k=0

3
Il
=)

Using the circularity property (5.1.3) We rewrite the above sum, shifting
by m, viz.:

N—

[u

N—-1+4m N-1
ak_me—27rz](k—m)/N — § : ak_me—27rz](k—m)/N — § :ale—27rz]l/N
k=m =0

k=0
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where in the last sum we have put I = k — m. So,

N-1 N-1

.7(0, % b) — Z bme—27rijm/N Z ale—27rijl/N
m=0 =0
= bja;
O
The discrete Fourier transform of a function, even a real function, is gen-
erally complex and we write it
fi =% +1i3

Le., #; = Re(f;) and §; = Im(f}).
It will also be useful to express f; in complex exponential form:

fi = files

where the Fourier spectrum is given by

AT~

1fil = ((#) + ) =y

)

and X
Py

¢; = tan™" (Z2).
7

Definition 5.3. The sequence P; = |j‘¢j|2 is called the discrete power spec-
trum of f; and ¢; is the phase angle.

Proposition 5.3. The power spectrum is periodic.

5.1.4.1 Real Sequences If the sequences in question are made up of real
numbers instead of complex numbers we may make the observation

fn= f_n
which is often referred to as the reality condition.

Proposition 5.4. If fi is a real sequence then

Proof.

f—j — k6_27”]k/N.

but since fr = f due to the reality of the sequence we conclude fj = f_j. O
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5.1.4.2 FEven and odd transforms.

Definition 5.4. A sequence {f,} is said to be even if

fn="Ffn
and odd if
fn=—f-n
The DFT of a sequence can be simplified if the discrete periodic sequence
possesses either even or odd symmetry. If {f,} is an even sequence then

fn = (fn + f=n)/2. Using this relation combined with the definition of the
DFT

1 N1
fk —_ fje27rijk/N
N =
from which it follows
1 N1 -
f—k — = ]e—27rz]k/N
N =
thus,
1 N1
fk + f—k — N Aj(e27rijk/N +e—27rijk/N)-
7=0
Now using fe, = (fx + f-£)/2 we get
N-1 .
1 2 2mjk
fer = 5 cos( )
N = N

For real sequences one can show

N-1
2 2
£ = Z & cos( Wnk) + by sin( wnk)
£E=0

N N

Proposition 5.5. The power spectrum of a real sequence is even.

P(=j) = f(=)f(=3)
Taking the complex conjugate of the reality condition fj = f (—7) gives fj =
f(=7) in other words,

P; = f(=§)f(=j) = P(-j).
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5.1.5 Fourier Descriptors.

The discrete Fourier transform can be used for describing the shape of a
boundary on a quantitative basis. Consider a closed curve in the plane which
is given (either initially, or after sampling) as a set of discrete (z;,y;) pairs.
Consider repackaging the data as

(zj,y;) =z +iy; = fj

Now we have created a complex sequence of points from the closed planar
curve. When we take the DFT we may look at the curve in terms of its
frequency domain representation. This removes dependence on position, size,
and orientation.

The results of an experiment with filtering the Fourier transform of the
Fourier descriptors corresponding to a sampling of points on the closed curve
representing the letter C (or U!) is shown in Figure 5.1.5. Since the data
is not translationally invariant, the DFT is not an optimal transform in the
energy capturing sense. Also, we note that the energies corresponding to each
coefficient, as displayed in the the power spectrum, are not monotonically
decreasing so it is not advisable to simply truncate the tail of this expansion.
As we see when the 15th coefficient is set to zero, it is possible to throw away
potentially valuable information.

5.1.6 The 2-D DFT

Transforms such as the DFT can be used for image coding as well as signal
analysis. It might seem at first glance that all we need do to apply the DFT
to images is to make a big vector out of the array of pixels. This would work,
but we would be failing to exploit the natural extension of the DFT to higher
dimensions which can be computationally more efficient.

First, we briefly consider the application of general transforms to higher
dimensional arrays. In what follows let f;; be a rectangular array with ¢ =
0,...,.M—-1land 5=0,...,N —1.

Definition 5.5. The forward transformation of a 2—dimensional array
fij is given by

M—1N-1
fijsij,mn
=0 j=0
and the inverse transformation by
M—1N-1
fz] - E E fmn ij,mn
m=0 n=0

The four-dimensional arrays s;j,myn and &;j.mn are referred to as the for-
ward and inverse transformation kernels.
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Fig. 5.3 Top left: The letter C before it is discretely sampled. Top right: The power
spectrum of the Fourier descriptors of the letter C. Bottom left: The inverse transform
of the DFT of the Fourier descriptors, with the 15’th coeflicient (in transform space)
set to zero. Bottom right: The inverse transform of the DFT of the Fourier descriptors,
with the low energy 8,9,10 and 11 coeflicients set to zero.
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In general, a kernel k;; mn is said to be separable if
Eijmn = Kimk;
and symmetric if it is separable and
kilj = kfj.

We observe that a 2-dimensional transform with a separable kernel can
be computed via repeated applications of the one-dimensional version of the
transform.

The transform, with s separable, is

N-1N-1

fmn = Z Z fijszlm's?n

i=0 j=0

1 N-1

(Y FiiSn)-

i=0 3=0

Definition 5.6. The discrete Fourier transform (DFT) pair in 2-D is given

by
M-1N-1

1 ~ YRl ’
v =qpy 2o D et O /MARE/N)
§'=0 k'=0
M-1N-1
Frw=>%" Fine 2milis M+ /N)
§=0 k=0

Proposition 5.6. The 2-D DFT is separable.

As mentioned previously, this separability property means that the appli-
cation of a 2D DFT is mathematically equivalent to computation of M DFTs
with variable length N, or N DFTs with variable length M.

To see this consider rewriting

M-1N-1
2 _ —27i(jj’ /M+kE' /N
fiw = E : E :fjke wi(ji’ /M+kE' /N)
j=0 k=0
as
M-1 N-1
£ _ —2mijj /M —2mikk’ /N
T
j=0 k=0
-1
~ st
fjlkl = 6_27”-7.7 /ngkl_

=0
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Definition 5.7. The power spectrum of a 2-dimensional DFT is given by
Py, = | fin?
As in the 1D case, we may express the transform in polar form
Fir = | firles=.
Property 5.1.4. The 2D transform is also periodic, i.e.,

fit = Fi+nM btnN

and . .
fit = Fj+nM btnN-
Property 5.1.5. In analogue with the 1D case we have the 2D shifting prop-

erty ) - I
F(fjmmp—n) = fj,k,e—27”(1 m/M+k'n/N)

5.1.7 The Fast Fourier Transform

Symmetry and periodicity may be exploited to accelerate the computation
of the DFT. We consider the case that the length of the sequence to be
transformed is of the form N = 2™ where m is some positive integer.

The fast algorithm proceeds by splitting the sequence f(n) into 2 N/2 point
subsequences made up of the odd and even indices of f. To see why this is
helpful let us write again the DFT of f as

. N-1
fo=>" Wi (5.4)
n=0

where k =0,...,N — 1, W = exp(—2nikn/N). This sum may now be split
into two sums over the even and odd indices, i.e.,

-1 F-1
=3 foWEE+ S foraWTOH (5.5)

r=0 r=0
-1 X1

=" fr(WR)™*+WE D forsa (W)™ (5.6)
r=0 r=0
-1 ¥-1

= > Far Wil + WR D fara Wi (5.7)
r=0 r=0

= g + Whhi (5.8)

where we have used the fact that

W]%] = WN/2
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and defined

¥-1
= faWih,
r=0

and
N N
2 1 21

=Y forWila + WE Y forsa Wik
r=0

r=0

173



174 FOURIER EXPANSIONS

Problems

5.1 The (symmetrical) discrete Fourier transform (DFT) pair is given by

1 N-1
_ 1 7 2mijh/N
fk \/N ]:ZO f]

1 N
po_ L Z —2mijk/N
e [ .
1 VN = T
Show that

a) this definition follows from equation (5.1) using the appropriate substi-
tutions.

b) ||f]| = ||f|| (assume the standard Euclidean norm).

5.2 Find the discrete Fourier transforms of f = (—1,0,1) and g = (-1,0,1,0)
and compare.

5.3 Let f, be an odd periodic sequence with integer period N. Namely,

fn = fatin

fn = _f—n

where j is any integer. Simplify the DFST for this case. What more can you
say if the sequence is real?

5.4 Let u,v € RY. We define the finite convolution product as

N-1

(uxv), = Z Ugy—mm V-

m=0
Prove

(uxv), = (vsu),.

5.5 Let f € CV and let f be the DFT of f. If we write the DFT and its
inverse as matrix operations, i.e.,

f=Af

and .
f=Bf
what are A and B?

5.6 Represent the FFT of a 4-point sequence in terms of matrix multipli-
cation and compare with the DFT.
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5.7 Let Cbe an N x N circulant matrix. Show that the eigenvalues of C
are given by the DFT of ¢ with ¢ = (¢1,¢9,...,¢n).

5.8 Assume f € RV, i.e., it is a real vector. Starting from the expansion
1 N1
fk — N Z fje27rz]k/N
j=0

and using the reality of the sequence, show that expansion can be reformulated
as
2mnk

N

= 2mnk
fn= kz_o ax, cos( N ) + by, sin(

where the ag, by are real. Find a formula for the a; and b in terms of fk.

5.9 As we have shown, N- Fourier vectors span an N-dimensional complex
vector space. To help in visualizing the expansions better, draw the complex
and real parts of the eight Fourier vectors {v(/) }5—1. Also draw the eight
Fourier vectors which span R® (noting which of these are odd and which are
even.)

5.10 Show the following:

a) if fj is a real sequence, then f = f_p

b) if fi is an imaginary sequence, then fk = —E

c) if fj is an imaginary sequence, then fy = —f_j
5.11 Consider the complex vector f = (fo,..., fv_1) € CV where CV de-
notes the N-dimensional complex vector space. Define the shifted vector,
£° =(f-m,-.., fN—1-m) and assume that the vectors may be extended peri-

odically so that fm = fm+nn, fr, = foyny Where n = 0,+1,42,.... Show
that the power spectra of f and f* are the same.

5.12 If the f;; are real numbers show that

fiw = f—j—r-

From this conclude that
Pjr = P_j -

5.13 Show that the rotation of an image leaves the power spectrum invari-
ant.

5.14 Prove the circularity property, i.e., show

N N+4+m
§ :akezl:27rz]k/N — § : akezl:27rz]k/N
k=1 k=14+m
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for any integer m where {a,} a periodic sequence with integer period N.
5.15 Show that
fit = firim ot
and . .
fit = firim ot
where | € Z
5.16 Show that

fj—m k—n fjlkle_27ri(jlm/M+k’n/N)
What can you conclude about the 2-dimensional power spectrum of a shifted
image?

5.17 Given that two complex vectors f,s € CV have the same power spec-
trum must there exist parameters €, m such that

§ = e S™f?

If not, can you specify conditions which would make the above statement
true?

5.2 CONTINUOUS-TIME FOURIER TRANSFORM

In this section we assume that the domain of the function z(t) to be trans-
formed is continuous and furthermore, that the range is at least piecewise
continuous, so both z,¢ € R. This is in contrast to a discrete-time system
where t € Z as considered in the previous section. The fully continuous ana-
logue to the DFT is given by the Fourier integral pair which consists of the
forward transform

X (w) = / (t)e—itdt (5.9)
and the inverse transform
1 b .
(t) = / X (w)e“tdu (5.10)
2 J_

In these equations we generally think of ¢ as representing time and w as repre-
senting the continuous frequency. Hence we will often refer to this transform
pair as the continuous-time Fourier transform (CTFT). We will also employ
the alternative notations

and
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Fig. 5.4 Left: The Mexican hat function. Right: The CTFT of the Mexican hat.

and often denote a transform pair as
z(t) & X (w)

Example 5.1. Compute the Fourier transform of the function

_J1 l<sT
hi(t) = {0 T (5.11)

Applying equation (5.9) we obtain

Hy(w) = / hL(t)e_iwtdt
T

= / e~ “tdt
-

_ 2sin(wT)

w

The subscript L is employed because, as will be discussed later, this function
acts as a low-pass filter.

Example 5.2. The Mexican hat function
z(t) = —=(1 —2)et'/2 (5.12)
has the Fourier transform
X (w) = 3v/mwe " /2 (5.13)
The function and its transform are shown in Figure 5.2.

Example 5.3. The Morlet mother wavelet

z(t) = g iwotg—t"/2 (5.14)
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has the Fourier transform

X(w) = e 3(we)? (5.15)
The function and its transform are shown in Figure 5.2 with wy = 7/2/1n2.
Example 5.4. The Fourier transform of a Gaussian

z(t) = et (5.16)

X(w) = \/ge—“/‘*a (5.17)

The fact that the Fourier transform of a Gaussian is also a Gaussian is a
unique property. Figure 5.2.3 shows the Gaussian and its CTFT for various
values of a.

is given by

5.2.1 Connection With the Fourier Series

One motivation for this transform pair is the extension of the Fourier series
representation of a periodic function to a function which is not periodic, or
whose period may be viewed as infinitely long. Hence, we first consider the
representation of a function z(#) which is assumed to have a fintite period T'.
The Fourier series representation for this is

z(t) = Z anem it/ T (5.18)

n=—oo

where the Fourier coefficients are given by

1 T —2wint/T
Gn = = z(t)e dt. (5.19)
T J_ 7/

Now examine the effect of letting the period T' — co. First define

27
Aw = —.
Y=

Multiplying by the period T" and taking the limit of equation (5.19) as T — oo
we obtain

(o0}
lim Ta, :/ z(t)e AWt gy
T—o0

—0o0

From equation (5.9) we then conclude

lim Ta, = X (nAw).
T—00
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Fig. 55 Top: The real part of the Morlet mother wavelet. Middle: The imaginary
part of the Morlet mother wavelet. Bottom: The CTFT of the Morlet mother wavelet.
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Also, computing the limit of equation (5.18) and inserting the result from
above

5.2.2 Properties of the CTFT

5.2.2.1 Real-valued functions 1If z(t) is a real valued function then its Fourier
transform satisfies the equation

X(w) = X(~w) (5.20)
This is analogous to the reality condition for the DFT.

5.2.2.2 Even and Odd Functions 1If z(t) is an even function then the forward
transform is

X(w) = 2/000 z(t) cos(wt)dt

and the inverse transform is
1 [e9)
z(t) = —/ X (w) cos(wt)dw
T Jo
If z(t) is odd then the forward transform is
(o0}
X(w) = —Qi/ z(t) sin(wt)dt
0
and the inverse transform is

o(t) = -1 / ” X (w) sin(wt)dw
T Jo

5.2.2.3 Shifting Properties The shifting and scaling properties of the Fourier
transform are frequently used in Fourier analysis and are analogous to the
properties of the discrete Fourier transform.
¢ Time-Shifting property:
z(t —a) & e X (w). (5.21)
To show this write

Flalt—a)) = / Bt — a)e—tat

—0o0

=g tw / z(t —a)e {09 g(t — q)

—0o0

= e 7" X (w)
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¢ Frequency-Shifting property:

ety (t) & X (w — wo) (5.22)

5.2.2.4 Scaling Property The scaling property states that

1 w
o —x(X
z(at) te] (a

This property is also referred to as the time-dilation property. First consider
the case @ > 0. Then

) (5.23)

o0

F(o(at)) = / s(at)ei“tdt

—o0

letting 7 = at we have

— / x(T)e—in/ad_T

oo o
1
- -x¥
o o

)

A similar argument applies for a < 0 where care must be taken to appropri-
ately reverse the limits of integration.

5.2.2.5 Transform of a Derivative This property may be stated both in the
time and frequency domain.

¢ Time-domain:

/00 o' (t)e idt = et (t)|®,, — /00 z(t)(—iwt)e“tdt
hence
Flz' () = iwX (W) (5.24)

where we have assumed that the function to be transformed vanishes at
00. For the n’th derivative we have the formula
i

Wf & (iw)" X (w)

¢ Frequency-domain:

d"X (w)

(—it)"a(t) & ——

(5.25)
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5.2.2.6 Parseval’s Formula This important formula establishes the relation-
ship between the magnitude of a signal and the magnitude of its transform
as

/mwwﬁﬁzéi/mhﬂwﬁm; (5.26)

—o0 —0o0

5.2.2.7 Time-Frequency Symmetry The following property reveals the sym-
metry between the time and frequency domains in the CTFT pair.

Theorem 5.2. If
z(t) & X (w),

then
X(t) ¢ 2rz(—w).

pI‘OOf.
z (i) 2 / ‘( (("' )E d("'

2z (—t) :/ X (w)e"“tdw
switching ¢ and w
2rz(—w) :/ X (t)e “tdt

Thus, the Fourier transform of the function X (¢) is 27z (—w).

Example 5.5. To demonstrate the utility if this theorem, we consider its
application to a previous example

hi(t) & Hp(w) = %%“”T)

thus,
27ThL(—w) ~ Hj, (t)

from which we conclude

2 |w|<T  2sin(tT)
2rhg(—w) = - ————= =Hi(t 5.27
why (~w) {0 R s L MO NNCEY
or equivalently,
< .
1 |w<£T R sin(¢T") (5.28)
0 T<|w| 7t
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5.2.2.8 Convolution The definition of the continuous-time convolution is

y(t) = /00 z(T)h(t — T)dT

—c0
which we also write

y(t) = z(t) * h(t) (5.29)
The following convolution theorems are especially important:

Theorem 5.3. Let the functions y(t),z1(t) and z2(t) have the Fourier trans-
forms Y (w), X1 (w) and Xo(w), respectively.

e Time convolution: If

y(t) = 21 (8) * 2 (t) (5.30)
then
Y () = X1 (@) Xa(w). (5.31)
o Frequency convolution: If
y(t) = 21 (8)22(2) (5.32)
then
Y(w) = %Xl (@) * Xa(w) (5.33)

5.2.3 The Uncertainty Principle

It is a property of the Fourier transform of a function that the wider the do-
main on which the function is non-zero the narrower the width of the transform
of the function. Similarly, functions which are narrow in the time-domain have
correspondingly wider transforms. This tradeoff is quantified by the Uncer-
tainty Principle. To begin, we need a suitable definition for signal width, or
duration. Following Papoulis [61] we define the time-duration A; of a signal
as

_ o Bla(®)Pt
I N LG

where the denominator is referred to as the energy of the function. Similarly,
the frequency-duration, or width, is defined as

foooo W X (w)|2dw

A2 = =2 )
C e 1 X (W)Pdw

A? (5.34)

(5.35)
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Now we may state more precisely this relationship between the widths of the
Fourier transform pair [61].

Theorem 5.4. If a function f(t) vanishes faster at infinity than t—/2 then

AtA, > \/g (5.36)

where equality holds only for functions of the form

[0

flt) =4/ 2ot

T
i.e., signals which are Gaussians.

The proof is a consequence of Schwarz’s inequality which states

|/ ()t < [:mwﬁﬁ[:mwﬁ#

with equality only if g and h are linearly dependent, i.e.,

= kg(t)

)
Now take g(t) = tf(¢t) and h(t) = % = f'. Then substituting into Schwarz’s
inequality we obtain

h(t

[ uwrowrs [ rore [ irore 630
To prepare for integration by parts observe that
1df*(t)
f'(t) =5
o =3

Now the quantity inside the absolute value sign on the left-hand side of the
inequality becomes

w1 (W) w17
[m2w>w . Lm—§[mfﬁ

Since

the first term on the right-hand side above is zero. For simplicity, we make
the further assumption that

| spa=1
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Given this we now have
oo 1
|| s -

Invoking Parseval’s Formula given in equation (5.26) and the formula for the
transform of a derivative in equation (5.24) we deduce

[ iswra= 3 [ orore (5.39
= %Ai (5.39)

Hence equation (5.37) becomes
1 1
< AZ A2
4= TtogTw
from which the Uncertainty Principle in equation (5.36) follows.
We have equality if
df

i ktf(t)

which has the solution i
f(t) — ekt /2C

which has the form of a Gaussian. Figure 5.2.3 demonstrates the consequences
of this uncertainty principle. Observe how a signal which is narrow, or local-
ized in time has poorer localization in the frequency domain and vice versa.

5.2.4 The Delta Function

In this section we introduce the Dirac delta function §(¢) which facilitates the
definition of the Fourier integral transform for many important functions.

The Dirac delta function is not a function in the traditional sense and if
it is viewed as such, the formula which define it do not make sense. It is
referred to as a generalized function, or functional inasmuch as it is defined
by its properties which we now present.

Property 5.2.1.
/ z(t)o(t — 7)dt = z(7)

—o0

where xz(t) is arbitrary, but continuous at the point t = 7.

Property 5.2.2.

/m Sdt=1 &(t) =0 ift #£0.
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Fig. 5.6 The left column, top to bottom, are Gaussians with a = 1,.5,.25,.1,.01.
The right column shows the corresponding CTFTs of the figures on the left.
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Property 5.2.3.
5(t) = lim_ fa(t)

n—oo

where

/Oo fa®)dt =1, lm fo(t) =0ift#0.

For example, such a sequence of (discontinuous) functions may be defined

_Jn/2 i <1/n
falt) = {0 1m < |t (5.40)

Property 5.2.4.
F()é(t) = f(0)(2)

We remark that properties 5.2.1-5.2.3 serve as alternative definitions of the
delta function.

As already stated, the motivation for introducing the delta function was to
permit the computation of Fourier transforms of otherwise non-transformable
functions. To begin, the Fourier transform of the Delta function is

F6(8) = /_ ~ S(t)e-tdt
=1

We also have the related transform
16 2m6(w) (5.41)

Since we know the transform of the delta function is given by F(4(t)) =1,
we can easily compute the inverse transform of 1 as

5(t) = / et dyy.

Example 5.6. .
e & 276 (w — a)
and .
ot—T1) e ™7

Example 5.7.
cos(at) & (8w + a) + §(w — a))

Example 5.8.
sin(at) & in(d(w + a) — §(w — a))

Equipped with the generalized function 6(¢t) we may formally show the
transform pair (5.10-5.9) actually performs an inverse operation. Taking #(t)
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as the inverse of the transform, we would like to show that this is in fact z(#).
The inverse is provided by equation (5.10) as

1 [ .
B(t) = / X (w)e“tdu
2r J_»
Inserting the expression for the transform from equation (5.9)
1 [e9) [e9) . .
() = / ( / 2(r)e= T dr)eitdu
27T -0 -0
Interchanging the order of integration
1 [ o
Z(t) = —/ x(r)(/ e ") dw)dr
27T -0 -0

Since the integral ffooo z(1)etT)dw = 276(t — T) we have

F(t) = / 7 w(r)o(t — r)dr = a(t)

— o0
In other words, the function and the inverse of its transform are equal at
points of continuity. We note that this proof is strictly only valid at points
where z(¢) is continuous since this assumed in invoking the delta function
property. However, the inversion formula may be shown to hold at points
where there is a jump discontinuity if we assume that

5.2.5 Continuous-Time Systems

This section develops the ideas of linear systems within the framework of
continuous-time systems. A physical system is modeled as a transformation,
or operator T, where both the range and the domain of the operator are
functions with values in R. Again, we write

y(t) =T{z(t)}
5.2.5.1 Linearity A system is said to be linear if

T{Cl.’lll (t) —+ CoZo (t)} = ClT{.’L'l (t)} + CQT{.’L’Q (t)} (542)

The system output h-(t) due to the continuous unit (area) impulse, occur-
ring at time 7, is referred to as the impulse response and is defined as

he(8) = T{5(t — 7)}. (5.43)

We see that in the general case, the impulse response is actually a family
of functions which depends on the parameter 7. It will be shown that this
impulse response fully characterizes linear time-invariant systems.
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5.2.5.2 Continuous-Time Invariance A system is said to be time invariant if

y() =T{z(®)},

then it follows that
yt—1)=T{z(t—1)}.

In terms of the impulse response, we have that if
ho(t) = T{6()},
then
ho(t — ) =T{(t — 7)}.

We will write the zero displacement impulse function as h(t) = ho(t).

Now we show that the operation of a linear time invariant system is equiv-
alent to continuous-time convolution. We begin by expressing the input func-
tion as the sum of its impulses, i.e.,

o(t) = / 7 w(r)o(t — 1)dr (5.44)

—o0

Applying the linear operator T' to this representation gives
(o0}
T{z(t)} = T{/ z(T)é(t — T)dr}
— o0

which by linearity becomes

_ / ~ B()T{8(t — 7)}dr

—o0

Therefore

which for a time invariant linear becomes

(o0}

y(t) = / z(T)h(t — T)dT
— o0

which we recognize as the continuous-time convolution equation. This result

is especially important in view of the convolution theorems stated in equations

(5.30) and (?7).
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5.2.5.3 Frequency Analysis and Eigenfunctions The Fourier transform H (w)
of the impulse response h(t) again plays a special role in the frequency analysis
of linear time-invariant systems. Referred to as the frequency response, or
system function, we write this as the integral

Hw) = /_ ” h(t)e~™tdt (5.45)

The continuous-time exponentials are the eigenfunctions of the continuous-
time linear time invariant systems and that the associated eigenvalues are the
corresponding frequency response functions. To show this first write

y(t) = () * h(t)
from which it follows that
Y(w) = X (w)H (w).

Upon taking the inverse transform we have

1 &0 .
y(t) = —/ X (w)H (w)e™“tdw (5.46)

27 J_o

If we take as our input
z(t) = e

then

X(w)=2né(w - a)
Thus,

Y(w) =27(w — o) H (w).

Inverting this shows that the output of the system is a constant multiple of
the input, i.e., .
y(t) = H(a)e*

from which we conclude that the functions e*** are eigenfunctions of the linear
time invariant operators with eigenvalues H (a).

5.2.6 Sampling Continuous-Time Data

We may view a discrete sampling of the continuous function z(¢) in terms of
the application of the Dirac delta function discussed in section 5.2.4. To start,
it is useful to define the impulse train

sp(t) = i 6(t — nT) (5.47)

n=—oo
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where T is the time between impulses. It can be shown that the Fourier
transform Sp(w) of the continuous-time function sp(t) is given by

sT(w):%” 3 5(w—n2%)

n=—oo

Defining the sampling frequency wr = 2%, we then write this as

Sr(w) = wr Z o(w — nwr)

n=—oo

Now we define the continuous-time sampled function z,(¢) as a product of
the impulse train (5.47) and the continuous-time function z(t) to be sampled,
ie.,

z5(t) = z(t)sp(t).

By the frequency convolution theorem (5.32) we have

1

Xs(w) = 2w

X (w) * S(w).

Writing the Fourier integrals of the functions z,(t), z(¢t) as X (w), X (w) we
evaluate the convolution

Xs(w) = % /_00 X(w—7)S(r)dr

:%/::X(w—r) Z 6(1 — nwy)dr

n=—oo

= % i /_ZX(w —7)0(T — nwr)dr

n=-—co
1 [e9)
=7 Z X (w — nwr)
n=-—co

Thus, the sampled time-frequency is equal to the superposition of an infinite
number of shifted replicas of the continuous-time frequency spectrum.

At this point we address the important question of when this inversion of
the transformed result of sampling will lead to a lossless reconstruction of the
continuous signal. The transformed quantity to be inverted must clearly look
like X (w). This would be possible if we could eliminate all of the translated
replicas of X (w) which make up X,(w) so as to leave exactly one version of
X (w) centered about the origin. Geometrically, we see that this will always
be possible as long as the shifted transforms

e X(w—wr), X (w), X (w4 wr),. ..
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Fig. 5.7 Top: X(w); middle X,(w) with sampling above the Nyquist frequency; bot-
tom: X,(w) with sampling below the Nyquist frequency.
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do not overlap.

The condition for non-overlapping X’s is a property of the width of the
spectrum of X (w) and the sampling rate wp. It is clear that this will be
possible if, and only if the Fourier transform X (w) has finite extent. Such a
function is referred to as band-limited.

Definition 5.8. A function z(t) with Fourier transform X (w) is said to be
band-limited if
X(w)=0 for |w|>wn

Thus, we see that the non-overlapping condition is satisfied if
wnN < W —WN.
This result is summarized in the following important theorem:

Theorem 5.5. The Nyquist sampling theorem states that a band-limited
continuous function z(t) where

X(w)=0 for |w|>wn
may be reconstructed from its samples if the sampling frequency wr > 2wy

This also implies that a function sampled at a frequency lower than 2wy
will not be reconstructable (without error). The error introduced by under-
sampling a signal is called aliasing.

5.2.6.1 Reconstruction of Sampled Signals This section discusses the recon-
struction of the sampled function by first posing the problem as a continuous-
time frequency selective filter and then inverse transforming the result into
the time-domain. We saw in the previous section that if the continuous func-
tion is sampled enough then we may reconstruct the signal without loss. This
was done by applying an ideal low-pass filter to the function X,(w). Define
the low-pass-filter as

Hip(w) = {(1) Lﬂ: wr/2 (5.48)
Then the inverse transform is
o (£) = sin;:/t;T)‘
The result of this filtering procedure in the frequency domain is
Xg(w) = Hy(w)Xs(Ww) (5.49)

If
X(w) = Xgp(w)
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then no aliasing has occurred. If we write z,, = z, 7, inverting equation (5.49)
gives us

zr(t) = zs(t) * hy(t) (5.50)
where
zs(t) = f: Z,6(t — nT) (5.51)

and hy,(t) is the inverse of the low-pass filter. Carring out the integration in
equation (5.50) we obtain

a(t) = / " wa (bt — 7)dr

= > @ad(r = nT)hy(t — T)dr
- / 5(r — nT)hu(t — 7)dr
= Z Tphr(t —nT)

Inserting the expression for the impulse response gives the reconstruction as

ad in(w(t — nT)/T

n=—oo
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Problems

5.18 Derive equation (5.13).
5.19 Derive equation (5.15).
5.20 Derive equation (5.17).
5.21 Derive equation (5.20).
5.22 Let the continuous-time function z(t) = sin(at) be sampled at the

frequency wr = 27 /T. If an ideal low-pass filter

1 |w| SwT/Z

5.52
0 else ( )

HL(w) = {

is used to filter the transformed sampled function () determine the recon-
struction of the signal assuming aliasing and no aliasing,.

5.283 The Fourier transform of a function f(z) € L? may alternatively be
written as

(FHE = (&) = %2_77 / Z F@)e—*Ede

with the inverse transform

f() = # / Z F(©)e=tt.

Show, as a consequence of this normalization, that

I fllez = 1| fll e (5.53)

5.24 Show that

=
2
This transform is frequently used in the analysis of wavelets.
5.25 Prove equation (5.22).

5.26 Compute the CTFT of

Fl@(2t— k) = %e_ik“’/QX(

z(t) = eIt
Plot the function and the transform for various values of a to qualitatively
establish the Uncertainty Principle.

5.27 Compute A; and A, for the Guassian z(t) = exp(—at?) and plot them
and their product A;A, as a function of a on the same graph.
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5.2.7 Windowing in the Continuous-Time Domain

The examination of finite lengths of data from a long or infinite function may
affect the frequency content of the Fourier transform. In order to interpret
transforms of these smaller time series in terms of the larger series it is im-
portant to understand the impact of data windowing.

We assume that the data to be Fourier analyzed is a continuous function
of time z(t) with z,t € R. In addition, we assume a finite window w(t) = 0 if
|t| > T. Then we define the fixed windowed function

Tw (1) = 2(Hw(?)

where now zy(t) has finite duration. The transform of the above product is
determined by applying equation (5.32) to be

X (w) = % /_ " X(OW(w - 6)de. (5.54)

The interpretation of the above windowing procedure in the frequency do-
main is central to understanding the impact of the windowing procedure on
the Fourier analysis. Depending on the shape of W (w) the resulting windowed
transform Xy, (w) is a contaminated approximation of X (w). The frequency
resolution can be reduced and the fact that W(w) has infinite duration gives
rise to leakage. We will consider both these topics in some detail before we
proceed to the main application of the windowed transform, i.e., the short-
time Fourier transform.

From equation (5.54) the action of windowing data in the time-domain is
equivalent to convolving the true (and unknown) spectrum with the transform
of the window function. We begin to examine the effect of this convolution by
considering the special case of the window with infinitely narrow spectrum,
ie.,

W(8) = 2x6(9)
Plugging this window spectrum into equation (5.54) we conclude that the
transform and the windowed transform are the same, i.e.,

Xp(w) = X (w).
However, we may expect this result in view of the fact that in this case
w(t) = F1(2r8(8) =1

which means we have done no windowing at all! Clearly the narrowness of the
window spectrum is a desirable quality, although we cannot expect to obtain
the limiting case for a practical window.

Now recall the rectangular window

L |t <T
wit) = {21 1< (5.55)
0 else
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with associated Fourier transform

sin(Tw)

Ww) = Tw

(5.56)

To test the effect of this window on an infinite function, consider the com-
plex exponential
z(t) = et

which has as its Fourier transform
X(w) = 27(w — wo)-

If we construct the windowed function z (¢) it is interesting to see how the
Fourier transform is affected by this rectangular windowing procedure.

Xw( 27T/X W(w — 6)do

sinT'(w —6)
—/ 276(0 — wo) — - Tw—0) de

sin T'(w — wp)
T(w—wo)

This is the same graph as for the transform of the window, but now centered at
wp. The above transform gives considerable insight into the effect of applying
a window. We define the width of the main-lobe of the transformed window
to be the distance between the first 2 zeros, and will refer to the oscillations
away from the main-lobe as side-lobes. See the top of Figure 5.2.7. The
roles of the main-lobe and the side-lobes may be considered independently.
The more narrow the main-lobe, the better the frequency resolution, since
we may view the action of W(w — ) as favoring, or passing via convolution,
the frequencies near w. Note that the side-lobes add up contributions to the
integral at frequencies further removed from the center of the window and
consequently distort the spectrum of the true signal. The resulting transform
of the windowed complex exponential is seen to be wider than the transform
of the infinite signal (i.e., the delta function). We interpret this broadening
of the spectrum as reduced frequency resolution (adjacent frequencies which
are distinct may become indistinguishable). The undesirable oscillatory tail
produced by the rectangular window will be referred to as leakage.

Now we consider the effect of tapering the window, i.e., reducing the values
of the window gradually to zero at its edges. A simple example of a tapered
window is the triangular window given by

_fra-4 y<r
w(t) = {OT T olee (5.57)
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The corresponding Fourier transform of this window is

_ sin®(wT'/2)
(455)?

We notice that the main-lobe has width 47 /T which is actually wider than
the width of the rectangular transform 27 /T. This wider main-lobe is offset
by the fact that the oscillations have a greatly reduced amplitude. As such,
we expect that for a given T the frequency resolution will be reduced (due
to the wider main-lobe) and that the leakage will be diminished due to the
smaller side-lobes.

It is useful to summarize the effects of tapering the window:

W(w)

¢ tapering the window in the time domain decreases the amplitudes of the
side-lobes in the CTFT which in turn reduces leakage.

¢ tapering increases the width of the main lobe and consequently reduces
frequency resolution (compared to other windows of the same duration).

5.2.7.1 The Uncertainty Principle Revisited Of course in addition to the ta-
pering effects on the spectrum it is clear that the width 2T of the window
plays an important role. Due to the uncertainty principle, the wider w(t), the
narrower W(w) and conversely, the narrower w(t) the wider the main-lobe of
W (w). Consider the following desired window attributes:

1. The main-lobe of W(w) should be as narrow as possible to improve
frequency resolution.

2. The window should be as short as possible to reduce filter length. Also,
for the time dependent Fourier transform a shorter window improves
time localization as will be discussed in the next section.

Since the first item requires that the window be wide and the second item
requires that the window be narrow we see that there is a fundamental trade-
off between frequency resolution and time resolution. Mathematically this is
a consequence of the Uncertainty Principle.

5.3 SHORT-TIME FOURIER TRANSFORM

We have already remarked that the CTFT is a global transformation of a
given function. For many purposes this is sufficient. For example, consider
a signal which has registered the sounds of several different species of birds,
each of which has distinct frequency content. If our goal is to identify which
birds are present in a given recording, then the global transform is sufficient.
However, if we seek to answer the modified question: when did a particular
bird sing, then the global transform is not enough.
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We show this using a simple analytical example. Let z(t) = 6(t — £o) be
the function to be transformed. The associated Fourier power spectrum is
| X (w)] = 1. The delta function has equal energy in all frequencies. But the
information concerning when a particular frequency occurs is clearly washed
out.

Now apply a finite length window to the delta funtion and transform giving

X (w) = /_ ot — to)w(t)e—tdt

hence .
X (W) = w(ty)e “bodt

Now we see that the spectrum is non-zero only inside the window, i.e.,

5.58
0 else ( )

Xo(w) = {w(to) to in the window
The implication is that we may detect a pulse only to within the time-
resolution of the window. In particular, it is not possible to say where in the
window the pulse occurred. This is however, a major improvement over the
global transform where no spectrum based estimate would indicate the time
dependence.
Hence we are motivated to apply a window to the signal explicitly, i.e.,
construct the family of windowed functions

xw(Ta t) = l’(t)’tU(t - T)

with parameter 7 which indicates the location of the window. This leads to
the so-called short-time Fourier transform (STFT)

Xo(r,w) = /00 z(B)w(t — 7)e “idt

—0o0

To better understand the action of this window on the signal we examine the
windowing procedure in the frequency domain. To assist with this analysis
we introduce the reflected window h(t) = w(—t). Then we can show

F(e“" Xy (t,w)) = X(0)H (6 — w)

Thus, we interpret the action of the STFT as applying a window of fixed
length in the frequency domain to the spectrum of the function X (8) about
the frequency w.

If the definition of the window is modified to be

Lyt=?t

la] ™" a

Ty (t) = z(t)
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then a similar calculation shows (see Section 6.1.5)

F(@(b) * hoy (b — 1)) = X(O)p(—a(f - w))

We see the action of this adaptive window is to apply a filter in the frequency
domain of varying widths.
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6.1 THE CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform (CWT) is given by

t—b

X(b,a) = —)dt (6.1)

v [

One interpretation of the transform X (b, a) is that it provides a measure of
similarity between the signal z(¢) and the continuously translated and dilated
function #(t). The inverse wavelet transform is then provided by

1 Il e t—0b, dadb
o= [ X% 62)
where F((t)) = ¢(w) and
co= [~ Wy, ©3)

For the inverse transform to exist, it is required that the admissibility condition
Cy < oo hold. Together, equations (6.1) and (6.2) form the continuous wavelet
transform pair.

We may denote the CWT transform pair either as

W(z(t)) = X(b,a)

or as
z(t) < X(b,a)

For future reference we define the scaled and translated window

) = —v(0)

where a is the scale parameter and b is the shift parameter. The factor 1/+/|a|
ensures that the window is normalized at all scales, i.e.,

l¥@I°F =1, = llga(@®)I =1 (6.4)
See Figure 6.1 for a display of the dilated and shifted Gaussian window.

6.1.1 Wavelet Analysis in the Fourier Domain

It will be useful to know that the Fourier transform of the scaled and dilated
mother is given by

) ¢ |a|e_ib“’1,[~1(aw) (6.5)




THE CONTINUOUS WAVELET TRANSFORM 205

In addition, the Fourier transform of the forward CWT is found using
Parseval’s equation, i.e.,

X(b7 a’) = (x(t)agab(t)) (66)
- % " X ()G (@) 6.7)

Substituting equation (6.5) into the above gives the desired representation of
the CWT in the Fourier domain

X(b,a) = @ /_ " X (w)daw)etdw (6.8)

6.1.2 The Resolution of the Identity and the Admissibility Condition

In this section we reconsider the CWT pair and verify that the application of
the transform, followed by its inverse, indeed preforms the identity mapping.
In addition, we consider the criterion a function must satisfy to be considered
admissible as a wavelet. For further mathematical details we refer the reader
to the text [16].

To begin, we seek to evaluate the integral

[ [ 26,0007

a2

To this end, substitute the expression for X (b,a) in the Fourier domain pro-
vided by equation (6.8) to give

/Xm@%WMhség/(/mwwwme)m@ (6.9)

interchanging orders of integration

\QE/X(W)TZJ(GW) (/gabei“’bdb)dw (6.10)

(6.11)

It can be shown that
/gab(t)ei“’bdb = /|ale™t)(aw) (6.12)

Hence, using this result above, we now have

Q?/mmmwwwwu

/mewmﬁz
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Fig. 6.1 This figure displays dilations and shifts of the Gaussian window ((t —b)/a)
for discrete values of b = —3,—-2,-1,0,1,2,3. Top: The dilation corresponding to
a = 2. Middle: ¢ = 1. Bottom: a = 1/2.
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Now integrating this equation with respect to a and employing the differential
element da/a? it follows that

[ [ x0a0m0%e = [(YE [ x@pireta)s e

again interchanging orders of integration

217T et ( / 9@ ) (6.14)

A standard substition of variables permits the rewriting of the inner integral
as

7 2 (a2
lal la’|
which we recognize as the definition of Cly.
Thus,
/ / X (b,a)gab(t)dzga / X (w)e™*dw (6.16)
= C¢.’L’ (6.17)

since the last equation is just the inverse Fourier transform of z(¢). This is
exactly the inverse transform of equation (6.2).
The admissibility condition

Y )]
C¢ = /_oo |w| dw < © (6.18)

is required so that the function z(¢) may be reconstructed via the inverse
CWT equation.

The value Cy will in general not be finite if the integrand blows up at
w = 0. Hence it is required that

$(0) =0 (6.19)

This requirement may be interpreted further by inverting the Fourier trans-

formation. Recall that
e .
= / P(t)e “idt
-0

Substituting w = 0 into the above results in

/_ ) =0 (6.20)
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a

Fig. 6.2 The triangular region is the domain of influence of the point ¢ on the con-
tinuous wavelet transform X (b, a)

Given ¢(0) = 0 and that the spectrum of ¢(w) decays for high-frequencies
the wavelet ¥(t) may be interpreted as a band-pass filter.

An admissible wavelet has zero area by equation (6.20).

¥(t) € L' (R) implies that v(w) is continous.

Almost admissibility. For the Morlet wavelet, 1)(0) ~ 0

6.1.3 Properties of the Continuous Wavelet Transform

Proposition 6.1. Linearity of the CWT.

W(z(t) +y(8) = W(z(8) + Wy(®)) (6.21)
Wi(ez(t)) = WV (z(t)) (6.22)
Proposition 6.2. Shifting Property.
z(t) < X(b,a) (6.23)
.’L'(t—to) g X(b—to,a) (624)

Proposition 6.3. Scaling Property.

Q|

o1y o vax(, ) (6.25)

a
, —
a
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Proposition 6.4. Energy Property 1.

o 1 [ [> dadb
/ |x(t)|2dt:C—¢/ / |X (b, a)|? — (6.26)

Proposition 6.5. Energy Property 2.

/ " eyt = c% /_ Z /_ ZX(b, O (6.27)

2
— a

Proposition 6.6. Linearity of the Wavelet. If the collection of functions
{¥i(t)} are wavelets, i.e., they satisfy the admissibility condition, then the

linear combination
P(t) =D ehilt)

is also a wavelet (since it also satisfies the admissibility condition).

6.1.4 Time-Scale Analysis

In contrast to the STFT which produced a transformation of data to the time-
frequency domain (7,w) the wavelet transform transforms a 1-dimensional
signal to a 2-dimensional time-scale plane (b,a). In the former case, it is
standard to examine the graph of the magnitude of the STFT | X (7,w)|. This
time-frequency diagram is referred to as the spectogram. In the latter case,
the spectrogram is replaced by the scalogram which consists of the graph of
the magnitude of the CWT, i.e., | X (b,a)|. In both cases there is an associated
phase diagram, e.g., the polar form of the CWT is

X(b,0) =X (b,a)[e*™?

In what follows we consider localization features of the CWT which aid in
the interpretation of the scaleogram.

6.1.4.1 Time-Localization of the CWT For the moment, we assume that the
wavelet ¢ (t) vanishes identically outside the time domain [tmin, tmax] Where
tmin < 0 and ¢, > 0. Although this condition may not be true in practice,
the magnitude of the wavelet will in general be very small, and approximately
zero on this interval.

o X (b,a) dependence onty. We define the domain of influence of the signal
z(t) at the point ¢ = t¢ to be the region in the (b, a)-plane such that the
values of X (b, a) are dependent on .

To demonstrate the time-localization property of the CWT we consider
the signal z(t) = 6(t —tp). Substituting this choice for z(t) into equation
(6.1) gives

1 > t—b
X(ba) = —= (¢ — to)vp(——)dt
Vil ] a
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which integrates to

X(b,a) =

Note that 1(2=%) = 0 unless

a

to—b
a

S [tmin ) tmax]

This condition defines 2 lines, afmin + b = to and atmax + b = tg, which
intersect at the point ¢y and delimit the region in the (b,a) plane for
which the transform X (b,a) depends on . This situation is depicted
in Figure 6.2.

The CWT X (b,a) of the delta function d(¢ — 1) is shown in Figure 6.3
for both the mexican hat wavelet and the Morlet wavelet. Observe that
the width of the transform is narrower for smaller scale parameter a.
The projection of the non-zero values of this this transform fall into the
domain of influence of the pulse originating at ¢t = 1.

o X (bo,ap) dependence on t. Another helpful question to consider is for
which values of ¢ does the signal z(t) contribute to the value of X (b, a)
at the point (bg,a0)? By examining Figure ?? we conclude that if

Gotmin + bo <t < aglmax + bo

then the value of z(#) may influence the CWT at the point (bg,ao)-

6.1.4.2 Frequency-Localization of the CWT In the previous section we con-
sidered the how a localized signal z(¢) in the time domain could influence the
the values of the CWT X (b,a). Now we examine the same question but focus
on the influence of a pure sinusoid on the transform.

o X (b,a) dependence on wy. Now we consider for which portion of the
(b,a) plane the CWT X (b,a) is influenced by the frequency wg. To
examine this let z(#) = exp(iwpt), the complex monochromatic signal
with frequency wg. Given that the Fourier transform of exp(iwgt) is
276(w — wp) we may compute the CWT of z(¢) using equation (6.8),
ie.,

X(b,a) = @ /_00 276 (w — wo)th (aw)e™Pdw

from which we conclude that

X (b,a) = V]alg(awo)e™*’
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Fig. 6.5 The scalogram of the Mexican hat wavelet transform of the monochromatic
signal x(t) = sin(t).

If we now assume that the Fourier transform of the wavelet is band-
limited, i.e., ¥(w) = 0 whenever w ¢ [Wmin, Wmax)- Hence, in general,

7 . Wmin Wmax
= f
Y(aw) =0 if wy €] 2 ]

Hence,

X(b,a) =0 unless wp ¢ [w';i“, %]

In other words, the domain of influence of wy on X (b, a) is the horizontal
strip defined by

Wmin S a S Wmax (628)
Wo Wo

The CWT of exp(iwpt) is shown in Figure 6.4 for 2 different values of wy.
Compare this with Figure 6.1.6 which displays the CWT of the signal
sin(wp). The magnitude is no longer constant along lines @ =constant.
This effect can be problematic when interpreting scalograms. However,
it may be avoided by employing progressive wavelets; see Problem 6.10
and reference [25] for further details.

It is also interesting to note that the actual value of a for which | X (b, a)|
is a maximum (see Figure 6.4) when the signal has the form exp(iwpt) is
wavelet dependent. For instance, for the Mexican hat wavelet this value
is

1 /5

=4/ 6.29
a=\32 (6.29)



214 WAVELET EXPANSIONS

while for Morlet’s wavelet

1
= 242 6.30
a 2Wo(a+ a? +2) ( )

See exercise 6.9 for more details.

o X (bo,ap) dependence on w. Finally, it may be similarly argued that the
Fourier components w of X (w) which influence the value of the CWT
at the point (bg,ap) are determined by the relation

Ymin ., < Ymax (6.31)

ap ag

We observe that the bandwidth of the frequencies which influence X (b, a)
increases as the scale a decreases.

6.1.5 The Wavelet Transform as an Adaptive Filter

In this section we continue our discussion of the action of the wavelet transform
in the frequency domain. The ideas parallel those of Section 7?7 where we
considered the application of the STFT in the Fourier domain. Now we write
the windowed signal as

Ty (t) = (£)Tap(t)

The Fourier transform of this windowed signal is then

_ 1 t=b it
Xolw) = / sl (D)t

We seek to represent this transformation as a convolution. Thus define the
impulse responses h(t) = ¥ (—t/a) and h,(t) = ¥(—t/a)exp(iwt). Now we
may write

e—iwb

= W z(t)h

or, using convolution notation,

XowWw) (b—t)e =t

e—iwb
Xopw) = z(b) * hy,(b)

Vlal

Now computing the transform taking b as the time-variable we have

F(@(b) * ho (b)) = X (6)lalih(~a(6 — w))

From this equation we may conclude that the wavelet transform acts as a
band-pass filter which has width proportional to the frequency. The benefit
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of this adaptation is that the correponding width of the window in the time-
domain will be narrow for high frequencies and wide for low frequencies, rather
than a constant width window as for the STFT.

The change in width of the transform of the window with the center or
mean frequency of the window is a property referred to as constant relative
bandwidth. The quality factor, or Q of a transform may be defined as

center frequency

Q= andwidth
The wavelet transform is often referred to as constant ) frequency analysis.

6.1.6 Discretization of the CWT

The number of instances for which the CWT of a signal may be computed
analtically is obviously very small. In general, the evaluation of the CWT
pair is done discretely. In this Section we consider the discretization of the
forward transform and postpone discussion of the inverse to Chapter 6. Using
the terminolgy of [25], we consider the restriction of X (b,a) to a collection of
fixed values, or voices a = a,, where a;y+1 = Kay,, where k is a constant and
a € RT. In general, this is done by writing

G = ag’ where qop>1 and meZ (6.32)
Observe that the width of the function
t—b
v )

is dependent on the magnitude of af* (it is in fact af® times the width of
1/1(’;_—,"")) This fact must be taken into account when discretizing the shift
vari;ble b since it makes good sense to use a discretized shift size which is
proportional to the width of the discretely dilated wavelet. This may be
accomplished by taking

b = nbpag® where by >0 (6.33)

Putting this all together we write the wavelet on the discretized grid as

’l;[}mn = a(;%'l,[}(aamt — nbo)

Example 6.1. Let ag = 2'/*. The positive integer ! is often referred as the
number of voices per octave. A choice of [ = 12 represents a fine sampling of
the (b,a)-plane. See the top of Figure 6.6. The choice of discrete time shift
depends heavily on the nature of the data but typical values are between .1
and 1.

Example 6.2. Another importany choice of voice for the discrete grid is ap =
2 and by = 1. This coarser sampling of the (b,a)-plane produces a dyadic grid.
See the middle of Figure 6.6. It is also often convenient to display the grid
using the coordinates (b, — Ina). See the bottom of Figure.
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6.2 THE DISCRETE WAVELET TRANSFORM

Wavelet expansions are local expansions of the form

f@y=> Y dyi(a) (6.34)

j=—o00 k=—oc0
where the localized little wave functions zbi (x)
Wl(x) =279 2yp(27 9z — k) (6.35)

are generated by the translations and dilations of the function ¢(z) on the
dyadic grid. The integers j, k € Z correspond to the scale and location of the
center of the function, respectively. Given the direct dependence of each basis
function on it, ¢(z) is sometimes referred to as the mother wavelet.

One manifestation of the local nature of the set of functions {¢j(z)} is
their orthogonality across both scale and shift, i.e., they are chosen to satisfy

(%1, i'):/ Yl (@)l (@)dz = 6k p 85,5 (6.36)

With the wavelet orthogonality property given by equation (6.36) the ex-
pansion, or wavelet, coefficients {d,} may be calculated directly by

dj = /_ 0:0 F@)] (2)da (6.37)

The direct application of this formula for the computation of the coefficients
{d},} is generally avoided in favor of a much faster recursion scheme called mul-
tiresolution pyramidal decomposition, or Mallat’s algorithm which is derived
in general in Section 6.5.

The wavelet expansion is local in the sense that only a few of the expansion
coefficients {d} } contribute to the sum of the series 3, ; dj 9} () around any
given point £ = xz,. Note that the localization property of the expansion is
scale dependent and better time-localization is achieved for coefficients with
small 7, while better frequency localization is achieved for coeflicients with
large j. This trade-off between time-frequency localization is discussed in
more detail in Sections 5.2 and 5.2.

Wavelet analysis on a dyadic grid is a form of multi-resolution analysis
(MRA). The MRA procedes by splitting a function into nested subspaces
of ever descreasing scale. The portion of the function which is removed at
each level is projected into a wavelet subspace. With the MRA perspective,
the construction of wavelets is based on first solving the dilation (or scaling)
equation

B(x) = V2Y_ ha(2z — ) (6.38)
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for the scaling function ¢(x) and then the associated wavelet equation

P(z) =V2)  grd(2z — k). (6.39)

for the wavelet ¥(z). A solution to the pair of equations (6.38) and (6.39)
is constituted by appropriate coefficients {gr} and {hy} which determine the
functions of ¢(z) and ¢ (z). The structure of the MRA determines the rela-
tionship between the g and the hi and, as shown in Section, 6.4, one need
in general only solve the scaling equation (6.38) for the coefficients {hj} from
which the scaling function ¢(z) may be computed. We shall see that the
new wavelets derived from an MRA may not actually be determined in closed
form, e.g., the compactly supported family of orthonornal wavelets proposed
by Daubechies.

In addition, we may apply constraints to these coefficients gy, by, which im-
pact the properties of the wavelet expansion. In fact, the number of vanishing
moments p of ¥(x), i.e.,

(o0}
™ (x)dzr =0
— o0
form = 0,...,p—1 determines the order of accuracy of the wavelet expansion.

6.3 THE HAAR WAVELET BASIS

The Haar wavelet is defined as

1 ifzel0,d),
Y(x)=< -1 ifze[i,1), (6.40)
0 otherwise.

It is not appropriate for many applications due to the fact it is not smooth,
and low order of accuracy of its approximations (it has only one vanishing
moment). However, it is an excellent introductory example and many of the
ideas central to wavelet analysis are readily apparent in the context of the
Haar wavelet.

As already mentioned, the wavelet basis is formed by the dilations and
translations of ¥(z), i.e., ¢} (z) = 279/2¢(2 7z — k).

For instance, a simple dilation is

1 if2z€(0,1),
PY(2z) =< -1 if 2z €[1,1),
0 otherwise.
1 ifzel0,l),
={-1 ifoe(ld),
0 otherwise.
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Proposition 6.7. the collection of translations and dilations of the Haar
wavelet form an orthonormal basis for L*(R).

Proof.

e Step 1. Show
(Vp, V) = Ok, 05 5

e Step 2. Show 9 are dense in L2(R), i.e., any f € L? can be expressed
as the superposition of the j to arbitrary precision.

The first part is easy but we need some preliminary definitions.

Definition 6.1. The support of a function f(z), denoted supp[f(z)], is the
closure of the domain on which f(z) # 0.

We shall first show that
supp[¥} ()] = [27k, 27 (k + 1)].

To see this we apply the definition 9 (x) = 277/2¢(2~/x — k) which may be
further evaluated as

2792 277z —ke0,1),

Pr(z) = —279/2 if27iz -k € [},1),
0 otherwise.
2792 ifx e [Pk,2(k+3)),
=¢-2792 ifze2(k+3),2(k+1),
0 otherwise.

From this we conclude that two Haar wavelets at the same scale don’t
overlap, i.e., . .
supp[;] N supp[¢3,] = {0}
At two different scales, 7 # j', overlap is clearly possible. We leave it as an
exercise to show that supplil] C supp[ {,] where j < j' and that 1,[1{, (z) =
constant for z € supp[z[zi]. We can view this result graphically by considering
the two functions

1 % if £ €0, %),
z .
g (x) = 57/1(1) =¢—-3 ifZel[;,1),
0 otherwise.
1 ifzel0,2),
=< -1 ifze(2,4),
0 otherwise.
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and

1 ifz—-1€[0,1),
@) =y¢-1)=<-1 ifz—1€},1),
0 otherwise.

1 if x € [1, g),
=q-1 ifze[i,2),
0 otherwise.

6.3.1 The Haar Multiresolution Framework

Consider the sequence of Haar subspaces V; where

V; = {f(z) € L*(R); f(x) = constant on = € [27k,2/(k + 1)) Vk € Z.}
(6.41)

In other words, the V; are spanned by piecewise constant functions at different
scales. Let us consider in particular Vy where

Vo = {f(z) € L*(R); f(z) = constant on = € [k,k +1),Vk € Z}

In addition, define the boz function

o(z) = {1 if z € [0,1),

0 otherwise.

The first observation we can make is that
Vo = span {¢(z — k); k € Z}.

In fact, the translates of ¢(z) are an orthonormal basis for V} as can be readily
seen graphically.
The next observation is that each subspace scales to any other, i.e.,

f@yeWe fl2z)e V4
This is easily verified:
f(z) € Vy = f(z) = constant for = € [k, k + 1)

f(2z) = constant for 2z € [k, k + 1)
k k+ 1)

2’ 2
therefore f(2x) € V_;. This generalizes to give the following:

f(2z) = constant for z € |
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Property 6.3.1. The Haar subspaces satisfy the scaling property
fl)yeV; & f(2z) € V.

We also observe that the subspaces V; are nested. For instance, since

fl@) e Vo — f(z) =D ond(2z — k) € V_q,
keZ
SO
Vo CV_1.

This property provides a connection, or link between adjacent Haar subspaces.

Property 6.3.2. The Haar subspaces are nested, i.e.,
Vi CVj1.

with the coarser subspace being a subset of the finer scaled subspace. We
also note that the translates of ¢(2z) form an orthonormal basis for V_;. This
follows from the scaling property 6.3.1 and the fact that ¢(z) generates a basis
for f(z) € Vy. To see this, consider any function f(x) € V_;. Then by the
scaling property f(3) € Vo and since the translates {¢(z — k)} form a basis
for Vy we can write -
7= andlz — k).
heZ
Hence, it follows that
f@) =) axd(2s — k)
keZ
from which we conclude that the translates {¢p(2z — k);k € Z} form a basis
for V_;. This fact is true in general for adjacent Haar subspaces, i.e., the
translates ¢}, (z) = 279/2¢(279z — k) form an orthonormal basis for V;.

6.3.2 The Haar Wavelet Subspaces

We have seen that piecewise constant functions produce a sequence of nested
subspaces which are essentially scaled replicates of each other. We now inves-
tigate the difference between V; and Vj4; .
To start we recall that Vy C V_;. The object is to construct a basis for Wy
where
Vo1 =Vo & Wp.

We recall the the scaling (box) function ¢(z) formed a basis for V5. Now we
determine the wavelet ¥ (z) by requiring that its translates generate a basis
for Wy which is orthogonal to V. Recall that the box function is given by

o) = {1 if z € [0,1),

0 otherwise.
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Hence we can write

¢(z) = ¢(22) + ¢(2z - 1)

where we note that ¢(z) € Vp and ¢(2z), (22 — 1) € V_;. This is an example
of a solution to the dilation equation (6.38) with hg = hy = 1/+/2. Tt relates
the box function at different scales and provides the important connection
between all the nested Haar subspaces V;. We will see that it determines the
basis for Wy as well.

The function t(z) which generates the basis for W, is constructed by the
requirement that

(¢(z),¥(2)) =0

which is satisfied if

Y(z) = ¢(2z) — ¢(2z — 1).
It is easily verified that this relation reproduces the Haar wavelet previously
considered. Tt is also a solution to the (6.39) with go = —g1 = 1/v/2. Tt

6.3.3 The Haar Multiresolution Analysis

In this Section we demonstrate how the Haar multiresolution framework in-
troduced in the preceding section may be used for efficient computation of the
Haar wavelet decomposition and reconstruction.
We now define the projection operators P;,(Q); such that for any f(z) €
I2(R)
ij €V, and Q]f e W;.

Then we have

Pj_1f(z) =F;f(z) + Q;f(2)
F7N @) = fi(@) + 5 (2)
where f € V; and s/ € W;. It is common to view P; as a low-pass filter since
it removes the finest scale and (J; as a high-pass filter since all but the finest

detail is removed. Specifically, we view s/ as the detail component of fi—1.
As expansions we have

fi(z)=Pif(x) = cloi(e) (6.42)

kEZ

where the {0179} are referred to as the scaling coefficients and

() = Q;f(x) = divi(x) (6.43)

keZ

where the {di} are referred to as the wavelet coefficients. Next we shall see
how all of these coefficients may be calculated very efficiently using recursion
once we are given the {c};Vk € Z} for some fixed resolution j.
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To compute this first level of scaling coefficients we must in general perform
a numerical integration. This is done using the identity

d = (f,¢]) = /_00 F(@)2792¢(277 2 — k)dx

since

1 fze [QJk,Qj(k + 1)),
0 otherwise.

(2792 k) = {

which gives

. 2Rt
c, = 2_]/2/ f(z)dz.
2

ik
6.3.4 Haar Pyramidal Decompasition

The starting point of the multiresolution decomposition are these scaling co-
efficients {c}; Vk € Z} for some fixed resolution j. To determine a recursion
relation first write

Pif(z) =Y clei(z)
k
=" (@) + iy Bl (2)
k

where the sum has been split into even and odd parts.
To connect the scaling and wavelet functions at different resolutions we will
need the following fact:

Proposition 6.8. The boz scaling function (associated with the Haar wavelet)
relates two adjacent Haar subspaces via the relation

¢l (2) = %( @) + ol (2): (6.44)

where qﬂ; () = 2792¢(2 72 — k). Also, the Haar wavelet relates adjacent
wavelet subspaces via the relation

1
ﬁ

proof: This follows from the dilation equation ¢(z) = ¢(2z) + ¢(2z — 1) and
the relation ¢ (z) = 277/2¢(277z — k). Setting £ = 2772 — k we have

¢(§) = (26) + (26 - 1)

¥l(2) = —=(¢h" () — dhit, (2)). (6.45)
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from which it follows
21/29=3/2 (270 g — k) = 27 U—D/2p(2-U=V 5 — 2k)
+270=D724(2=0"Vg — (2k + 1))

which is exactly the statement of the proposition.

We now use these results to construct a recursion relation between the
expansion coefficients at the known resolution and the coefficients at the next
lower resolution. Recall

Pii1f(z) € Vi CV;

and that ) )
Pipf(z) =Y ¢l ().

k
By orthogonality

g = (£
_ ¢gk + ¢gk+1
1

. 1 .
\/i(f, %k)+7§(f7 .;k-i-l)
but these are just the expansion coefficients from before

1 1

= _20;19 + _26;14:-',-1‘
The recursion formula
. d +d
c}79+1 _ % (6.46)

then provides all the scaling coefficients {c,’fl} at the next coarser scaling
subspace. The coefficients at a given level j + 1 are seen to be smoothed
versions of the coeflicients at the higher resolution level j.

We need the corresponding recursion relations for the wavelet coefficients

{dT}. Now
Qj+1f(@) eWjna CVj
and ) )
Qjt1f(z) = Zdﬁl@/’iﬂ(ﬂc)-
k

In addition, we have

Qj+1f(x) = Pif(z) — Pj1f(2).
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Splitting the expansion for the projection onto P; into its even and odd parts

as o . )

Pif(z) = Z o1, Por, (T) + Zc;k-i-l(bgk-i-l("l’.)
k k

and

P f(z ZC7+1¢]+1 (z).

Directly substituting the recursion relatlons given by equations (6.44) and
(6.46) into this above equation gives

P f(z) = Z(c;k 2k+1 )(¢2k( T) + ¢§k+1 (x))

AN V2
= % Z cgk%k(@ + cgk¢gk+1 (z) + cgk+1 ¢gk($) + cgk+1 ¢gk+1 (z)
2
Since
Qj+1f(x) = P f — Py f(z)
1

3 Z k¢2k( ) + 2.k+1¢gk+1 (z) - cgk¢gk+1 (z) — cgk+1¢gk(x)
k

= 3 56k ék<x>—¢ék+1(x>> s (B () — Fps (@)
k

_ cgk 2k+1 ¢2k() ¢gk+1(x)

=> &y (@)
k

Thus the recursion equation for the wavelet coefficients is given by

L, d.—d
ittt = 2k 2kl ﬁ2k+1' (6.47)

6.3.5 Haar Pyramidal Reconstruction

The previous Section considers an algorithm for taking a function and com-
puting its Haar wavelet decomposition. In particular, after computing the
initial projection of the function onto the Haar scaling subspace of the desired
resolution, the algorithm recursively computes the detail of the function as
represented by its wavelet coefficients in the corresponding wavelet subspaces.
The projection of the original function may be reconstructed from the wavelet
coefficients (and the scaling coefficients from the most reduced level) via the
formulae

i = n (6.48)



THE HAAR WAVELET BASIS 225

This is a special case of a more general formula developed later.

An example

We are now in the position to compute a wavelet decomposition of a function.
We take as an example the decomposition of the vector f = (9,1, 2,0) treated
in detail in Strang’s paper. Qur presentation stresses somewhat different
points. ) .

So how do we compute the {c,} and {d} for this f? We start by viewing
f € V; where the V; are the Haar multiresolution nested subspaces. We
need to arbitrarily specify the size of the smallest scale to start the pyramidal
decomposition algorithm. We will choose dim f = 4 = 277, Thus the finest
resolution required is at the level V_,.

Hence we view f as

9 ifzel0,y),

)1 ifzell,d),
&) =12 staelL,),
0 ifzel3,1).

We will see that the decomposition in this case will involve the subspaces
V_o =span {2¢(4z — k);k € Z}

V_1 =span {V2¢(2z — k);k € Z}
Vo =span {¢(z — k); k € Z}
where the coefficients normalize the functions such that orthonormal.

At the finest resolution, j = —2, the scaling coefficients {0179} are found by
projecting f onto the basis for V_s. Le., since P_of € V_o we write

Poof(@)=> ¢ ;% ()

keZ

where )
) . 29 (k+1)
o =279/ / f(@)dz
2ik
From which we have
(k+1)/4

&? = (f,72) =2 / f(@)d.

k/4

Evaluating the integrals

1/4 9
c52:2/0 9dx:§,
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1/2 1
= / ldz = _,
1/4 2

3/4
c2_2:2/ 2dz = 1,
1/2

1
c3_2:2/ 0dz = 0.
3/4

Also, c,f =0for k< 0,k > 3.
Now project f onto V_; via P_1 f(x) and onto W_; via Q_1 f(z). We have

Pif(z) =) ¢ o' (2)
k

where using the recursion equation (6.46)

% T 52k + Copt1
we get ) 5
CEIZE(CEQ"‘CT%Z—Q

_ 1, _ _ 1
011:ﬁ(c22+032):_2

and ¢;' = ¢3! = 0. Therefore,

Poif(z) =cy'dy (@) + ¢ g1 (2)
=5¢2z) + ¢(22 — 1)

The detail is given by

Q_1f(z)=> di'v;' ()
k

where 9(z) is the Haar wavelet. Using equation (6.47) at the level j = —2

1
—1 —2 —2
dp = 7§(C2k - c2k+1)‘
Hence 1 4
dol= —(eg2 -7 = —
0 2( 0 1) 5
1 1
dil= —(;2 -7 = —
1 2( 2 3 ) 5
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Therefore,
Q1f(@) =dy 5" (2) +dy "9y (2)
4,1
- \/51;[}0 + ﬁdﬁ
We can write these in terms of the box function using the relations
1 1
v = 7§(¢62 — 1) = ﬁ(%(%) —2¢(4z - 1))
and 1 1
Y = ﬁ(&f —¢57) = 75(%(496 —2) - 2¢(4z - 3))

Thus we have the projection onto W_; as

Q-1f(z) = 4(d(4z) — ¢(4z — 1)) + (#(4z — 2) — ¢(4z - 3)).
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which is the portion of f(z) contained in the wavelet subspace at level j = —1.
The projection onto Vy proceeds similarly via the computation of Py f(z).

The scaling coefficients at the level 5 = 0 are found using
0 -1, -1
C, = —=(Cy, +¢C
2 \/5( 2k k1)
The single non-zero scaling coefficient is given by

1
o=—s(cg +er')=3

V2
and the associated wavelet coefficient is
1 _ _
do = 75(001 —q ) =2

Now we have
Pyf(z) = ca¢o(a) = 3p(x)

and

Qof (z) = dop ()

- 2(%«»51 )
_ %(\/%(295) — V2422 — 1))

=2(¢(2z) — ¢(2z - 1))
Note, f(z) € V_o without approximation. In summary,
f(@)=P_2f(z) € V_s
= P_lf(.’l,') + Q_1f(.’15) eVioW_,
=FPf(x)+Qof(zx)+Q_1fx) e VoW W_4
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6.4 THE GENERAL MULTIRESOLUTION FRAMEWORK

In the previous sections we saw how the box function and the related Haar
wavelet fit naturally into a multiresolution analysis framework. Such a de-
scription is distinguished by the fact that a function is represented by a set
of subspaces, each of which is just a scaled replication of the other. Now we
see that this is a general framework which extends to other types of scaling
functions and their corresponding wavelets.

In general, a multiresolution analysis consists of a sequence of closed sub-
spaces with the following six properties:

Property 6.4.1. The subspaces are nested
-cVocViCcVyCcVoiCcVooC... (649)

Property 6.4.2. The closure of the subspaces is identified with all square
integrable functions

Uvi=*® (6.50)
JEZ
Property 6.4.3. The intersection of the subspaces contains only zero
V= {0} (6.51)
JEZ
Property 6.4.4. Each subspace is a scaled replica of the other
f@) € V; & f(20) € Vi (6:52)
Property 6.4.5. The subspace Vy s invartant under integer translations,
flz)eVo > flz—k) eV Vk € Z. (6.53)

Property 6.4.6. There exists a scaling function ¢(z) s.t. {p(z—k);Vk € Z}
is an o.n. basis in Vy.

The power of a multiresolution analysis is that it expresses a function f €
L?(R) as a limit of successive approximations with increasing resolution.

We will see that a multiresolution analysis generates an o.n. wavelet basis
in the sense

Piaf=PBif+ Y (H el (6.54)

keZ

By the completeness property we have

lim Pjf=f. (6.55)
j——o0
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We shal see that the multiresolution analysis framework provides a gen-
eral procedure for constructing wavelets. We will write W; for the wavelet
subspace which is the orthogonal complement to V; in V;_4, ie.,

Vici=V, o W; (6.56)
and W; L W} if j # j'. Then the subspace V; may be written
Vj =V,eoW;eW;_1®---® Wj+1 (6.57)

where J denotes the coarsest resolution subspace. The remarkable aspect of
this decomposition is the fact that we have the wavelet decomposition

’R) =P w;. (6.58)

JEZ

6.5 THE GENERAL PYRAMIDAL ALGORITHM

We have seen how the pyramidal decomposition and reconstruction algorithm
works for the specific case of the Haar wavelet. Now we consider the algorithm
in its general form. To start we assume that f(z) € Vy. Specifically,

f@) =) ()
k
where ¢ = (f, #2).

6.5.1 Pyramidal Decomposition

As before, we will project f onto V1, i.e., the nested subspace at the next lower
resolution and contained in V). We project the detail, i.e., the information
contained in V5 but not in V; onto the wavelet subspace Wy, i.e.,

Vo =V1 @ W,

and
f(z) = P f(z) + Q1f(z)
where P, f € V1 and Q1 f € W;. The projection operators are defined as

Pif(z) =) cioi(z)
k

Qif() = diti(x)
k

also with ¢}, = (f,¢}) and di, = (£, ¢3).
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We now seek to determine the recursion relations for the scaling and wavelet
coefficients. Using the definition of the scaling coefficients and orthogonality
of the translates of ¢(x) we have

1 z
1 = —_— —_ —
Given the dilation equation

dx) = V2> mg(2z —1)
!

it follows that z

¢(

[N

k) =v2) gz —2k—1).
l

Therefore

k= M /f(x)¢(x — 2k — D)dz.
Writing m = 2k + [ we obtalin

ch= Y b [ £@)0(a - m)da.
The integral is seen to be ¢, giving

k= hm_akch, (6.59)
m

which is the desired recursion.
To obtain a recursion for the wavelet coefficients {d},} we start with

di = (f,0})
= = [ £y - b
Recalling the wavelet equation
(@) = V2 ijgm@x — k)
we have

&= 0 [ 1) -2k~ Dds
!
substituting | = m — 2k

di = ng_gk /f(x)¢(x —m)dz
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Again, recognizing the above integral as c?, it follows that

di, = gm-2kCh,
m

These recursions are valid between any two neighboring levels of resolution
SO we can write

A =" hm_md, (6.60)

=" gm-acl,. (6.61)

In the above derivations, we have made extensive use of the fact that the
coefficients {gx }, {h#} are determined by the relations ¢(z) = V23", hp (22—
k) and ¢(z) = V23", gxb(2z — k). Later we will consider these in more detail
as well as the remarkable relationship between the wavelet and the scaling
function

gr = (=)*hi_pyon

where N is a suitably chosen integer.

6.5.2 Pyramidal Reconstruction

Now we derive the recursion relations going the other way. That is, we start
with the function at its coarsest level and add on the detail from each of the
wavelet subspaces. At each level we have

F74e) = f () + 8 (x)
=Y a4s@ + > il
k k
=l
=Q_ad+> divl e
k k
= @)+ diwl, el
k k
To evaluate the inner products we make use of the dilation equation
27z —k)=> mv2¢2 U Vg - 2k 1)

!

which upon putting m = 2k + [ gives
P27z —k) = Z Pon—26 V20279V — m)
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from which we conclude

¢L(@) = ol ' ().
m
Now we have all we need to evaluate the inner products above, i.e.,

( ']7;;7¢'ZL_1) = (Z hm—2k¢zn_17¢%—1)

= Z " 5mn

= hn—2k

Using the same approach it can also be shown that

( i;a #L_l) = 9n—2k-

Thus we have the general reconstruction formula

CZL_I = Z hn_chi: + Z gn_dei (6.62)
k k

6.5.2.1 The Cascade Algorithm The scaling function ¢(x) may be computed
by initializing the general reconstruction equation (6.62) with the values

=8, & =0VnjeZ

It can be shown [16] that the recursion
S
k

converges exponentially fast to ¢(z) at the dyadic grid points. We further
discuss the computation of the scaling functions and wavelets in the next
Section.

6.6 THE DILATION EQUATION

One of the main approaches for constructing a multiresolution analysis is to
determine the scaling function ¢(x) which satisfies the dilation equation

d(z) = V2> o2z — k)
kEZ
with appropriate side constraints. For example, a particularly attractive so-
lution ¢(x) will generate an o.n. family directly. It is possible, as we shall
see, to compute solutions which do not have this property. In these cases the
orthonormality must be achieved via an orthogonalization trick and with the
penalty that the resulting o.n. family no longer has compact support. It is
demonstrated later that any solution ¢(x) associated with a finite number of
non-zero {hy}, k = 0..N will have support on the compact interval [0, N].
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6.6.1 Normalization of ¢(x)

By convention we require that

/ N p(z)dz =1 (6.63)

In practice it is sufficient that the right-hand side be non-zero and finite. As
we shall see, this restriction ensures that for a given collection of coefficients
{hi} there is a unique ¢(z). Hence, we may view a solution of the dilation
equation to consist of these coefficients which uniquely determine the scaling
function as long as equation (6.63) holds.

As a consequence of the normalization given by equation (6.63), the scaling
function ¢(z) € L'(R). Hence the Fourier transform ¢~3(c~u) is continuous. Also,
the Fourier transform evaluated at zero is given by ¢(0) = [ ¢(z)dz from
which we conclude

$(0)=1 (6.64)
We will often require this fact, in particular the property $(0) # 0.

6.6.1.1 Normalization of the {hy} The properties and constraints of the scal-
ing function readily translate into equations involving the coefficients {hy}.
The normalization constraint given in equation (6.63) provides us with our
first example. Integrating the dilation equation

/¢(-’L')d-’1»' = \/52 hk/¢(2.’1: —k)dz
kEZ

Letting ' = 2z — k and substituting equation (6.63) gives
dx’
1=+2 nN=
V2 Ek / (=)=

After substituting equation (6.63) again, we obtain the normalization property
in terms of the filter coefficients

> e =V2 (6.65)

kEZ

6.6.1.2 Examples Here are several examples of solutions to the dilation
equation.

Example 6.3.
ho=V?2, h;=0Vj#0

In other words ¢(z) = 2¢(2z). This function ¢(z) should be non-zero only at
z = 0. We see in Section 6.68 that this function is in fact the delta function.
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Example 6.4.

1
ho=hi =5, hj=0Yj #{0,1} (6.66)

This is the Haar scaling function.

Example 6.5.
1 1 1

—7h:_7h:—
2\/5 1 \/§ 2

and the remaining h; = 0 Vj # {0,1,2}. This scaling function corresponds
to an equilateral triangle of unit height of width 2, centered at = 1. This
does not directly produce an o.n. family.

ho =

Example 6.6.

3 1
S Re==
4 P g

and the remaining h; = 0Vj # {0,1,2,3}. This scaling function corresponds
to the quadratic cardinal B-spline. It has support [0, 3] and does not directly
produce an o.n. family.

1
h0217 h1:h2:

Example 6.7. This important example, due to Dabechies, has filter coeffi-
cients

1++/3 3+3 3-v3 1-+/3
ho=—F7, i=———, ho=——, hs3=——
4/2 4+/2 4/2 4/2
and the remaining h; = 0Vj # {0, 1,2, 3} The corresponding function ¢(x) has

compact support [0, 3] and produces an o.n. family and compactly supported
wavelets. It is continuous but only weakly differentiable.

6.6.2 Othogonality Constraint on the {/;}

The orthogonality of the ¢(z — k) gives another condition that the {hj} must
satisfy. Recall that

d(z) =v2>  heop(2x — k)
k
so the translates may be represented as
¢z —m) = \/ﬁz hed(2z — 2m — k).
k

Substituting these equations into the orthogonality condition

/ B(@)p(z — m)dz = dom
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we have
/ o(z)p(z — m)dz = / V2 etz — k)V2D  hi 2z — 2m — K')da
k k'
Ok 2t b
=2 hihw %
kk'

Thus the orthogonality property of the scaling function is expressed in terms
of the coefficients solving the dilation equation as

Z hrhr—om = 5m0- (667)
k

Note that out of all the previous examples, only the Haar and Daubechies’
scaling functions satisfy the o.n. constraint.

6.6.3 Zero Moment Constraints on the {/;}

The following theorem relates how the number of zero moments of the wavelet
basis is formulated as a condition on the {hz}.

Theorem 6.1. Let ¢(x) and ¥ (x) be a scaling and wavelet function which
generate an MRA {V; } as well as the orthogonal subspaces W;. Then

/xmd)(x)dx =0

form=0,....,p—14ff
D (=) k™ =0

k

The proof of this theorem (see Strang) requires that ¢(x) and #(z) decay
faster than O(|z|~™~!). In practice this is no problem since ¢(z) and v (z)
have either compact support or decay exponentially.

Furthermore, if the above theorem holds for m = 0,1,...,p — 1, then

e 1,z,...,27~1 are spanned by the {¢(z — k)}.

e O(h?) accuracy, i.e.,

15 =D ard(@ - B)|| < C2777| 7P|
k

o The wavelet coefficients decay as

/ f@)(2z)ds < C277P
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6.6.4 Daubechies Compactly Supported Orthonormal Wavelets

The main drawback of the Haar wavelet is that it is not smooth. Let’s
look for a multiresolution analysis based on having four non-zero coefficients
ho, h1, ho, hg which has 2 non-zero moments. The orthonormality condition
given in equation (6.65) with 4 non-zero coefficients requires that

h+h} +h5+h;=1

with m = 0 and
hoho + hshy =0

with m = —1. Further, if we require an order of approximation p = 2 we have
hg—hy+hes—hg=0
—h1 +2hy —3hs =0

We leave it as an exercise to verify that the coefficients in example 6.7 satisfy
the above constraints.

6.6.5 Fourier Analysis of ¢(z)

The Fourier transform of the dilation equation ¢(z) = V23, hr¢(2z — k) is
given by

B) = VEY g d(S)e s
k

Introducing the symbol P(w) defined as

1 —ikw
P(w) = 7 Xk:e b (6.68)
hence
- - W w
#w) = $(5)P(3) (6.69)

By direct substitution we see that P(0) = 1.

Proposition 6.9.

~ - W w

$) = B ML P() (6.70)
Proposition 6.10.
w

¢(w) = lim H;.VZIP(g) (6.71)

if the limit exists.

This is a consequence of the continuity of ¢~S(w) in addition to the fact that

$(0) = 1.
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6.6.6 Iteration of the Dilation Equation

Consider the algorithm
N
¢ (z) =v2>  hed" " (z)(2z — k) (6.72)
k=0

where ¢(0(z) € L', in particular [ ¢ (z) = 1.

Proposition 6.11.
¢(z) = lim ¢ (z)

n—oo

The Fourier transform of the algorithm reveals how it is working,.

Proposition 6.12.

w

=) (6.73)

) (W) = 3O (S, P(

Then ~ w
lim ¢<0>(2—n) =1

From proposition 6.71 we know that the limit of the product of symbols is the
transform of the scaling function.

6.6.6.1 Support of the Scaling Function The above iteration algorithm pro-
vides a method to compute the support of the scaling function ¢(x) associated
with a finite length filter.

Proposition 6.13. If the solution to the scaling equation has all zero coeffi-
cients except possibly for {hy} where k =0,...,N then supp(é(z)) =[0,N].

6.6.7 Computation of ¢($) on the Dyadic Grid

The scaling equation may have solutions which are not representable as func-
tions in closed form. In these situations, the dilation equation can be used
for the computation of ¢(x) at the points z/2 given that the values ¢(z) are
known. Recursively, ¢ may be computed at all the points /2/. We demon-
strate this idea be means of an example.

Let

8(5) = V2(ho(2) + hd(z — 1) + ha(@ — 2) + ha(z — 3))

Then the support of ¢(z) is [0,3]. Also, by continuity, we have that ¢(0) =
$(3) = 0.

Now observe that given the values of the scaling function at the integers
{¢(4),3 € Z} the above formula may be used to compute ¢ at the half-integers,
ie., the set {¢(%),j € Z}.
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6.7 WAVELETS FROM THE SCALING FUNCTION

In this section we outline the connection between the scaling function ¢(z) of
a multiresolution analysis and the mother wavelet ¢(z). We have alluded to
the fact that the scaling function can be used to construct the wavelet which
generates the bases for all the W;. Most of the deliberations take place in
Fourier space. We begin by recalling that in the Fourier transform of the
scaling equation (6.38) is given by

~ Y W, W
3w) = H(2)P(%) (6.74)
where
1 .
Pw)y=—=)Y hpe 6.75
(w) 7 Xk: ke (6.75)
Also, the Fourier transform of the two-scale wavelet equation is (6.39)
~ W, W
$w) = dE) (6.76)
where
1 ik
- thw 6.77
Qw) 7 Xk:yke (6.77)

6.7.1 Orthonormality Conditions in Fourier Space

In this Section we derive the orthonormality conditions on the scaling and
wavelet families in the Fourier domain.

Proposition 6.14. A set of functions {¢p(z—k);Vk € Z} form an o.n. family
if

316w + 2k = 1. (6.78)

kEZ

proof: By Parseval’s theorem the orthonormality condition

/ " o) b(a — m)de = 6o

may be written in the Fourier domain as
1 [*®° . —
3 | PG s = o
— o0

Breaking this integral into 27 intervals
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1 27T(k+1) . . 9
— e |d(w)|Fdw = o
9 L 3) :

Now substituting w’ = w — 27k we obtain

1 27 . .
o [ €MD 16w + 2mk) Pdw = dmo
T Jo kEZ

P . . . . . 27 ;
This is an equation for the Fourier series expansion coefficients z(n) = 5 [, X (w)e"™ dw

where the 27 periodic function |¢)(w' +27k)|? = X (w) = >, z(n)e” ™. Also,
z(n) = 6po. Substituting this coefficient into the expansion provides the de-
sired result, i.e.,

Z |p(w + 27K)|? = 1.

kEZ
We have largely ignored the fine print in this derivation. In particular we note
that if ¢(z) € L' then we may infer that the transform t(w) is continuous
and equation (6.78) holds for all w. If this is not the case then it holds
almost everywhere, i.e., a.e. Also, the existence of a converging Fourier series
representation is linked to decay of the scaling function, see Chui for details.

Note that proposition 6.14 actually holds for any o.n. family, not just

solutions to the scaling equation. Hence the orthonormality condition for the
translates of the wavelet is given by

Proposition 6.15. A set of functions {¢)(x—k);Vk € Z} form an o.n. family
if

> l(w +20k)|* = 1. (6.79)

keZ

6.7.1.1 Orthonormalization Trick Proposition 6.14 actually holds for any o.n.
family, not just solutions to the scaling equation. If we let

Nw)=>|p(w + 2rk)>

keZ

we may conclude that the family of functions is o.n. iff N(w) =1. T N(w) #1
the we may define a new family of functions
il &(W)
w) = 6.80
oW =—= ) (6.80)

which is o.n. aslong as N(w) # 0 Vw. Note that if the original non o.n. family
has compact support then the new family obtained via this orthonormalization
procedure will not.
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Proposition 6.16. The set of functions {¢(x — k);Vk € Z} is orthogonal to
the set {¢(x — k);Vk € Z} iff

> (w + 2mk) = 0. (6.81)

kEZ

6.7.2 O.N. Families and 2-Scale Equations

Prepared with the results of the previous Section we can now derive 3 fun-
damental relationships concerning the filters P(w) and Q(w). These will be
combined with the prefect reconstruction constraint to ultimately derive the
relationship between {gr} and {hy}. We first consider a result concerning
P(w).

Proposition 6.17. If the set of functions {¢(x — k);Vk € Z} form an o.n.
family and are solutions to the dilation equation ¢(z) = ﬁZkeZ hrp(2z — k)
then

[P +|Pw+m)P=1 (6.82)
where P(w) is defined by equation (6.75).

Substituting equation (6.74) into equation (6.78) gives

w+ 27k ~ w27k
> IPCS P = 1
kezZ

We can employ the periodicity of P(w) by splitting this last sum into even
and odd parts,

> 1P(w + 2km) | p(w + 2km)|?

kEZ

+ Y 1P+ @k + Dm)Pldw + 2k + D> =1
kEZ

where we have replaced w/2 with w. Using P(w) = P(w+2nk) and P(w+m) =
P(w + 7 + 27k) we have

IP@)I* Y 1$(w + 2km)|*

keZ

+|Pw+m > |dw+ 2k + m)* = 1.
kEZ

But each of these sums is equal to 1 by equation (6.78) thus the above sim-
plifies to the desired result

P@) + [P+ = 1.
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We compare this with the (equivalent) constraint

Z hiphy_om = 5m0
k

on the coefficients of the dilation equation.

Proposition 6.18. If the set of functions {¢(xz — k);Vk € Z} form an o.n.
family and are solutions to the wavelet equation ¥ (z) = \/ﬁZkeZ 992z — k)
then

QW) +1Q(w +m)|* =1 (6.83)
where Q(w) s defined by equation (6.77).

The proof of this proposition follows the previous one and is left as an
exercise.

Proposition 6.19. If the functions {¢p(z—k)} and {¢(z—k)} are orthogonal
Vk € Z and satisfy the two-scale equations (6.38) and (6.39), respectively, then

PwQW)+ Pw+mQw+m)=0 (6.84)
where P(w), Q(w) are defined by equations (6.75, 6.77).
The proof of this proposition follows the previous two and is left as an
exercise.
6.7.3 The Wavelet Decompaosition in the Fourier Domain

After laying the ground-work in the previous Sections, we are now ready to
derive the relationship between the functions ¢(z) and ¢ (x) which generate
an MRA and the orthogonal wavelet subspaces. This result, as you might
now anticipate, is derived in the Fourier domain and is then inverted.

Let

a(z) = f(z) + s(x)

where a(z) € V_1, f(z) € Vo and s(z) € Wy. As expansions we have
V2Y ad(2z—k) =) crdl@— k) + ) iz — k)
k k k
Upon taking the Fourier transform
V2 %e_ik% &(%) = e W) + Y dre U P(w)
k k k

Hence, o - w o - w -
A)B(5) = C(5)d(w) + D(5)(w)
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where 1
Aw) = —= ) ape ™k
Va2
— Z cke—i2wk
k
and

(w) — Z dke—i2wk

Note that A(w) is 27 periodic and C (w) D(w) are 7 periodic.
Substituting equations (6.76)) and (6.74) into

(
A@)d(w) = C(w)(2w) + D(w)d(2w)
gives _ _ _
Aw)p(w) = Cw)¢(w)P(w) + D(w)p(w)Q(w)
which upon simplication becomes

Aw) = C(w)P(w) + D(w)Q(w)

Evaluating this at w+ 7 as well and putting the system into matrix form gives

( P(w) Q(w) ) ( C(w) ) _ ( A(w) )

Pw+m) Qw+m) D(w) Alw + 7)

Given the requirement that the transformation be unitary we conclude
|P@)* +1Qw)I* =1 (6.85)

This equation states that the original function A(w) may be mapped to
C(w),D(w), and that this process can be reversed without loss.
Note that equations (6.85), (6.82) and (6.84) are compatible for

Qw) = e~ @A+ P(y 4 7) (6.86)
where N € Z Hence, we conclude
gr = (-1)*hi_pyon

6.7.3.1 The Haar wavelet revisited We have seen a given wavelet may be
written in terms of its corresponding scaling function as

P(@) =D () hrdy (@)

k

Taking ¢(x) as the box scaling function we seek a solution to the dilation

equation
=V2) h¢(2z — k).
k
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Since

(85" b ) = Okm
hy = ( ¢a¢k \/_/ P(z)p(2z — k)dz

S0

the only non-zero terms are given by
ho=hi_r = k=1

hi = hl—k — k=0
therefore,
¥(@) = ~hoty ' + higg .
Recalling that ¢ () = 277/2¢(2~9z — k) we have
¥(2) = —=(—vV26(2z — 1) + V2¢(2x))
= ¢(2z) — ¢(2z - 1)

Nia

as expected.
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Proposition 6.20. Assume the Fourier transform of the function ¥(z) is

gwen by
Pw) = e P(5 +md(5).

Then the set of functions {¢)(x — k);Vk € Z} form an o.n. basis for Wy.

Again, this proof can be broken in to two parts. First we must show the

¥%(z) are o.n.. To see this

(@), %R () = (B(w), PR W)
:/ ka'l;[} )
= [ emlbpds

21
/ e* > |ih(w + 21m)|?

leZ
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Hence,

> ld(w + 2Um)Pdw = 1

leZ

To show completeness of the wavelets see Daubechies [16].
Problems

6.1 Derive equation (6.5).

6.2 Show proposition (6.4).

6.3 Establish the identity (6.12).

6.4 Compute the integral identity (6.15).

6.5 Prove proposition (6.4).

6.6 Prove proposition (6.6).

6.7 Find the CWT of z(¢) = cos(wot) + 6(t — to).

6.8 Derive the condition given by equation (6.31) which determines the
influence of an interval of frequencies on the value CWT X (b,a) at the point
(bo, ag). Draw this region of influence in the (b, a)-plane.

6.9 This problem concerns computing the maximum value of the magnitude
of X (b,a) for an input signal of the form z(¢) = exp(iwpt). For simplicity
assume that a,wg >0

a) Show that for the mexican hat wavelet (¢) = 27~ (1—12) exp(—#2/2)

V3
that the value of a corresponding to a peak in the transform is given by
a= L./
wo 2°

b) Show that for Morlet’s wavelet (t) = \/#27 exp(iat — t2/2) that a =
sus (@ + Va2 +2).

6.10 A wavelet is said to be progressive if its Fourier transform has the
property that 5
Ypw)=0 if w<0

Consider the signal z(#) = sin(wpt). Show that if the CWT X (b,a) of this
signal is computed using a progressive wavelet then the magnitude of the
CWT | X (b,a)| is independent of b.

6.11 Constant Q analysis. Assume that the Fourier transform of a wavelet
has finite bandwidth which is non-zero on the interval w € [Win, Wmax]. Not-
ing that the width of the window is a function of the scale a of the wavelet
and that the center frequency may be defined as geometric mean of the edges
of the window compute the (constant) Q factor of the CWT.
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Computer Projects

6.12 Write a computer code to implement the discretization of the CWT as
described in Section 6.1.6. Compute the approximate CWT by evaluating the
integrals numerically using Simpson’s rule with a step size of h = .01. Find
the CWT of z(t) = sin(5t) + sin(v/26t) and compare with the analytically
calculated result. In this problem you may employ either Morlet’s wavelet or
the mexican hat wavelet. Take ag = 2'/'2 by = 1 and compute ||Xy|| for
enough scales and time steps to develop a good picture of the scalogram.
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Fig. 6.6 Top: The sampling grid in the (b, a)-plane corresponding to ag = 2'/12 by =
1. Middle: The dyadic sampling grid with ap = 2,b9 = 1. Bottom: The logarithmic
dyadic sampling grid (b, —Ina).



PROBLEMS 247

‘iil;;iiiii;iii; _
N
s il IS\

$400 77 l"’ll II N\
)
L7

NS

Fig. 6.7 Top: The scalogram of the progessive Morlet wavelet transform of the
monochromatic signal z(¢) = sin(¢). Bottom: The scalogram of the progessive Morlet
wavelet transform of the monochromatic signal z(¢) = sin(2¢).
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Fig. 6.8 Elements in different Haar subspaces.
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Fig. 6.9 The wavelet decomposition.
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