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2.1 LINEAR TRANSFORMATIONS

Let V and W be two vector spaces. A mapping
L:V-sW

is said to be linear if
e L(u+v)=L(u)+ L(v)
e L(cu) = cL(u)
for any vectors u,v € V and scalar ¢ € R.

Example 2.1. Let A be an m X n matrix and define L4

Ly:R* — R™
Li(u) = Au

Clearly L4 is a linear mapping as a consequence of the linearity of matrix
multiplication.

Example 2.2. Differentiation, represented by the Jacobian matrix, is a linear
mapping. See Section 3.9.5 in Chapter 3 for more details.

Example 2.3. Let V = R® and W = R2. The mapping

T:R — R
T(z,y,2) = (z,9)

is also linear.

While it is not surprising that matrix multiplication is a linear mapping, it
is notable that every linear transformation between finite dimensional vector
spaces may be represented as multiplication of a vector by an appropriate
matrix. This representation is achieved by the introduction of a coordinate
system, or basis for the space.

For example, the n vectors

eV — (10---0)T

e — 01---0)T
e™ =(0-.-1)7

form a basis for R® known as the standard basis. Thus any u € R™ can be
written
u= ale(l) + a2e(2) + PR + ane(n)

The n-tuple (a1, e, ..., qa,) determines the coordinates of the point u w.r.t.
to the standard basis.
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We digress for a moment to emphasize the dependence of the coordinates of
u on the choice of basis. For example, give another basis B for R” consisting
of the vectors {v(),... v(®} we may represent u as

The n-tuple (z1,...,z,) determine the coordinates of the point u w.r.t. to
the new basis B. More on this in the following section.

Now that the vector space is equipped with a basis we may make the
connection between linear transformations and matrices.

Proposition 2.1. Every linear mapping can be written as matriz multiplica-
tion.

Proof. Consider the linear mapping
L:R* - R™

Let eM,e® ..., e(® be the standard basis for R*. Furthermore, let L(e()) =
a; where a; is a column vector in R™. Specifically, L(e®) = (a1; as; - - - am:)”-
Now let u be an arbitrary element of R?, i.e., u = ayelV) + ..+ apel®. Thus
we have

Lu) = L(eM +-.. +ayel®)
arL(eM) + ... + a,L(eM™)
aija; + -+ -+ oanap

= Aa

where (A)z] = Qjj- O

Example 2.4. The matrix which corresponds to the linear operator of Ex-

ample 2.3 is given by
100
A= ( 010 )

2.2 CHANGE OF BASIS

A central issue in studying patterns is determining and utilizing the correct
basis for a given set of data. Later we argue that empirical bases tend to be
more efficient for representing specific data sets.

Motivated by this we now develop the basic mechanics of changing coor-
dinate systems. To start, let {v(¥}?_ and {w(®}2_, both be bases for R",
called By and B, respectively. Let u be an arbitrary element of R"”. Thus in
terms of the basis B; we write

u= xlv(l) + x2v(2) + PR + xnv(n)



24 LINEAR SPACES AND TRANSFORMATIONS

and in terms of By we write
u—= ylw(l) + ygw@) 4ot ynw(")

giving the representation, or coordinates

v, = (1 ... z,)7

w.r.t. By and coordinates

ug, = (Y1 - yn)"

w.r.t. By. Generally, the coordinate system which is in use is clear from the
context and no specific reference is made to it.

By assumption, the {v(9} form a basis for R?, and any element in R can
be expressed in terms of them. Thus, we may write

W) = 3" giyv0)
j=1

which leads to

u=p:Q av) + -+ gD anv)
j=1 j=1

= 2”: 2”: Yigi; v = 2": z;v
i=1

i=1 j=1
where z; = > | ¢;;y; which is equivalent to
x=Q"y

which we could equivalently write as ug, = QTuBg.
Alternatively, we can write v{¥ = 2721 pijw(f) which leads to the rela-
tionship

y =PTx (2.1)

from which it follows that (P7)~! = Q7 i.e., the coordinate transformation
is invertible.

Example 2.5. Given the basis vectors defining B; to be

m_ (1 @_ (1
v —(0) and v —(1)

and that the basis vectors defining B, are

wm_ (0 @_( 1
w —(1) and w —(_1)
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find ug, given
2
up, = 1
We know that ug, = PTug, so we must first compute P. By definition,
vl = pyw + ppw®

so for i = 1 we have

S0
pu \_ (1
P12 1
From i = 2 it follows that
P\ _ [ 2
P22 1
S0
v (1 2
P = ( 11

Given ug, = PTug, we have

we=(11)(7)=05)

The next question we address is how does the matrix A change with a
change of basis. Assuming the matrix A is defined w.r.t. B;, what is the
represenation A’ for this matrix w.r.t. the new basis Bs.

Let’s first look at the action of the linear transformation A w.r.t. the basis
Bl, i.e.,

z = Ax

Both z and x are coordinates w.r.t. By. If we let z’ and x’ be the coordinates
of z and x w.r.t. Bs, respectively, then there exists a matrix M such that

z=Mz and x=Mx
So z = Az may be written Mz’ = AMx’ or
z' = M 'AMX
from which we conclude that

A =M1AM
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Thus z is the result of applying A to x in the first coordinate system and z’
is the result of applying A’ in the second coordinate system. In this case A
and A’ are said to be similar matrices.

Example 2.6. Given the bases as defined in Example 2.5 and that the map-

ping
1 2
1=(5 1)

is defined w.r.t. B;. What is the corresponding transformation w.r.t. B;? We

saw previously that
1 2
—1 _
wr-(1 1)

A':M—IAM:(‘l 6)

S0

0 3

The question arises naturally, is there a coordinate system such that the
action of a matrix is especially simple? The answer is yes for a large class of
well-defined matrices. Suppose that the n x n matrix has n linearly indepen-
dent eigenvectors. If these eigenvectors are chosen to be the columns of the
transformation matrix M then the new matrix is diagonal, i.e.,

M7 AM = diag (A1, ..., An)

where the )\; are the eigenvalues associated with the independent eigenvec-
tors. Note that if A = A7, i.e., A is a symmetric matrix, then A is always
diagonalizable. These ideas will be discussed further in Section 2.8.

2.3 OPERATIONS ON SUBSPACES

Given data sets lie intially within large vector spaces, it is important to be
able to decompose such spaces into smaller ones. In this section we further
develop our tools for decomposing patterns into especially useful subspaces.
One of the main ideas to be developed is that of the projection matrix, but
first, we examine the general problem of decomposing a vector space into the
sum of independent subspaces.

Definition 2.1. A subspace W of a vector space V is a subset of vectors
such that

o ifw,w €W then aw + bw’ € W. In this case we say W is closed.

o 0 €W, ie., every subspace must contain the zero vector.
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Proposition 2.2. Define the set of vectors W
W={w:w= Zaiv(i)}
i

The set W is a subspace. W is said to be spanned by the set of vectors {v()}.

Proof. Let w,w' € Wsow =3, ;v and w' = Y._, civ®. It follows
that .
w+w = Z(cl +)vD ew

aw = Z(aci)v(i) eWw
and lastly
0=> ov ew.

2

2.3.1 Intersection of Subspaces

Proposition 2.3. If W, and W5 are both subspaces, then so is their inter-
section W1 N Was.

Proof. Let x,y e WinNWs,ie,xe W, Woandy € W1, Wo = ax+by € W,
and ax + by € Ws, in other words ax + by € Wi NW,. O

2.3.2 Addition of Subspaces

Let W7 and Wy be subspaces of a vector space V. The sum of these spaces is
defined to be the result of taking all possible combinations of the elements of
these two spaces.

Definition 2.2. The sum of the vector subspaces W1 and Wy is written W =
W1 + Wy and is defined to be the set

Wi+ W, = {Wl + Wy i Wy € Wl,WQ € WQ}
The sum of three or more subspaces is defined analogously.
Proposition 2.4. The sum of two subspaces is a subspace.

Proof. Let x,y € W, Le, x = w; + Wy and y = W] + w}, where w;, w} € W,.
Then we have ax+ 0y = a(wi +w))+ B(ws +w5) = aw] + fwy € Wi +Ws.
a.

The fact that the addition of two subspaces is a subspace provides us with
a nice way to decompose a vector, i.e., if x € W and W = W; + W, we can
always write x = w; + wo where w; € W;. After a little bit of experimenting
with this decomposition it is clear that it is not unique. This ambiguity will
generally be undesirable but can be avoided by restricting the relationship
between W; and W5 as described below.
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2.3.3 Independence of Subspaces

To make the decomposition of a vector unique we require that the subspaces
be independent.

Definition 2.3. The subspaces Wi and Wy of V' are independent if
W1+ Wo = 0

implies
W1 = Wo = 0

where w1 € W1 and wo € Ws.
Independence ensures that the decomposition of V into subspaces is unique.

Proposition 2.5. If Wi, W, are independent subspaces and V = Wy + W,
then the decomposition of x € V given by

X = W1 + Wo
18 unique.
Proof. Let x = w{ + wj with each w; € W;. Then
x—x=0= (w1 —w}) + (wa — wj).
Since W7 and W, are independent we conclude that w; — w}; =0 or
w; =w; andws = wj

O

Proposition 2.6. If W1, W, are independent subspaces then
Wy, N W, = {0}.

Proof. Let w € W1 N W,. This implies that w € W, and w € W,. Since Wy
is a subspace —w € W,. Hence

w4+ (—w)=0.
Since W, and W5 are independent w = —w = Q.

Note that the converse is also true. See Problem 2.10.

2.3.4 Direct Sum Decompaositions

From above we have that the independence of subspaces and the statement
W1 N Wy = {0} are equivalent. If either (equivalent) properties hold the
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decomposition is unique and we distinguish the decomposition from the mere
addition of subspaces by writing

W=W, oW,

as the direct sum decomposition of W.
These ideas extend directly to the case of more than two subspaces. We
cite the following important lemma from [19], p209.

Lemma 2.1. Let V be a finite dimensional vector space. Let Wq,... Wy be
subspaces of V such that W = W1 + - - + W},. The following are equivalent:

o Wy,...,Wy are independent.
o Foreachyj,2<j<k,
Wjﬁ{W1 +"'+Wj_1}: {0}

e If B; is a basis for W; then the collection of bases {By, ..., By} is a basis
for W.

Proof. See [19].
Furthermore, if any (and therefore all) of the above hold then the subspaces
W; form a direct sum decomposition of W which we write

V=W oWy ---&W,;.

2.3.5 Orthogonal Direct Sum Decompositions.

A special but important instance of independent subspaces is orthogonal sub-
spaces.

Definition 2.4. A vector v € V is said to be orthogonal to a subspace W CV
if v is orthogonal to every w € W. Two subspaces W1 and Wy are said to
be orthogonal subspaces if for every wiy € Wy and wo € Wy the inner product
satsifies (w1, wq) = 0.

Given a subspace W of the vector space V', the space of all vectors orthog-
onal to W in V is called the orthogonal complement of W written W+,

Example 2.7. Let V = R3. Then the z-axis and y-axis are orthogonal sub-
spaces of R®. Also, the orthogonal complement of the zy-plane is the z—
axis.

An important special case of the direct sum decomposition occurs when
the subspaces are orthogonal. In this situation we distinguish the direct sum
notation by writing ®.

Example 2.8. Let V be an n-dimensional vector space with o.n. basis vec-
tors (v, v® ... v If W; = Span(v()) then we can write

V =W,6Wad- - &W,
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2.4 IMPORTANT SUBSPACES

In this section we describe the basic subspaces which be of use in what follows.
It is implicit, unless otherwise state, that A is an m X n matrix.

Definition 2.5. The range of A, denoted R(A), is the set of all vectors v
such that v = Ax i.e.,

R(A)={veR™ : v=Ax for somex € R"}
The expression v = Ax may be rewritten
v=[aWa®|...]aMx
=zaM + 25a® + ... + 3,2

This expression reveals the fact that v lies in the span of the columns of A,
ie.,
v E Span{a(l) ,oo.,at™ }.

Hence the range of A, R(A), is also referred to as the column space of A.

Definition 2.6. The null space of A, denoted N'(A), is the set of all vectors
y such that Ay =0, i.e.,

NA) ={xeR" : Ax=0}

Definition 2.7. The row space of A, denoted R(AT), is the set of all vectors
x such that Ax =0, i.e.,

R(AT) = {x € R" : x = ATv for some v € R™}

Definition 2.8. The left null space of A, N'(AT) is the set of all vectors v
such that ATv =0, i.e.,

NAT) ={veR™ : ATv =0}
Example 2.9. Find the range R(A) and null space N'(A4) of the matrix
A=uv’
To determine the range, rewrite the matrix
A =[viu]- - |vpu]
from which it is apparent that
R(A) =ou
Let x be an element of the null space, i.e.,

u(vi'x) =0
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From the manner in which this is written we see that, since u # 0,
N(A) ={x:vI'x=0}
Proposition 2.7. For any m X n matriz
N(4) L R(AT
i.e., they are orthogonal subspaces of R" and
N(ATY L R(A)
i.e., they are orthogonal subspaces of R™.

The range, or column space of an m x n matrix A determines a subspace of
R™. The number of independent vectors in this subspace, i.e., its dimension,
is a very special and useful quantity for a matrix known as its rank.

Definition 2.9. The column rank (row rank) of a matriz is defined as the
number of independent columns (rows) in the column space R(A) ( row space
R(AT) ).

Proposition 2.8. The row rank is equal to the column rank. In summary,
r = dimR(A4) = dimR(AT)
Example 2.10. The matrix A = uv’ has rank r = 1.
Proposition 2.9. If A is an m X n matric then
r < min(m,n)

Proposition 2.10.
r+dimAN(4) =n

2.5 PROJECTION MATRICES

The direct sum provides a framework within which a vector space may be
systematically split into subspaces that provide a unique expression for the
decomposition of any vector in the space. In this Section we describe a pro-
cedure for constructing a mapping which takes a vector and executes this
decomposition. Specifically, we refer to a matrix P as a projection matriz if

P2 = P.

Such matrices are also said to be idempotent. See Figure 2.1 which depicts
the possible actions of a projection matrix.
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R(P) R(P)

Fig. 2.1 Left: A nonorthogonal, or oblique projection. Right: an orthogonal projec-
tion.

Example 2.11. It is easy to verify that the matrix

(1)

is a projection matrix. Note that it has rank 1 and that

R(P):a(;)

DO [ s | =

2.5.1 Invariant Subspaces

Definition 2.10. Let V be a vector space and L a linear operator on V. If
W is a subspace of V, we say W is invariant under L if for each w € W we
have Lw € W. In other words L(W) C W.

If W, and W, are subspaces invariant under A (where A is the matrix that
corresponds to the linear operator L) with V = W; ® Wy then we say A is
reduced or decomposed by W, and Ws.

We now show that a projection matrix naturally produces an invariant
subspace.

Proposition 2.11.
veR(P) if and only if Pv=v

Proof. First assume v € R(P), i.e., v = Px for some x € R*. So Pv = P?x but
P?x = Px = v from which we conclude that Pv = v. To prove the converse,
assume that Pv = v. It follows directly that v € R(P). O
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2.5.1.1 The Nullspace of P. What is N'(P)? A member of this set is readily
seen to be the difference between the the vector v being projected and its
projection Pv. If v =r + [Pv then we have

r=v-DPv (2.2)
Projecting this vector r gives
Pr=Pv - P?>v =0
So we conclude that r € A'(IP) and that the null space is unvariant under IP.

2.5.1.2 The Complementary Projection I — P. Factoring the projection ma-
trix in equation (2.2) produces

r=(I-P)v (2.3)
8o we see the natural decomposition
v=Pv+ (I -P)v (2.4)
Note that given P is a projection matrix it follows that so is I — [P since
(I —P)? =1-2P+P?

=I-2P+P
=I-P

It follows that equation (2.4) represents a decomposition into invariant sub-
spaces. Additionaly, we may employ the notation Q = I — IP to represent the
projection matrix onto the null space.

Proposition 2.12.

R(Q = N(P) (2.5)
and

REP) =N(Q (2.6)

Proof. We prove the first statement. First let v € R(Q) and show v € N (P).
Given v = (I — P)x for some x it follows Pv = (P — P)z =0 so v € N (P) for
an arbitrary v so we conclude R(Q) C N(P). Now let v € N(P) and show
v € R(Q). If Pv =0, then (I —P)v = v so v € R(Q). Again, since v is
arbitrary, it follows that A (P) C R(Q). These results, taken together, prove
the result that R(Q) = M (P). The second statement can be demonstrated in
a similar faghion. O
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2.5.1.3 Independence

Proposition 2.13.
R(P)NN(P) = {0} (2.7)

Proof. From equation (2.5) we know N (P) = R(I — P). Let v € R(I — P),
i.e., v= (I —P)x for some x. So Pv = 0. But, by proposition 2.11, v € R(P)
if and only if Pv = v, hence we conclude v = 0 is the only element common
to both R(P) and N'(P). O

From these results it is now clear that a projection matrix separates a space
into the sum of two independent subspaces. We recall that this is exactly the
direct sum decomposition so we may write

V =R(P) ® N (P)
It is also interesting to note that for every splitting
V=W oW,

there exists a projection operator P such that

and

For details see [42].

2.6 ORTHOGONAL PROJECTION MATRICES

We have seen that projection matrices permit the decomposition of a space
into subspaces. The most useful application of this idea is when the resulting
subspaces are orthogonal, i.e., when the projection matrix and is complement
produce orthogonal vectors. We begin with a basic definition.

Definition 2.11. Let x = wi + we and wi; € Wi, wo € Wy with W1 1LWs.
The vector w1 is called the orthogonal projection of x onto Wy and wo is
called the orthogonal projection of x onto Ws.

Associated with an orthogonal projection is the operator, which we now
refer to as an orthogonal projection matriz, which performs the projection
described in the definition above. (Note that the orthogonal projection matrix
should not be confused with an orthogonal matrix.)

Definition 2.12. If the subspaces R(P) and N (P) are orthogonal, then the
projection matriz P is said to be an orthogonal projection matriz.
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If P is an orthogonal projection matrix, then we may write the direct sum
decomposition of the space as

V = R(P)ON (P).

Why are orthogonal projection matrices to be preferred over plain projec-
tion matrices?

2.6.1 Best Approximation Theorem

Suppose W is a subspace of an inner product space V and let x € V be
an arbitrary vector. One of goals is to find the best approximation to x by
vectors in W. In other words, we seek a vector w € W such that ||x — w|| is
a minimum.

Definition 2.13. A best approzimation to x by vectors in W is a wvector
w € W such that

x = wl| < [x - w|
for adllw' e W.

Theorem 2.1. The Projection Theorem: Of all decompositions of the
form
X =w] +w)

with wi € Wy the orthogonal projection provides the best approzimation to x.
Equivalently, the orthogonal projection minimizes ||wj||.
Proof. We rewrite
llx — wil* =[x — w1 + w1 — wi|?

=(X—W;+W| —W,X— W[ +W] —W])

=(x—w,L,x—w+w — W)+ (W —w,x— W + W —W])

=(x—-w,x—wi)+ (W —wp,w; — W) +2(x —wi,w; —w))

= [lx = w1 * + [[w1 — wi|* +2(x — w1, w1 —w})
Observe that

X—w; =wy € Wy
and that w; — wj € W3
= (x—-—wp,wp—wy)=0
given that the projection is orthogonal. From this we have
llx — wil* > [lx — wi]®

in other words, wy is the best approzimation to x. Note that ||wj|| = ||x—wi]|
is a minimum for w{ and since wo = x — w it follows that w) = wy in the
case of the best approximation. O Furthermore, it can be shown that this

best approximation is unique, see [19] for details. In addition, these results
may be extended to the general setting of metric spaces [36].
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2.6.2 Criterion for Orthogonal Projections
Proposition 2.14. If
P =pT (2.8)
then the projection matrix is orthogonal.
Proof. Let P =PT. Px € R(P) and (I — P)x € N'(P).
Px)T (1 - P)x = x"PT(I - P)x

=xT(P -P?x

=0
O

The converse of the above proposition is also true, i.e., if IP is an orthogonal
projection matrix, then P = P7.

Example 2.12. It is easy to verify that the matrix

~(11)

is an orthogonal projection matrix. Note that it has rank 1 and that

R(P):a(})

Example 2.13. Every matrix of the form vv
matrix if ||v|| = 1.

B[00 | =
(M=

T is an orthogonal projection

(VVT)2 = (VVT)(VVT)

=v(vIiv)v?

=vvl
Note that this projection matrix is rank one and that R(vv?l) = Span(v).
From this example we observe that any vector u may be orthogonally
projected onto a given vector v by defining
T) T

Pyu = (vv' )u=v(v'u)

Also, the orthogonal complement, or residual r is then found to be
r=P =T -P)u
T

=u-— (v u)v

We can leverage our ability to project u onto a single vector v into a method
for computing the orthogonal projection of u € R™ onto a subspace W. To
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begin, we assume that we have an o.n. basis for the space W consisting of
the vectors {w(,...,w®}. We may view each of the w(®) as spanning a
one-dimensional subspace W;. Clearly, each of these spaces is orthogonal, i.e.,

Wi LW, i#3j
Furthermore, the sum of these subspaces spans a k-dimensional subspace
W=W,+---+W;
From our previous deliberations,
W=Wd...0W

In other words, the o.n. basis induces a direct sum decomposition of the
subspace W. A projection onto W may be constructed from projections onto
the individual supspaces.

The projection of u onto the i’th subspace space is given by

Pyohu= w(i)w(i)Tu

If we write P; = P,5), then the projection matrix onto W is given by

k k
P=Y Pi=Y wiiw®’
i=1 i=1

Given the matrix M = [w(l|...|w(®)], it follows

P=MMT. (2.9)

2.6.3 Orthogonalization

In the course of the above computations we assumed that the subspace on
which we were to project was equipped with an orthonormal basis. We now
review the Gram-Schmidt procedure for computing an o.n. basis starting from
a linearly independent set of vectors {v(¥}12 . Take as the first element

1)
a = Y

- 2.10
V] (2.10)

The second element of this set is constructed using the same 2-to-1-dimensional
projection technique discussed previously. The projection of v(®) onto utV) is
given by

Py v® = (@Wua® )v®

so the vector pointing orthogonally to u(!) is the residual

r= (I - ]Pu(1))V(2)



38 LINEAR SPACES AND TRANSFORMATIONS

Simplifying and normalizing this vector gives
u® = v® _ (@M@ (2.11)
Proceeding in the same fashion with the j’th direction we have
v — 23;11 (v, uld)u®
IvO) = 21 (v, u®)uld)|

a =

Note that if the added direction v{¥) is dependent on the previous vectors
then u = 0.

Example 2.14. Consider the matrix

11 -1
00 O
A= 1 0 -1
01 0

Find the orthogonal projection matrix which takes an element of R* onto
R(A). Define a® = (1010)” and a® = (1001)”. Given the 3rd column is
a multiple of the first R(A) = Span(a®, a?). To find the projection matrix
P which maps an element of R* onto R(A) we first determine an orthonormal
basis for R(A). Clearly the columns a() and a® are linearly independent
but they are not orthogonal. Using the Gram-Schmidt procedure we obtain

u(l):%(l 01 0)"

and 1
u@):%u 0o -1 2)"

The projection matrix onto u(!) is given by

1

P, = u@Wa®” = 1

[l en B en B e
O = O =
[l en B en B e

0
1
0

and the projection matrix onto u(® is given by

1 0 -1 2
@@L 00 0 0
Br=u®u™ =5l 210 1 -2
2 0 -2 4
From this we have the projection matrix
2 0 1 1
110 0 0 0
P=Pi+Pe=31 10 2 -1
1 0 -1 2



