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In this Chapter we continue our study of the K-L procedure and apply it in
detail to a variety of problems, including the study of patterns which evolve
in time, i.e., spatio-temporal data.

n Section 4.1 we develop the continuous version of the KL transform. This
is important for theoretical reasons and will be used later Sections. In par-
ticular, in Section 4.3 we demonstrate how both the continuous and discrete
expansions may be extended to have even and odd symmetry. In addition, in
Section 4.2 the procedure is extended to both continuous and discrete vector
functions.

The last major Section of this comprehensive Chapter on optimal expan-
sions develops the local KL procedure. Of particular importance in Section
4.7 is the application of the method to computing local dimensionalities using
the scaling properties of the singular values.

4.1 THE CONTINUOUS KL TRANSFORM

In many cases of importance it is easier to demonstrate theoretical results
concerning the Karhunen-Loeve procedure if the continuous form of the ex-
pansion is used. The derivation now moves to a function space setting, but
remains essentially analogous to the derivation for the discrete case.

Now we assume that the data points {u((x) I'_1 of our ensemble are
functions which reside in the Hilbert space L?(a,b), oo < a < b < 00, i.e., the
space of Lebesgue measurable functions

f:(a,b)y=>C

which are square-integrable

b
[ 1r@Pds < oo

with the inner product

b
(fr9) = / f(@)g@)de (4.1)

and induced norm
171> = (£, )

The presentation here will not be technically exacting in the sense that sets of
measure zero will be ignored. For a more mathematically detailed approach
see [72]. In addition, we will assume that all of our functions are real.

In this infinite dimensional inner product space, we again seek to construct
an optimal basis B with elements {¢() (2)}2, in L*. Our basis should be
o.n., ie.,

69,69) = [ 99 @)p (2)dz = 3.
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Then, any square-integrable function can be expanded as
& .
u® () = 3" o ¢ (2)
i=1

(m)

where the expansion coefficients a;”’ are given by

af) = (), ¢) = / " w0 (@) @)da

The ensemble average is defined as before, namely

1 P
(@) = 5 > u¥ ()

If the functions are time dependent, i.e., they are of the form u(x,#) there is
a related time-average defined as

T
(u(z)) = % /0 u(z, £)dt.

If the time-dependent function is sampled discretely in time we may collect
an ensemble as before where

u® (z) = u(z,t,).

Often the approximation is made that the ensemble average and the time-
average are equal. If this is true the flow is said to be ergodic [68].

As before, we proceed by defining the first basis function ¢ (z) by means
of an optimization criterion. The mean-square projection of the data onto
this function should be a maximum:

((/_00 U($)¢(1) (x)dz)?) = maximum

subject to

| 6@y =1

The remaining basis functions may be defined proceeding sequentially

max((¢\7), u)?)
o(@)

subject to the side constraints

(09, ¢p*)) = g3, for k < j
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Using the technique of Lagrange multipliers and the calculus of variations
it can then be shown that the basis functions are solutions to the integral
equation

/ O, 1)d(5)dy = Ad(2) (4.2)

where

Clz,y) = (u(z)u(y)) (4.3)

The type of this integral equation is known as a Fredholm Equation of the 2nd
Kind and its properties fall within the scope of Hilbert-Schmidt theory [31].
This integral equation is seen to be the continuous analogue to the eigenvector
problem for obtaining a best basis in a finite-dimensional setting. Among the
properties of the solutions of this eigenfunction problem are the following:

e The kernel is symmetric, i.e., C(z,y) = C(y, ).

e The eigenvalues are real, countable, and non-negative.

o The total energy is finite, i.e., > Ay < 0.

e The eigenfunctions form an orthonormal basis for the Hilbert space L2.
In addition, we have the continuous analogue to the spectral theorem

Theorem 4.1. Given C(z,y) = (u(z)u(y)) is continuous in z,y then
Clz,y) =Y _ X (2)9W (y)

where the series converges uniformly and absolutely to C(z,y).

This is known as Mercer’s theorem. We refer the reader to [72, 65] for
further details.

Returning to the data analysis problem, it is possible that the relative
frequency p(® of each member of the ensemble is known, or may be estimated.
If the ensemble consists of P elements, then Pp{® of the elements are indexed
by a. The relative frequency satisfies the conditions

P
P9 >0, > pl®=1
a=1

The weighted covariance matrix is then defined as

P

Cla,y) = Y _ pu(z)u(y) (4.4)

a=1
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This weighted covariance matrix may then used in place of the evenly weighted
ensemble average covariance matrix.

In the next Section we see how the continuous transform allows us to extend
these ideas to vector functions. Furthermore, we show that discrete data made
up of concatenated vectors derived from continuous functions can be dealt
with in a computationally efficient manner.

4.2 VECTOR FUNCTION KL EXPANSIONS

One of the most important applications of the KL expansion is to data consist-
ing of several variables with values defined over a mulit-dimensional domain.
This section deals with the extension of the continuous KL expansion to such
vector functions. The procedure is also extended to the fully discrete setting.

4.2.1 Continuous Vector Functions

Here we address the application of the KL procedure to an ensemble of vector
functions of the form

ul®(x) = @ (x),...,u¥ (x))7
where each .
U - R - R

and j is the dimension of the domain. Such ”data sets” are difficult to generate
in practice, but they arise naturally in theoretical settings.

Example 4.1. Consider the fluid flow with scalar flow variables consisting of
the concatenated vector function

u(x, t) = (u(x,t), v(x, t), w(x, 1), e(x, 1), p(x, )"

where x = (x1,%2,23) and u, v, w are the flow velocities in the z;, 2 and z3
directions, respectively; e is the internal energy and p is the fluid density.

To determine a best basis for such vector functions we must extend the
definition of the kernel of the integral equation. The appropriate extension is

C(x,x') = (u(x)u(x’)).
where
Cij(x,x") = (ui(x)u;(x)).

The kernel C is now referred to as a two-point correlation tensor. If K = 2
we see that

( 811 812 ) _ ( (ul(x)ul(z’» (w1 ()ug (x')) )
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The integral equation which produces the optimal eigenfunctions is now given
by

/Cxx x')dx’ = A\p(x).

This may be thought of ¢p(x) as being a concatenation of components of

eigenfunctions
¢ (x) = (¢1(x), 2(x))-

The integral equation can also be written in component form as

2
/Z Cij(x,x")p; (x")dx’ = Ag;(x).
j=1
fori=1,2.

The Snapshot Method

The snapshot method again helps us reduce the problem for degenerate ker-
nels. We again start with the data-dependent representation

P
= Z a“u(“) (x)
p=1
and component-wise
P
x) = Z a“ugu) (x)
p=1

Substituting this into the component integral equations leads to
(u) _ 2
Z (us(x)u;(x Za“ ))dx' = )\Za,,u (x).
Expanding the ensemble average
/Z Zu(") (x)u (") Za u(“) )dx' = )\Za,,u(") (x).
Rearranging,

Zu(”’ Z Z / W) (x'yul (x')dx’ — (AP)ay] = 0.

In other words,

> uf” ®)[>_Liua, — APa,] =0
v u
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where

L,, = /Zugy) (x’)ug.“) (x")dx'.
J

Hence,

La=)a

where we have used A = \P.

4.2.2 Discrete Vector Functions

As we have already observed, pattern data typically comes not in the form of
continuous functions but rather as discrete vectors. The discussion in Section
3.4 dealt directly with the application of the KL procedure to the case of a
single independent discrete variable. The results of the previous Section apply
to continuous vector functions. We now modify these results so that we can
treat discretely sampled vector data.

Example 4.2. A typical source of discrete multivariable vector data is a nu-
merical simulation of physical problem, such as the motion of a fluid. The
continuous data described in Example 4.1 is now estimated on a 3-dimensional
lattice, or grid. For example, the first component of velocity u(x,t) is com-
puted on u(z1,z2,zs,t) where z; € {1,...,N;}. This data may be concate-
nated into a single column vector as

w(1,1,1)

u(t) =
U(Nla N27 N3)

Example 4.3. A color digital image is commonly given as a triplet of red,
r(i,7), green, g(i,7) and blue b(4, j) color values on a two-dimensional lattice.

Concatenating the rows (or columns) of each image, and then the images leads
to the high-dimensional vector

x = (r,g,b)".

Lets consider the application of the above where the continuous vector
function is actually discretized so that

u = (u,uy)”

where
u,us € R ue R,

Then
C = (uu”)
_ ( (wui) (wuy) )

(ugul) (upuy)
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Thus each C;; is an n X n matrix and C is a 2n x 2n matrix. Again we have
the eigenvector problem

Co = \¢

which leads to the snapshot equation, as in the continuous case considered in
the previous Section, i.e.,
La = APa

where L is a Px P matrixand L, = Zj (ug.") , ug.“)), i.e., a vector dot product.

43 SYMMETRIC OPTIMAL EIGENFUNCTIONS

Historically, one of the most important eigenfunction expansion is the contin-
uous Fourier series

flz) = Z ag cos(kz) + by sin(kz) (4.5)
k

which decomposes a periodic function into its even and odd parts. The {a}
coefficients represent the odd portion of f(z) while the {b;} represent the
even. It is easy to show using the orthogonality of the sinusiods that if f(z)
is even, then the {by} are all zero, and if f(z) is odd, then the {ax} are all
zero. This property often simplifies the computations associated with using
the Fourier series expansion.

Recall that a function f(z) is said to be even if f(z) = f(—z) and odd if
f(x) = —f(—=x). In addition, any function may be expressed as the sum of
an even and odd function using the identity

f@) = f(z) +2f(—$) iC)) —2f(—$)_

For example,

€T

e*+e™® ef—e®
[ =

2 + 2

See Figure 4.1 for the plots of the individual functions in the decomposition.
The decomposition of a function into even and odd orthogonal components
may be generalized to the form

f@) =" anfP (@) + b fP (@) (4.6)
k

where { fe(k) (z)} are even functions, { fék) (z)} are odd functions, and together
they form a basis for the function space in question. Given such a decomposi-
tion it is possible to characterize the symmetry of a pattern or an ensemble of
patterns. For instance, the degree of evenness of an ensemble may be quan-
tified by the sum ), (a%) and degree of oddness as y_,(b3). The symmetric
KL procedure will automatically produce these quantities as eigenvalues.
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Fig. 4.1 Left: the function e® and its reflection e™*. Right: The functions on
the left may be decomposed in terms of the even and odd functions fe(z) =

(e +e7°)/2, folz) = (* —e™%)/2.

Given the convenience of such a decomposition for characterizing the sym-
metric components of a function (or data vector) it is natural to address the
issue of symmetric optimal eigenfunction (or eigenvector) expansions.

In general, if C(z,y) = (u(z)u(y)) and the optimal eigenfunctions in the
expansion are determined by solving the equation

/ O, 1)d(5)dy = Ad(2) (4.7)

then the eigenfunctions {¢(j)} are neither even nor odd, i.e., the possess no
symmetry. As a consequence, the optimal eigenfunction expansion

u(z) = i a;¢ (x)

does not permit the splitting of the decomposition into even and odd sub-
spaces.

The topic of this Section is to demonstrate how a simple modification to the
KL procedure permits the construction of optimal bases with even and odd
eigenfunctions. Although the initial setting for the discussion is the continuous
transform, all of the ideas carry over to the discrete case.

We begin by defining the reflection operator

Ro(x) = ¢(~2).

Now consider an ensemble of patterns {u()(z)} with u=1,...,P.



114 ADDITIONAL THEORY AND APPLICATIONS OF THE KL EXPANSION

Definition 4.1. The symmetry extended ensemble is defined as the union
X = {u¥(2)} U {Ru)(2)}
where p=1,..., P.

The extended ensemble average is then given by

P
— LPZ u® (z) + Ru® (2)).

It is interesting to note that the extended ensemble average is an even function.
Ag usual, we form the fluctuating ensemble

¥ (2) = u® (z) — (u(2))

and for simplicity we again immediately drop the tilde notation.
It will be demonstrated that the symmetric optimal eigenfunction expan-
sion is found by solving the symmetrized integral equation

[ Caniwas=rét) (18)
where the symmetrized kernel Cis given by

P

Z u® (2)u™ (y) + Ru™ (z)Ru® (y)). (4.9)

=1

Now we propose to compare the solutions of the symmetrized integral Equa-
tion (4.8) with those of the original eigenfunction problem of Equation (4.7).
In particular, it will be shown that the eigenfunctions of Equation (4.8) are
symmetric, i.e., even and odd functions. In addition, it will be shown that
the solutions of the symmetrized integral equation may be found by solving
associated even and odd integral equations.

The set of eigenfunctions which satisfy a given integral equation also define
an eigenspace, in a manner analogous with the discrete eigenvector problem.
For example, the eigenspace associated with the symmetrized kernel C is the
set of functions

— {4 / C(z,9)()dy = ()} (4.10)

The analysis of Equation (4.8) will be facilitated by the introduction of the
even functions
2

u¥)(z) =
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and the associated odd functions

u® (z) — Rul (z)

ult) (z) = >
For u = 1,..., P we may view these functions as defining an even ensemble

{u")(z)} and an odd ensemble {u" (z)}.
These ensembles also define kernels. The even kernel

Ce(x,y) = (ue(@)ue(y))
is even in z and y and the odd kernel

Co(z,y) = (uo(2)uo(y))
is odd in z and y.

Proposition 4.1. The symmetrized kernel ¢ may be decomposed into even
and odd components using these kernels, i.e.,

~

C(z,y) = Ce(z,y) + Co(z,y)

This splitting of the kernel into its even and odd components will permit
us to establish that the integral equations which produce the even and odd
eigenfunctions are the even integral equation

/ Col2, )6 (W)dy = A () (4.11)

and the odd integral equation

/ Col2, )60 (u)dy = Ao(2) (4.12)

respectively.

Theorem 4.2. If q} is an eigenfunction of the symmetrized kernel C, i.e.,qAS €
E(C) and ¢(z) = ¢c(z) + ¢po(x) decomposes ¢ into even and odd functions,
then

o $o(z) € E(C,)
o $o(z) € E(C,)
In follows that,
E(C) C E(C.) + E(C,) (4.13)

Proof. By assumption
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Decomposing into the even and odd components gives

/ (Col,y) + Col@:9))(Be () + Bo®))dy = A(Be () + do(a))

After multiplying out and setting the appropriate terms to zero (see Exercise
4.7) we have

/ Co(@, ) e (v)dy + / Col@,1)Bo)dy = A(Be () + do()

Equating the even and odd parts produces Equations (4.11) and (4.12), re-
spectively. O

The next theorem essentially says that the even and odd eigenfunctions
are actually solutions to the symmetrized integral equation. In other words,

~ ~

E(C,) c E(C) and E(C,) C E(C).
Theorem 4.3. If ¢, € E(C,), then ¢, € E(C). Similarly, if ¢, € E(C,),

~

then ¢, € E(C).

Proof. By assumption

/ Co(2,9)¢e (v)dy = Ao (z)

So [(Ce(z,y) + Co(z,y))¢e (y)dy = Ade(z) since the additional term is just
zero. Hence it follows

/ C(z,y)pe (y)dy = Ape(2)

The proof for ¢, is analogous. O

From these results we may conclude that any solution ¢, of (4.11) or ¢,
of (4.12) is a solution to (4.8) and that the even and odd eigfunctions span
orthogonal subspaces. Furthermore, it also follows that

~

E(C.) + E(C,) € E(C)

Thus, by combining the statements of theorems 4.13 and 4.13, we conclude
that .
E(Ce) + E(Co) = E(C)

It is also easy to show that the even and odd kernels produce orthogonal
eigenfunctions.

Proposition 4.2. The even and odd eigenfunctions are orthgonal, i.e.,
E(C.) L E(Co)

The proof of this is left for the exercises.
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In other words E(C’), the eigenspace determined by equation (4.8) can be
expressed as the direct sum of E(C,) and E(C,); i.e.,

E(é) = E(CE)G‘BE(CO)'

Thus to determine the even eigenfunctions {@. (y)}, and the odd eigenfunc-
tions {¢o(y)} of C, we may solve the "smaller” problems given by Equations
(4.11) and (4.12).

This theorem shows that the eigenfunctions of the symmetrized integral
Equation (4.8) are actually all either even or odd.

Theorem 4.4. Assume that all eigenvalues of the symmetrized integral equa-
tion are distinct. If ¢ is an eigenfunction of C, then either ¢ = ¢o, or ¢ = ¢,.

Proof. Since ¢ is an eigenvector of ¢ and ¢ = ¢e + ¢0 it follows
[ C@n)@.w) + dow)dy = X3u(2) + do(z) (4.14)

Also, by theorems 4.2 and 4.3, these eigenfunctions satisfy [ Cl(z,y)de(y)dy =
Aede(z) and f C(z,y)o(y)dy = Aodo(z), or, after adding these equations
together,

[ C@n6.w) + bowdy = Xela) + Aodals)  (@15)
Equating the right-hand sides of Equations (4.15) and (4.14) leads to

)‘(¢e(x) + ¢0(.’IJ)) = )\eée(x) + )\oéo(m’)

or
()‘ - )\e)ée(-’t) + ()\o - )\)ég(.’li) =0

But ¢(z) and ¢o(z) are independent so A = A, = A,. But this is a contra-
diction, since the eigenvalues are distinct by assumption. The only remaining
possibilities are

i ée(x) =0, A=A, é(m’) = ¢A50(.’L')

i éo(x) =0, A=A, é(m’) = ée(m’)
O

4.3.1 Symmetric Optimal Eigenvectors

Although the continuous KL transform was a useful setting to derive the
symmetric properties of the eigenfunctions for a symmetry extended data
set, the discrete formulation is used in practical computations. This section
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Fig. 4.2 The eigenvectors of a mean-subtracted ensemble of 10 faces.

outlines the discrete procedure which is analogous to the continuous KL of
the previous section.

Definition 4.2. A vector x € RY is said to be even if

Ti = TN—i+1
and odd if

Ti = —TN—it1
fori=1,...,N.

Following the notation of the previous section we define the reflection of a
vector about its midpoint as

(Bx); = TN—i+1 (4.16)

Example 4.4. A vector of length 4 may be said to be even if it has the form
(a,b,b,a) and odd if it has the form (a, b, —b, —a). All vectors of length 4 may
be decomposed into the sum of an even and odd vector using

1 + 24 T1 — X4
1 1 —
x— = To + T3 +o o — I3 (4-17)
2| z2+2z3 2 —Z2 + I3
1 + 24 —21 + 24

Following the previous section, the symmetric eigenvectors are computed
from the symmetrized eigenvector problem

Cod=rp (4.18)
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where r r
O (uu”) 4+ (RuRu")
2
There are twice as many patterns in this ensemble, so for rank deficient prob-
lems it is computationally less expensive to solve the associated even and odd
eigenvector problems

Cep = A,
and

Cotpp = AP,

where C, and C, are defined as before. Again, the even and odd patterns are

found using
x + Rx x — Rx

Xe = X, =
2 2
where the action of R is defined by Equation (4.16).

The Snapshot Method

When the matrices C, and C, are singular it is again useful to employ the
Snapshot Method. Specifically, representing the even and odd eigenvectors in
terms of the even and odd data we have

¢o = Zbuxg“) ? ¢e = Za’uxg“)
19 19

yields the two reduced problems
Lea® = xa®),

Lob#) — \p@®

where Lf, = x,x#) and L, = x), %Y. Now there are two P x P
eigenvector problems rather than a single 2P x 2P problem which arises if
we solve Equation (4.18) via the Snapshot method. Again, the resolution
of the patterns is a factor only in the computation of the dot products and
the required memory. As a result, very high-resoultion images may present a,
practical problem even if the eigenvector problems can be solved.

Example 4.5. The Symmetric Rogues Gallery Problem. The representation
of digital images in Section 3.6.1 may now be extended to include symmetry.
As an example, we revisit the Rogues Gallery problem and compute the even
and odd eigenpictures. The result of computing the eigenpictures of the even
ensemble is shown at the top of Figure 4.3; as expected, they are all even
about the midline. The bottom of Figure 4.3 shows the result of computing
the eigenpictures of the odd ensemble. Again, as expected, they are odd about
the midline. For purposes of comparison the eigenpictures for the unextended
ensemble are shown in Figure 4.2. See [44] for further details.
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Fig. 4.3 Top: the even eigenvectors. Bottom: the odd eigenvectors.



