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2.1 LINEAR TRANSFORMATIONS

Let V and W be two vector spaces. A mapping
L:V-sW

is said to be linear if
e L(u+v)=L(u)+ L(v)
e L(cu) = cL(u)
for any vectors u,v € V and scalar ¢ € R.

Example 2.1. Let A be an m X n matrix and define L4

Ly:R* — R™
Li(u) = Au

Clearly L4 is a linear mapping as a consequence of the linearity of matrix
multiplication.

Example 2.2. Differentiation, represented by the Jacobian matrix, is a linear
mapping. See Section 3.9.5 in Chapter 3 for more details.

Example 2.3. Let V = R® and W = R2. The mapping

T:R — R
T(z,y,2) = (z,9)

is also linear.

While it is not surprising that matrix multiplication is a linear mapping, it
is notable that every linear transformation between finite dimensional vector
spaces may be represented as multiplication of a vector by an appropriate
matrix. This representation is achieved by the introduction of a coordinate
system, or basis for the space.

For example, the n vectors

eV — (10---0)T

e — 01---0)T
e™ =(0-.-1)7

form a basis for R® known as the standard basis. Thus any u € R™ can be
written
u= ale(l) + a2e(2) + PR + ane(n)

The n-tuple (a1, e, ..., qa,) determines the coordinates of the point u w.r.t.
to the standard basis.
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We digress for a moment to emphasize the dependence of the coordinates of
u on the choice of basis. For example, give another basis B for R” consisting
of the vectors {v(),... v(®} we may represent u as

The n-tuple (z1,...,z,) determine the coordinates of the point u w.r.t. to
the new basis B. More on this in the following section.

Now that the vector space is equipped with a basis we may make the
connection between linear transformations and matrices.

Proposition 2.1. Every linear mapping can be written as matriz multiplica-
tion.

Proof. Consider the linear mapping
L:R* - R™

Let eM,e® ..., e(® be the standard basis for R*. Furthermore, let L(e()) =
a; where a; is a column vector in R™. Specifically, L(e®) = (a1; as; - - - am:)”-
Now let u be an arbitrary element of R?, i.e., u = ayelV) + ..+ apel®. Thus
we have

Lu) = L(eM +-.. +ayel®)
arL(eM) + ... + a,L(eM™)
aija; + -+ -+ oanap

= Aa

where (A)z] = Qjj- O

Example 2.4. The matrix which corresponds to the linear operator of Ex-

ample 2.3 is given by
100
A= ( 010 )

2.2 CHANGE OF BASIS

A central issue in studying patterns is determining and utilizing the correct
basis for a given set of data. Later we argue that empirical bases tend to be
more efficient for representing specific data sets.

Motivated by this we now develop the basic mechanics of changing coor-
dinate systems. To start, let {v(¥}?_ and {w(®}2_, both be bases for R",
called By and B, respectively. Let u be an arbitrary element of R"”. Thus in
terms of the basis B; we write

u= xlv(l) + x2v(2) + PR + xnv(n)
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and in terms of By we write
u—= ylw(l) + ygw@) 4ot ynw(")

giving the representation, or coordinates

v, = (1 ... z,)7

w.r.t. By and coordinates

ug, = (Y1 - yn)"

w.r.t. By. Generally, the coordinate system which is in use is clear from the
context and no specific reference is made to it.

By assumption, the {v(9} form a basis for R?, and any element in R can
be expressed in terms of them. Thus, we may write

W) = 3" giyv0)
j=1

which leads to

u=p:Q av) + -+ gD anv)
j=1 j=1

= 2”: 2”: Yigi; v = 2": z;v
i=1

i=1 j=1
where z; = > | ¢;;y; which is equivalent to
x=Q"y

which we could equivalently write as ug, = QTuBg.
Alternatively, we can write v{¥ = 2721 pijw(f) which leads to the rela-
tionship

y =PTx (2.1)

from which it follows that (P7)~! = Q7 i.e., the coordinate transformation
is invertible.

Example 2.5. Given the basis vectors defining B; to be

m_ (1 @_ (1
v —(0) and v —(1)

and that the basis vectors defining B, are

wm_ (0 @_( 1
w —(1) and w —(_1)
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find ug, given
2
up, = 1
We know that ug, = PTug, so we must first compute P. By definition,
vl = pyw + ppw®

so for i = 1 we have

S0
pu \_ (1
P12 1
From i = 2 it follows that
P\ _ [ 2
P22 1
S0
v (1 2
P = ( 11

Given ug, = PTug, we have

we=(11)(7)=05)

The next question we address is how does the matrix A change with a
change of basis. Assuming the matrix A is defined w.r.t. B;, what is the
representation A’ for this matrix w.r.t. the new basis Bs.

Let’s first look at the action of the linear transformation A w.r.t. the basis
Bl, i.e.,

z = Ax

Both z and x are coordinates w.r.t. By. If we let z’ and x’ be the coordinates
of z and x w.r.t. Bs, respectively, then there exists a matrix M such that

z=Mz and x=Mx
So z = Az may be written Mz’ = AMx’ or
z' = M 'AMX
from which we conclude that

A =M1AM
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Thus z is the result of applying A to x in the first coordinate system and z’
is the result of applying A’ in the second coordinate system. In this case A
and A’ are said to be similar matrices.

Example 2.6. Given the bases as defined in Example 2.5 and that the map-

ping
1 2
a=(5 1)

is defined w.r.t. B;. What is the corresponding transformation w.r.t. B;? We

saw previously that
1 2
—1 _
wr-(1 1)

A':M—IAM:(‘l 6)

S0

0 3

The question arises naturally, is there a coordinate system such that the
action of a matrix is especially simple? The answer is yes for a large class of
well-defined matrices. Suppose that the n x n matrix has n linearly indepen-
dent eigenvectors. If these eigenvectors are chosen to be the columns of the
transformation matrix M then the new matrix is diagonal, i.e.,

M7 AM = diag (A1, ..., An)

where the )\; are the eigenvalues associated with the independent eigenvec-
tors. Note that if A = A7, i.e., A is a symmetric matrix, then A is always
diagonalizable. These ideas will be discussed further in Section 2.8.

2.3 OPERATIONS ON SUBSPACES

Given data sets lie initially within large vector spaces, it is important to be
able to decompose such spaces into smaller ones. In this section we further
develop our tools for decomposing patterns into especially useful subspaces.
One of the main ideas to be developed is that of the projection matrix, but
first, we examine the general problem of decomposing a vector space into the
sum of independent subspaces.

Definition 2.1. A subspace W of a vector space V is a subset of vectors
such that

o ifw,w' € W and a,b € R then aw + bw’ € W. In this case we say W
is closed.

o 0 €W, ie., every subspace must contain the zero vector.
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Proposition 2.2. Define the set of vectors W
W={w:w= Zaiv(i)}
i

The set W is a subspace. W is said to be spanned by the set of vectors {v(¥}.
Proof. Let w,w' € W sow =3, ¢;v() and w' = 3", civ(®. It follows that
w+w = Z(cl +Wwh ew
i
aw = Z(aci)v(i) eWw

and lastly
0=> ov ew.

2.3.1 Intersection of Subspaces

Proposition 2.3. If W, and W5 are both subspaces, then so is their inter-
section W1 N Was.

Proof. Let x,y e WinNWs,ie,xe W, Woandy € W1, Wo = ax+by € W,
and ax + by € Ws, in other words ax + by € Wi NW,. O

2.3.2 Addition of Subspaces

Let W7 and Wy be subspaces of a vector space V. The sum of these spaces is
defined to be the result of taking all possible combinations of the elements of
these two spaces.

Definition 2.2. The sum of the vector subspaces W1 and Wy is written W =
W1 + Wy and is defined to be the set

Wi+ Wy = {Wl +wo:wy € Wi, ws € WQ}
The sum of three or more subspaces is defined analogously.
Proposition 2.4. The sum of two subspaces is a subspace.

Proof. Let x,y € W, Le, x =w; + wo and y = w| + w}, where w;, w} € W,.
Then we have ax+ 8y = a(wi +w}) +F(wa +w5) = aw] + pwl € W +Ws.
O.

The fact that the addition of two subspaces is a subspace provides us with
a nice way to decompose a vector, i.e., if x € W and W = W; + W, we can
always write x = w; + wo where w; € W;. After a little bit of experimenting
with this decomposition it is clear that it is not unique. This ambiguity will
generally be undesirable but can be avoided by restricting the relationship
between W; and W5 as described below.
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2.3.3 Independence of Subspaces

To make the decomposition of a vector unique we require that the subspaces
be independent.

Definition 2.3. The subspaces Wi and Wy of V' are independent if
W1+ Wo = 0

implies
W1 = Wo = 0

where w1 € W1 and wo € Ws.
Independence ensures that the decomposition of V into subspaces is unique.

Proposition 2.5. If Wi, W, are independent subspaces and V = Wy + W,
w; € Wi, wo € Wa, then the decomposition of x € V given by

X = W1 + Wo
18 unique.
Proof. Let x = w{ + wj with each w; € W;. Then
x—x=0= (w1 —w}) + (wa — wj).
Since W7 and W, are independent we conclude that w; — w} = 0 or
w; =w; andws = wj

O

Proposition 2.6. If W1, W, are independent subspaces then
Wy NnW, = {0}.

Proof. Let w € W1 N W,. This implies that w € W, and w € W,. Since Wy
is a subspace —w € W,. Hence

w4+ (—w)=0.
Since W, and W5 are independent w = —w = 0.

Note that the converse is also true. See Problem 2.10.

2.3.4 Direct Sum Decompaositions

From above we have that the independence of subspaces and the statement
W1 N W, = {0} are equivalent. If either (equivalent) properties hold the



OPERATIONS ON SUBSPACES 29

decomposition is unique and we distinguish the decomposition from the mere
addition of subspaces by writing

W=W, oW,

as the direct sum decomposition of W.
These ideas extend directly to the case of more than two subspaces. We
cite the following important lemma from [19], p209.

Lemma 2.1. Let V be a finite dimensional vector space. Let Wq,... Wy be
subspaces of V such that W = W1 + - - + W},. The following are equivalent:

o Wy,...,Wy are independent.
o Foreachyj,2<j<k,
Wjﬁ{W1 +"'+Wj_1}: {0}

e If B; is a basis for W; then the collection of bases {By, ..., By} is a basis
for W.

Proof. See [19].
Furthermore, if any (and therefore all) of the above hold then the subspaces
W; form a direct sum decomposition of W which we write

V=W oWy ---&W,;.

2.3.5 Orthogonal Direct Sum Decompositions.

A special but important instance of independent subspaces is orthogonal sub-
spaces.

Definition 2.4. A vector v € V is said to be orthogonal to a subspace W CV
if v is orthogonal to every w € W. Two subspaces W1 and Wy are said to
be orthogonal subspaces if for every wiy € Wy and wo € Wy the inner product
satisifies (wy,wq) = 0.

Given a subspace W of the vector space V', the space of all vectors orthog-
onal to W in V is called the orthogonal complement of W written W+,

Example 2.7. Let V = R3. Then the z-axis and y-axis are orthogonal sub-
spaces of R®. Also, the orthogonal complement of the zy-plane is the z—
axis.

An important special case of the direct sum decomposition occurs when
the subspaces are orthogonal. In this situation we distinguish the direct sum
notation by writing ®.

Example 2.8. Let V be an n-dimensional vector space with o.n. basis vec-
tors (v, v® ... v If W; = Span(v()) then we can write

V =W,6Wad- - &W,
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2.4 IMPORTANT SUBSPACES
In this section we describe the basic subspaces which be of use in what follows.
It is implicit, unless otherwise state, that A is an m X n matrix.

Definition 2.5. The range of A, denoted R(A), is the set of all vectors v
such that v = Ax i.e.,

R(A)={veR™ : v=Ax for somex € R"}
The expression v = Ax may be rewritten
v=[aWa®|...]aMx
=zaM + 25a® + ... + 3,2

This expression reveals the fact that v lies in the span of the columns of A,
ie.,
v E Span{a(l) ,oo.,at™ }.

Hence the range of A, R(A), is also referred to as the column space of A.

Definition 2.6. The null space of A, denoted N'(A), is the set of all vectors
y such that Ay = 0, i.e.,

NA) ={y €eR* : Ay =0}

Definition 2.7. The row space of A, denoted R(AT), is the set of all vectors
x such that x = ATv, i.e.,

R(AT) = {x € R" : x = ATv for some v € R™}

Definition 2.8. The left null space of A, N'(AT) is the set of all vectors v
such that ATv =0, i.e.,

NAY={veR™ : ATv=0}
Example 2.9. Find the range R(A) and null space N'(A4) of the matrix
A=uv’
To determine the range, rewrite the matrix
A =[viu]- - |vpu]
from which it is apparent that
R(A) ={ou:a e R}
Let x be an element of the null space, i.e.,

u(vi'x) =0
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From the manner in which this is written we see that, since u # 0,
N(A) ={x:vI'x=0}
Proposition 2.7. For any m X n matriz
N(4) L R(AT)
i.e., they are orthogonal subspaces of R" and
N(ATY L R(A)
i.e., they are orthogonal subspaces of R™.

The range, or column space of an m x n matrix A determines a subspace of
R™. The number of independent vectors in this subspace, i.e., its dimension,
is a very special and useful quantity for a matrix known as its rank.

Definition 2.9. The column rank (row rank) of a matriz is defined as the
number of independent columns (rows) in the column space R(A) ( row space

R(ATY ).
Proposition 2.8. The row rank is equal to the column rank. In summary,
r = dimR(A4) = dimR(AT)

Example 2.10. The matrix A = uv” has rank r = 1. The following propo-
sitions in this section are quite useful. They follow easily from the singular
value decomposition discussed in Section 2.9.

Proposition 2.9. If A is an m X n matriz, then
r < min(m,n)
We also have the very useful counting rule:
Proposition 2.10. Let A be an m x n matriz. It follows
r+dimN(4) =n (2.2)

Proposition 2.11. Let A be a real m x n matriz. Let rankA = rank AT =
rank AAT = rankAT A.

2.5 PROJECTION MATRICES

The direct sum provides a framework within which a vector space may be
systematically split into subspaces that provide a unique expression for the
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mnR(P) mnR(P)

Fig. 2.1 Left: A nonorthogonal, or oblique projection. Right: an orthogonal projec-
tion.

decomposition of any vector in the space. In this Section we describe a pro-
cedure for constructing a mapping which takes a vector and executes this
decomposition. Specifically, we refer to a matrix P as a projection matriz if

P2 =P.

Such matrices are also said to be idempotent. See Figure 2.1 which depicts
the possible actions of a projection matrix.

Example 2.11. It is easy to verify that the matrix

(1)

is a projection matrix. Note that it has rank 1 and that

(It

R(P):{a(;):aeR}

2.5.1 Invariant Subspaces

Definition 2.10. Let V be a vector space and L a linear operator on V. If
W is a subspace of V, we say W is invariant under L if for each w € W we
have Lw € W. In other words L(W) C W.

If W, and W, are subspaces invariant under A (where A is the matrix that
corresponds to the linear operator L) with V = W; ® Wy then we say A is
reduced or decomposed by W, and Ws.

We now show that a projection matrix naturally produces an invariant
subspace.
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Proposition 2.12.
veR(P) if and only if Pv=v

Proof. First assume v € R(P), i.e., v = Px for some x € R*. So Pv = P?x but
P?x = Px = v from which we conclude that Pv = v. To prove the converse,
assume that Pv = v. It follows directly that v € R(P). O

2.5.1.1 The Nullspace of P. What is N'(P)? A member of this set is readily
seen to be the difference between the the vector v being projected and its
projection Pv. If v =r + [Pv then we have

r=v-—Pv (2.3)
Projecting this vector r gives
Pr=Pv-P2v=0

So we conclude that r € A'(IP) and that the null space is unvariant under IP.

2.5.1.2 The Complementary Projection I — P. Factoring the projection ma-
trix in equation (2.3) produces
r=(I-P)v (2.4)
8o we see the natural decomposition
v=Pv+ (I -P)v (2.5)
Note that given P is a projection matrix it follows that so is I — [P since
(I —P)? =1-2P+P?
=I-2P+DP
=I-P
It follows that equation (2.5) represents a decomposition into invariant sub-

spaces. Additionaly, we may employ the notation Q = I — IP to represent the
projection matrix onto the null space.

Proposition 2.13.

R(Q) = N(P) (2.6)
and

R(P) =N(Q (2.7)
Proof. We prove the first statement. First let v € R(Q) and show v € N (P).
Given v = (I — P)x for some x it follows Pv = (P — P)z = 0 so v € N (P) for
an arbitrary v so we conclude R(Q) C N(P). Now let v € N(P) and show
v e R(Q). If Pv = 0, then (I — P)v = v so v € R(Q). Again, since v is
arbitrary, it follows that A (P) C R(Q). These results, taken together, prove

the result that R(Q) = M (P). The second statement can be demonstrated in
a similar faghion. O
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2.5.1.3 Independence

Proposition 2.14.
R(P)NN(P) = {0} (2.8)

Proof. From equation (2.6) we know N (P) = R(I — P). Let v € R(I — P),
i.e., v= (I — P)x for some x. So Pv = 0. But, by proposition 2.12, v € R(P)
if and only if Pv = v, hence we conclude v = 0 is the only element common
to both R(P) and N'(P). O

From these results it is now clear that a projection matrix separates a space
into the sum of two independent subspaces. We recall that this is exactly the
direct sum decomposition so we may write

V =R(P) ® N (P)
It is also interesting to note that for every splitting
V=W oW,

there exists a projection operator P such that

and

For details see [42].

2.6 ORTHOGONAL PROJECTION MATRICES

We have seen that projection matrices permit the decomposition of a space
into subspaces. The most useful application of this idea is when the resulting
subspaces are orthogonal, i.e., when the projection matrix and its complement
produce orthogonal vectors. We begin with a basic definition.

Definition 2.11. Let x = wi + we and wi; € Wi, wo € Wy with W1 1LWs.
The vector w1 is called the orthogonal projection of x onto Wy and wo is
called the orthogonal projection of x onto Ws.

Associated with an orthogonal projection is the operator, which we now
refer to as an orthogonal projection matriz, which performs the projection
described in the definition above. (Note that the orthogonal projection matrix
should not be confused with an orthogonal matrix.)

Definition 2.12. If the subspaces R(P) and N (P) are orthogonal, then the
projection matriz P is said to be an orthogonal projection matriz.
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Fig. 2.2 The best approximation to a point x is the orthogonal projection wi. Every
other projection w] has a larger residual w5.

If P is an orthogonal projection matrix, then we may write the direct sum
decomposition of the space as

V = R(P)ON (P).

Why are orthogonal projection matrices to be preferred over plain projec-
tion matrices?

2.6.1 Best Approximation Theorem

Suppose W7 and W5 are subspaces of an inner product space V s.t. V =W+
W, and let x € V be an arbitrary vector. The notion of best approzimation
to x by a vector in W; is made explicit as follows:

Definition 2.13. A best approximation to x by vectors in Wy is a vector
wy, € W1 such that
% — w1l < [lx — wi]|

for all w) € Wy.

In other words, for each x € V, we seek a vector w; € W; such that
[|x — wi|| is a minimum.

Theorem 2.1. The Projection Theorem. Of all decompositions of the
form
X =w] +w)
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with wi € W1, the orthogonal projection provides the best approzimation to
x. Equivalently, the orthogonal projection minimizes ||wj||.

Proof. We rewrite

I = whl? = flx = wy + w1 — wi
=(X—-W;+W] —W[,X— W] +W —W])
=(x—w,L,x—w+w — W)+ (W —w,x— W + W —W])
=(x—wp,x—wi)+ (W — W, w; —W]) +2(x — wi,w —W])
= [lx = will* + llwi — wi|* + 2(x — w1, w1 — W)
Observe that
X—w; =ws €W

and that wy — wi € Wi. If W, L Wy, i.e., the projection is orthogonal, then
it follows that

(x —wy,w; —w))=0
From this we have

l[x = wil* > [lx — wi®
in other words, wi = w; is a best approzimation to x. Note that ||wi|| =
||x —w1|| is a minimum for w} and since wy = x — w1 it follows that wj = wa
in the case of the best approximation.

Furthermore, it can be shown that this best approximation is unique, see

[19] for details. In addition, these results may be extended to the general

setting of metric spaces [35].
O

Note that this theorem says nothing about how to select Wy itself. In other
words, given a fixed W, the theorem indicates that the orthogonal projection
will minimize the error for each vector in V. However, selecting W; for a given
data set is an entirely different and interesting issue which will be pursued in
the sequel.

2.6.2 Criterion for Orthogonal Projections
Proposition 2.15. If
P =P" (2.9)
then the projection matrix is orthogonal.
Proof. Let P =PT. Px € R(P) and (I — P)x € N'(P).
Px)T (1 - P)x = x"PT(I - P)x
=xT(P -P?x
=0
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O

The converse of the above proposition is also true, i.e., if IP is an orthogonal
projection matrix, then P = P7.

Example 2.12. It is easy to verify that the matrix

~(11)

is an orthogonal projection matrix. Note that it has rank 1 and that

'mm:a(})

Example 2.13. Every matrix of the form vv
matrix if ||v|| = 1.

T is an orthogonal projection

(vvh)? = (vwwh)(vvT)
=v(vIiv)v?
=vv’

Note that this projection matrix is rank one and that R(vv?l) = Span(v).
From this example we observe that any vector u may be orthogonally
projected onto a given vector v by defining

T

Nu=v(vTu)

Pyu = (vv
Also, the orthogonal complement, or residual r is then found to be
r=PL=(I-P,)u
=u— (viu)v

We can leverage our ability to project u onto a single vector v into a method
for computing the orthogonal projection of u € R™ onto a subspace W. To
begin, we assume that we have an o.n. basis for the space W consisting of
the vectors {w»,... , w¥)}. We may view each of the w(¥) as spanning a
one-dimensional subspace W;. Clearly, each of these spaces is orthogonal, i.e.,

Wi LW, i#3j
Furthermore, the sum of these subspaces spans a k-dimensional subspace
W=W,+---+W;
From our previous deliberations,

W=Wd...60W
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In other words, the o.n. basis induces a direct sum decomposition of the
subspace W. A projection onto W may be constructed from projections onto
the individual supspaces.

The projection of u onto the i’th subspace space is given by

Pyohu= w(i)w(i)Tu

If we write P; = P,5), then the projection matrix onto W is given by

k k
P=Y P, =Y wiw®" (2.10)
i=1 i=1
Given the matrix M = [w(l|...|w(®)], it follows
P=MMT. (2.11)

2.6.3 Orthogonalization

In the course of the above computations we assumed that the subspace on
which we were to project was equipped with an orthonormal basis. We now
review the Gram-Schmidt procedure for computing an o.n. basis starting from
a set of vectors {v(9}7 . Take as the first element

)
om__V
T O]

(2.12)

The second element of this set is constructed using the same 2-to-1-dimensional
projection technique discussed previously. The projection of v(?) onto utV) is
given by

P oyv® = (uWu® )y

so the vector pointing orthogonally to u(!) is the residual
r= (I - ]Pu(1))V(2)
Simplifying and normalizing this vector gives

v® — (@O v®)u®

u® — "
||v(2) — (u(l) v(2))u(1)||

(2.13)

Proceeding in the same fashion with the j’th direction we have
v — 23;11 (v, uld)u®

V0 — S (v, u@)u)|

Note that if the added direction v{¥) is dependent on the previous vectors
then u = 0.
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Example 2.14. Consider the matrix

Find the orthogonal projection matrix which takes an element of R* onto
R(A). Define a) = (1010)” and a® = (1001)”. Given the 3rd column is
a multiple of the first R(A) = Span(a("),a(?). To find the projection matrix
P which maps an element of R* onto R(A) we first determine an orthonormal
basis for R(A). Clearly the columns a() and a® are linearly independent
but they are not orthogonal. Using the Gram-Schmidt procedure we obtain

uW=—(1010)"

sl

and 1
u(2):76(1 0 -1 2)"

The projection matrix onto u(?) is given by

1010
_aWT 110000
P =u"a 1010
0000
and the projection matrix onto u(® is given by
1 0 -1 2
—a@y@T 1] 00 0 0
Po=uPu™ =51 -1 0 1 -2
2 0 -2 4
From this we have the projection matrix
2 0 1 1
110 0 0 0
P=P+P; = 3l 10 2 -1
1 0 -1 2

2.7 APPLICATION: THE NOVELTY FILTER

We have seen how projection matrix may be constructed from an arbitrary
collection of vectors which span a vector subspace. Now we consider a direct
application of these ideas to a pattern processing problem.
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Given a set of data set consisting of an ensemble of pattern vectors, e.g.,
digital images of human faces, we generate associated column vectors by con-
catenating the rows. In other words, each pattern is available as an n-tuple.
Further, let’s assume that we are given a large number k of these images but
that k < n, probably much less. Thus we have an ensemble {v(¥}%_, where
v() € R for every i.

We would like to determine a projection matrix which takes a new pattern
and splits it into two components: the first component is the portion of the
data which resides in the subspace spanned by the original patterns, or train-
ing set; the second component is orthogonal to the training and represents
the portion of the data which is nowvel.

With this in mind we define W as the basis in which all the training patterns
lie and that dim W = m < k with equality if the original patterns are inde-
pendent. To determine an orthonormal basis for W the the Gram-Schmidt
procedure is applied to the training data. This operation will take us from
the set of generally non-orthogonal and possibly linearly dependent pattern
vectors to an orthonormal basis for W, which we write as the set {u®}7 .
In summary,

W = Span(vV, ..., v®) = Span(u®, ..., ul™).

Next, the orthogonal projection matrix [P is computed via equation (2.10),
as well as the complementary orthogonal projection matrix I — P. The pro-
jection of a pattern produces a point in R™

P:R*" =W
x~Px=weR"

and the residual sits in R*~™
I-P:R* > W+
x~ (I-P)x =wt e R"™,
As before this is an orthogonal decomposition of

X=W+ wt.
Again, following Kohonon [28], we refer to this orthogonal component as the
novelty of the pattern, and the general procedure of separating the novelty of
a pattern from the non-novel component as the novelty filter. In the face data
example, novelty might correspond to a new face, or possibly a new pose of a
training face.

In practice, problems may arise which make the interpretation of the nov-
elty of a pattern more challenging. Firstly, if the original set of patterns does
not include samples of all possible normal patterns, or at least enough to span
this set, then the subspace m will be too small and components of a pattern
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z € R

w € R™ wl € Rr—™

Fig. 23 The Novelty Filter Decomposition.

may appear novel only because the set of stored patterns is too small. In
addition, the effect of noise on such a subspace representation can be signifi-
cant. The reader is referred to Kohonen for more details and applications of
the novelty filter [28].

2.8 EIGENVALUES AND EIGENVECTORS

Let A be an n X n matrix. A non-zero vector v € R™ is called an eigenvector
and X its associated eigenvalue if

Av =)v (2.14)

It follows that the only non-trivial solutions to equation (2.14) are obtained
when

p(A) =det(A-A)=0 (2.15)

The determinanant may be expanded to produced the characteristic polyno-
mial

p) = (A=A A =A@ (A = a) (2.16)
It is certainly possible that some of the A(® are the same. The number of

times a particular eigenvalue is repeated in equation (2.16) is referred to as
its algebraic multiplicity.

Example 2.15. The matrix

1 -6 1
A= 0 -3 -15
0 0 =3
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has the characteristic polynomial
p(A) = (A =1)(A+3)

from which we conclude that A = 1 is and eigenvalue with (algebraic) multi-
plicity 1 and A = —3 is and eigenvalue with (algebraic) multiplicity 2.

Proposition 2.16. Every eigenvalue has associated with it at least one eigen-
vector.

Proof. Given det(A—XI)=0
rank(A — M) <n
from which it follows, using equation (2.2), that
dimN(A - XI) > 1.
The elements of this nontrivial space are eigenvectors. O

Proposition 2.17. The eigenvectors associated with the eigenvalue A, and
the zero wvector, form a vector subspace which we refer to as the eigenspace
E,.

Proof. If u,v € E) then Au = Au and Av = Av. Let w = au + gv.
A(au + fv) = aAu + SAv
= Aau + gv)
from which we may conclude that w € E). Recall every subspace must
contain the zero vector, yet zero is not an eigenvector. O

The eigenspace E) is an invariant subspace, i.e., e € E) implies Ae € FE.

Definition 2.14. The dimension of the eigenspace, i.e., dim(E)), is the num-
ber of independent eigenvectors associated with A. This number is also referred
to as the geometric multiplicity of A.

Proposition 2.18. The algebraic multiplicity of X\ is greater or equal to the
geometric multiplicity.

See [42] for a proof.

An eigenvalue whose geometric multiplicity is less than its algebraic mul-
tiplicity is said to be defective. An n x n matrix which has no defective
eigenvalues must have n independent eigenvectors.

Theorem 2.2. Let A be an n X n matriz with n independent eigenvectors
{(v) v ... v} Define the matriz V = [v(V|. .. |v(M]. Then

V1AV =A
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where A = diag( ANV, ... A(M),
Proof. We will show that AV = VA.

AV = AV .. |v(™)
= [AvD]- .. |Av(™]
= AWy Ay
=VA

Note that the independence of the vectors of V is requires so that V! exists.
O

As a consequence of this theorem, a matrix which has n-independent eigen-
vectors is said to be diagonalizable.

Proposition 2.19. Figenvectors associated with distinct eigenvalues are lin-
early independent.

Proposition 2.20. An n X n matriz with n distinct eigenvalues
)\(1) > )\(2) > eee > )\(")
is diagonalizable.

This follows directly from the fact that the eigenvectors must be indepen-
dent.
If the eigenbasis is o.n., then the square matrix V is said to be orthogonal!,
ie.,
viv =1

Given V is invertible, it follows that V'V = I also implies that V—1 = V7T
and VVT = I. Orthogonal transformations are especially important given
they preserve distances in the 2-norm. If V' is an orthogonal matrix we have

Vx| = (Vx)"Vx
=x"VTvx
=x"x

= 1xII3
Given that the distances are preserved we view the action of an orthogonal

matrix as a rotation of the space. Note that this is a special property of the
2-norm.

LA matrix is orthogonal simply if its columns are o.n., there is no requirement that they be
eigenvectors.
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Definition 2.15. We refer to A as being orthogonally diagonalizable if
VITAV = A

Theorem 2.3. Spectral Theorem: The matriz A is symmetric iff there is a
real orthogonal matriz V s.t.

VTAV = A

For a proof of this theorem the reader is referred to [20].
The equation VT AV = A may be rewritten as

A=VAVT = 3" A0y y®T

This representation expresses a square matrix in terms of a sum of rank one
matrices.

The proof of the theorem relies on two basic facts which are proved in
elementary linear algebra courses. We bundle them in a single proposition.

Proposition 2.21. Let A be an n X n symmetric matriz.
o The eigenvalues of A are real.
o If XD £ X&) then the eigenvectors v and v\ are orthogonal.
o A is not defective, i.e., it has n independent eigenvectors.

Thus, given an n x n symmetric matrix A, an o.n. basis for R® may be
constructed from its eigenvectors. Eigenvalues of algebraic multiplicity one
have orthogonal eigenvectors; eigenvectors which correspond to an eigenvalue
with multiplicity greater than one may be orthogonalized by applying the
Gram-Schmidt procedure. Note that for symmetric matrices the algebraic
and geometric multiplicity of any eigenvalue must always be the same.

Change of Basis Revisited |
Let A be an n X n real matrix. The linear system
Ax=Db

may be rewritten in an especially simple form if A is diagonalizable. Assume
the matrix V diagonalizes A, i.e., A = V"'AV. Introduce the change of
coordinates

x=Vx b=VDb

Then Ax = b becomes AVx' = Vb/ or

Ax' =V
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2.9 THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) extends the spectral theorem for
rectangular matrices. We shall see in Chapter 3 that it also provides the
necessary mathematics for understanding an important class of optimal di-
mensionality reducing mappings. We shall begin with a statement of the
decomposition theorem and in the course of proving it, we will establish sev-
eral important facts concerning the SVD. The early history of the SVD is
recounted in [39]. A detailed account of the theory is available in [21].

Theorem 2.4. Singular Value Decomposition (SVD). Let A be a real m x n
matriz and | = min{m,n}. There exist orthogonal matrices U and V such
that

A=UxvT (2.17)

where U € R™*™ V. € RV".% = diaglcW,...,c®) € R™*" gnd ¥ =
diag(cM,...,0®). Futhermore, the entries of ¥ are ordered according to

oM > >...>s0 >0.

The case for A being a complex matrix is analogous and is treated, e.g., in
[42]. Without loss of generality we may assume that m > n in what follows.
To establish this decomposition we first rewrite it using

AV =UX

The i’th column of this relationghip is

Av) = (D) (2.18)
where i = 1,...,[. Alternatively,

AT =vy?

The i’th column of this relationghip is

ATu® = 50y (2.19)
where again ¢ = 1,...,I. The solutions of these equations occur in triples

{o®, u® v()} consisting of the singular values ¢(?, left-singular vectors u®
and the right-singular vectors v(&.

Proposition 2.22. The left-singular vectors of A are eigenvectors of AAT
and the associated eigenvalues correspond to the singular values squared.

ATu=ogv
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AATu = gAv
AATu = ¢%u

and hence, VA = 0.
Note that the size of this eigenvector problem is m X m.

Proposition 2.23. The left-singular vectors of A, augmented by the eigen-
vectors in the null-space AAT, form an o.n. basis for R™.

In other words,

U= [u(1)| e |u(n)|u(n+1)| e |u(m)]

where 7 = [u®]---[u(] is the submatrix whose columns are simultane-
ously left-singular vectors of A and eigenvectors of AA”, while the remaining
u(™t|... Jul™] are eigenvectors in the nullspace of AA”.

An analogous proposition is true for the right-singlar vectors.

Proposition 2.24. The right-singular vectors of A are the eigenvectors of
AT A and the associated eigenvalues correspond to the singular values squared.

Av = ou
ATAv =gATu
AT Av = o2v
Note that this is a n X n eigenvector problem. However, since we are

assuming n < m, all of the eigenvectors in this instance are also singular
vectors.

Proposition 2.25. The right-singular vectors of A form an o.n. basis for
R™.

In other words,
V=[O |v("]

Proposition 2.26. If rank(A) = r, then there are r non-zero singular values,
i.e.,
o) >...> 6 5 gl =

This result may be established in a variety of ways.

e The rank of a diagonal matrix is the number of non-zero diagonal el-
ements. Furthermore, orthogonal transformations do not change the
number of vectors that make up a basis. In view of A = ULV, it
follows that if rank(X¥) = r then rank(A4) =r.

e The column space has r dimensions and the left-singular vectors corre-
sponding to non-zero singular vectors form a basis for this space.



THE SINGULAR VALUE DECOMPOSITION 47

e A counting argument using equation (2.24) establishes the size of the
nullspace, and hence rank of A. See exercise 2.24.

We are now in a position to provide a constructive proof of the SVD based
on the existence of the left and right singular vectors. Again, we assume
m > n, so there are n singular vector triplets {o(?, u® v}, First we will
show that

AV = AV .. |v(™)
= [AvD]... |Av(™)]
= [oeWvD]...|gMy()
=U%
It is sometimes convenient to rewrite this decomposition. For example, if
m > n then we may write

A=UxvT (2.20)

where U € R™*" (i.e., U with the last m—n columns deleted), and 3 = R**".
This version of the SVD is referred to as the thin SVD [15], or the reduced
SVD [42].

The full SVD follows by including the eigenvectors {u(+1) ... u(™}. In
this case we write

o 0
1 1 0 g'(n)
AV = [uD]. - Ju D] . u™) 0 0 (2.21)
0 --- 0

The singular value decomposition provides bases for the fundamental sub-
spaces. We allow the matrix A to be rank deficient, i.e., rank r < [ =
min{m,n}.

Proposition 2.27. Let A be an m x n matriz of rank r. Then:

1. The r left-singular vectors {u(l),...,u(r)} corresponding to non-zero
singular values form a basis for R(A).

2. The m—r vectors {u(™tV) ... u(™} (the first n—r are left-singular vec-
tors) corresponding to eigenvectors in N'(AAT) form a basis for N'(AT).

3. Ther right-singular vectors of A {vV) ... v} form a basis for R(AT).
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4. The n —r right-singular vectors of A {v("TV ... v(™} form a basis for

N(A).

These bases may be employed to form direct sum decompositions of R™
and R” as
R™ = R(A)DN(AT)

and
R" = R(AT)ON (A).

Furthermore, we may conclude that
r+dim N (AT) =m

and
r + dim N (4) = n.

Example 2.16. Compute the SVD of the data matrix
11
A= 01
10

First, we compute the right-singular vectors and singular values of A. These
are exactly the eigenvectors and the square roots of the eigenvalues of AT A,

(1)
which has the characteristic equation
pA)=A-1D(A=-3)=0
Hence ¢ = vA® = /3 has the right-singular vector (eigenvector)
v = \/%(1, 7T
and 0® = v/A®) = 1 has the right singular vector (eigenvector)
1

@ = —_(-1,1)7
v ﬁ( 1)

So the matrix of right singular vectors is

1 _1
v={ ¥
vz V2
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The 2 left-singular vectors are given by the eigenvectors of
2 11
AAT=[1 1 0
1 01
corresponding to the 2 largest eigenvalues. The characteristic equation for
AAT is given by
pA) =A1-XN(A-3)=0

Now o1 (seen to be the same as above, as expected) has the left-singular
vector

1
1) _ T
u/ =—(2,1,1

and ¢ = VA®) =1 has the left singular vector

1
@ =_—(0,1,-1)7
u ﬁ(,, )

The eigenvalue A®®) = 0 corresponds to the eigenvector u® = 13 (1,-1,-1)7.

S

This last vector completes the basis for R3.

2/v/6 0 1/V3
U= 1/vV6 1/4/2 -1/V/3
1/v/6 -1/v/2 —1/v/3

So the full SVD decomposition is given by

11 v3 0
01 |= 01(
10 - 0 0

S =
[

SFS-S-
sk
SIS
N—

SHSIFSle

and the reduced SVD decomposition is given by

200

V2

— O

1
1| =
0

shsls
S-S
Sk
S————

2.9.1 Reduction and Compression of Matrices

The SVD may be used to provide an efficient representation of a rank r matrix.
Without loss of information it decomposes, or reduces, the matrix into a sum
of r rank one matrices. Specifically, given that the matrix A has rank r it
follows from equation (2.17) that

A=Y cDuDyiT (2.22)

=1
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To see this, it is useful to define the matrices ¥; = diag(¢(,0,...,0), Ty =
diag(0,0(?,0...,0), and so on. It follows

A=UxvT
=UE +2s+--+5)V7T
U, VI +Us, vl +... 4+ U, VT
— e WuOvOT L ;@a@y@T L O™
The SVD provides not only an efficient means to represent a matrix without
loss, it also provides an optimal method for appoximating a matrix by another

matrix of reduced rank. Define a rank k < r approximation to the matrix A
as

k
A= "ol oMo (2.23)

=1

Proposition 2.28.
|4 — Aglls = o+

Proof.
r k
A-4,=Y cDu@v® T _ 3 D u@y®T
j=1 j=1
=3 OMOMON
j=k+1
=yux'v?
where
0
0

o (k1)

EI
o™

It follows that
A — Aglla = ISVl
= 1=l
— g(k+1)
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since 2-norms are invariant under multiplication by orthogonal matrices.
O

The SVD provides the best reduced rank approximation to a given matrix
A. Any matrix, say B, which is not the rank k& SVD approximation has greater
error.

Theorem 2.5.
Ap =arg min ||A— B|2
rank(B)=k

For a proof of this important theorem see [15].

Example 2.17. A rank one approximation to the matrix

11
A= 01 =
10

D[St
[N ST

This approximation is calculated by

Ar 4y = cWu®y®T

2.9.2 Applications of the SVD

The SVD provides a powerful means to approximate a matrix with minimum
error. In addition, as we have already seen, it provides a means to explore
the properties of these matrices. We continue with a few more applications.

Proposition 2.29. Let A be an mxn matriz of rankr. Thenr = rank(AAT) =
rank(AT A).

This follows directly from the correspondence of the non-zero singular val-
ues with the non-zero eigenvalues: they are exactly the same in number.

The SVD permits an nice geometric interpretation of the application of a
matrix to the hypersphere ||x||s = 1.

Ax =UXVTx

The multiplication term y = VT'x just rotates the hypersphere so ||y|| = 1.
The second multiplication z = Xy maps the hypersphere a hyperellipse with
semi-axes o9 and the final multiplication Uz serves to rotate the hypersphere
out of the standard basis.

Proposition 2.30. The singular values of the m X n matrz A correspond to
the lengths of the semi-azes of the hyper-ellipsoid

{Ax : [jx|l = 1}
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Change of Basis Revisited Il

Consider again the problem
Ax=Db

where A € R™*" x € R" and b € R™. We may introduce new coordinate
systems for the domain and range of A using the SVD. Let

b =Ub'
and
x=Vx'
Then Ax = b becomes
Ub' = AVX
b’ =UTAVY

Since UT AV = ¥ by the SVD we have
b =3¥x

This shows that every linear problem is diagonal in the coordinate system
provided by the SVD!

2.9.3 Computation of the SVD

We have shown that the singular values may be computed by forming the
covariance matrices AA”T or AT A and computing their eigenvalues. While
this approach is suitable for many applications, it is numerically unstable
[42]. An alternative to forming the covariance matrices is to calculate the left
and right singular vectors directly from the system

0 A\ /[ u® o [ u®
(3 3)($)-o(2) e

If the matrix A is perturbed by a small amount then it can be shown that the
perturbed singular values () satisfy

6@ — @] = O(el|All)

when computed using equation (2.24); € is the machine precision. On the other
hand, if the singular values are obtained by first computing the eigenvalues of
the smaller of the two matrices AT A or AAT then

6@ — @] = O(el|Al* /o)

This squaring of norm, followed by the division of the singular value becomes
significant especially for the smaller singular values. See [42] for a complete
discussion.
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Example 2.18. To demonstrate the mechanics of the system calculation we
revisit Example 2.16. Now we have to compute the eigenvectors and eigen-
values of

00011
000 01
(;T 13)- 00010
1 01 00
110 00
The eigenvectors are
1 1 1
o 0
N
2 2 2 2
0 G G e S
2 2 2 2

where the columns are ordered from left-to-right via the singular values o =
—/3,v3,-1,1,0. The eigenvectors now contain the right and left singular
vectors as components, i.e., each column is of the form (u®,v(®). It is in-
teresting to note that all the singular values +o(? are present and that the
associated eigenvectors are (u(®, £v(9). For more details see Problem 2.23.
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Problems

2.1 Show that the transformation

1 1 + x2
T o+ T
T( 2 ): 2 3
T3 T3 + T4
T4 T4+ 21

is linear. Determine the matrix which represents this transformation.
2.2 Using the relationship v = Y pi; w9 show that y = PTx and
deduce that (PT)~! = Q7 i.e., the coordinate transformation is invertible.

2.3 Consider the vector v whose coordinates w.r.t. the basis B; defined in
Example 2.6 are (3,5). What are the coordinates of v w.r.t. Ba?

2.4 Let the basis B; be the standard basis, i.e., eV = (10)7,e™ = (01)7
and the basis By be given by the two vectors v( = (11)7,v(? = (=11)T.
Given ug, = (11)7 find ug,.

2.5 Let B; be the standard basis and {w()} be the vectors which define B,.
Given ug, = PTug, show P” = W' where W = [w(l)|...|w(™)].

2.6 Let the linear mapping L correspond to multiplication by the matrix A

1 2
4=(a3)
which is given w.r.t. the basis B; made up of the vectors v() = (11)7 and
v(® = (1 —1)T. Find the matrix A’ which corresponds to the same mapping

L but now w.r.t. the basis By made up of the vectors w() = (10)7 and
w® = (12)T.

2.7 Define the union of two subspaces. Show that it is generally not a
subspace.

2.8 Let W; and W5 be vector subspaces and W = W; + W,. Show, by
giving an example, that the decomposition of a vector x € W is not unique,
ie.,

X =W +Ws = W] + W}

where w; # Wi, wo # wj, and wi,w| € Wp, wo, wh € Ws.

2.9 Let W be a subspace of the vector space V and let W, and Wy be
subspaces of W s.t. W =Wy + W, and Wy N Wy = {0}. Show directly that
any x € W can be uniquely decomposed as

X = W1 + Wo

where wy, € W; and ws € Ws.
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2.10 Prove that if Wy N We = {0}, then W; and W, are independent sub-
spaces.

2.11 Consider the statements:
e Two independent subspaces must be orthogonal.
¢ Two orthogonal subspaces must be independent.
In each case, either prove or provide a counter example.
2.12 Prove that the column space of a matrix is a subspace.

2.13 Are perpendicular planes orthogonal? Are they independent? Either
prove, or provide vectors which are either not orthogonal or independent.

2.14 Find the row space R(AT) and left null space N'(AT) for the matrix

A=uvT.

2.15 Show that in general,

T
vv
Py = —_
vlv
and r
vv
Pt=1—- —
v vlv
2.16 Let V =R3 and
1 -1 0
let u® = 2 | and u® = 0 andletx=| 2
0 1 1

and define W; = Span(u(¥, u?).
Find the orthogonal projection of x onto W;. Also find the projection
matrix [P associated with this mapping.

2.17 If P is an orthogonal projection matrix show that I — [P is also an
orthogonal projection matrix.

2.18 Are distances preserved by orthogonal transformations in the 1-norm?
Recall
n
[l = lail.
i=1

2.19 Let G € R™™"™ not be an orthogonal matrix. What is the closest
orthogonal matrix to G in the 2-norm?

2.20 The full SVD is written
A=UxvT
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and if m > n the reduced SVD is written
A=0UsVT
Show that U and V are orthogonal matrices while the reduced matrices U , by
are not.
2.21 Show that ||Av(?||y = ¢ and interpret geometrically.
2.22 Determine the SVD of the data matrix

-2 -1 1

0 -1 0

A= -1 1 2
1 -1 1

and compute the rank one, two and three approximations to A.

2.23 Show that if ( u® v® )T is an eigenvector corresponding to eigen-

value o of

then ( uld v )T is an eigenvector corresponding to eigenvalue —o

2.24 Let the rank of A be r. Consider the eigenvector system in the previous
problem.

o Show that this is a symmetric eigenvector problem.

¢ How many independent eigenvectors are there of the form
u
v

¢ How many eigenvectors of the type

(5) = (%)

Hint: What is the geometric multiplicity of the eigenvalue A = 0 for the
matrices A and AT?

¢ Given that the singular values occur in pairs +o, determine the number
of positive singular values for A.

2.25 The SVD for the matrix

A=

—_ O
[ QR
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is provided in Example 2.16. Using the computed decomposition A = ULV T,
describe the action of the matrix A on the unit circle. Specifically identify
the image of the unit vectors

(1 1) and —(1 -1)7

1
V2 V2






