Appendix B
Linear Algebra

B.1 VECTOR SPACES

In addition to constructing laws of composition we need our operations to
be well behaved. Sets with this additional mathematical structure are vector
spaces.

Definition B.1. A real vector space V is a collection of elements of objects
with two laws of composition. The first defines vector addition

VxV =+ V
(v,w) ~ v4+w

and the second defines scalar multiplication.

RxV = V
(,v) ~ ¢v

In addition the following properties must be satisfied:
e (ut+v)+w=u+(v+w)
e 0eVsuchthat 0+v=v+0
eu+(-lu=0
239
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¢ u+ v =vVv+ u, commutative law

(ab)v = a(bv) associative law
e (at+b)v=av+bv

e c(lu+v)=cu+tev

e lu=u

Note that multiplication of vectors plays no role in the definition of a vector
space.

Example B.1. Real n-dimensional Cartesian space R”. Let x = (%1, %2,...,%n)
and y = (¥1,92,---,¥n) and a € R. Define

x+y=(z14+y1,Z2+ Y2y, Tn + Yn)

ax = (ax1,0L2, ..., ATy)

Example B.2. Consider the set of all real valued functions T. If f,g € T we
define addition

(f +9)(=z) = f(2) + g(z)
and scalar multiplication

(af)(@) = af(z).
With these definitions T forms a vector space of functions.
Definition B.2. A linear combination of vectors {vi,va,...,v,} is any

vector of the form
W =(C1V]y +CoVa + -+ CpVy.

Definition B.3. A collection of vectors {v1,...,vyp} is called linearly in-
dependent if there is no expression of the form

O=cvi+---+ecpvy

except for the trivial case that ¢; = 0 for all i. A collection of vectors which
is not linearly independent is called linearly dependent.

Definition B.4. A family of vectors which is linearly independent and spans
V' is called a basis. By convention we consider o basis as an ordered set of
vectors.

Definition B.5. Span(S) denotes the subspace which the set of vectors S
spans.

Proposition B.1. Let L be any linearly independent family of vectors con-
tained in a vector space V. The family L' obtained by addingv € V to L, i.e.,
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L' = LU{v} is linearly independent if and only if v is not in the subspace
spanned by L.

Proposition B.2. Any linearly independent family can be extended by adding
elements to get a basis.

Definition B.6. The dimension of a finite dimensional vector space V,
written dimV , is the number of vectors in the basis.

The dimension of the vector space according to the above definition will al-
ways be a whole number. Note that there are several alternative measures
of dimensionality such as the Hausdorff dimension, the topological dimension
and the information dimension.

B.2 MAPPINGS

Definition B.7. Let S, S’ be two sets. A mapping T from S to S’ is an
association which relates every element of S to an element of S’. Formally,

T7:5 - &
u o~ T(u)

(If S' = R we refer to the mapping as a function). T(u) is called the image
of u under T and T'(S) is called the image of S under T.

Example B.3. Let u be a fixed vector in V. Define the mapping T, as

Tw:V —> 1%
Tu(v) = v+nu

T, is referred to as a translation of v by u.

The connection between R" and an n-dimensional vector space is estab-
lished by choosing a coordinate system. To make this more rigorous we intro-
duce a fundamental concept.

Definition B.8. An isomorphism ¢ from a vector space V to a vector
space V' is a bijective map ¢ : V — V' such that

(v + V') =¢(v) + ¢(v)
p(ev) = ch(v).
In other words, the map is compatible with the laws of composition.

Definition B.9. Two vector spaces V,V' are said to be isomorphic if there
i a 1 — 1 correspondence between the vectors veV and v € V'.

Isomorphism is a very strong relationship. In fact if two vector spaces
are isomorphic then they are essentially carbon copies of each other in a
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mathematical sense. We will use this idea later when we want to establish the
equivalence of different representations of pattern vectors.

Theorem B.1. Every n-dimensional vector space U over R s isomorphic to
R"™.

Proof B.2.1. Given a basis B = {uy,us,...,u,} of U we write
u=au +asuy +--- + a,u,.
Take ¢ to be the map of u € U onto its unique coordinates (n-tuple)
¢(a) = (a1,a9,...,a,) =a € R".
Also, if ' € U then we can write
u' =aju; +ajuy + - +a,uy,.

Then
au + pu’ = (aa; + Bay)wy + -+ - + (aay, + Ba),)u,.

Thus we have the 1-1 correspondence

(coordinate free) u <> a= (ai,...,a,) w.r.t. the basis B (B.1)

B.3 INNER PRODUCT SPACES

While the vector space provided the necessary framework within which to
manipulate patterns we need additional structure to relate patterns. In the
following we will assume that u,v,w are elements of a vector space V and
a€elR

A vector space V is called an inner product space if there is defined a law
of composition which maps any two elements of V' onto the real line,i.e.,

VxV R
(u,v) ~ R
with the following properties:
e (u+v,w)=(u,w)+ (v,w). Linearity.
e (u,v) = (v,u). Symmetry.
¢ (ou,v) = a(u,v). Homogeneity.

e (u,u) >0 and (u,u) =0 iff u = 0. Positivity.

One of the most fundamental relationships between vectors is given by their
inner product being 0.
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Definition B.10. Two vectors u,v are said to be orthogonal if (u,v) = 0.

The quantity (u,v) € R is called the inner product of u and v. For a complex
inner product space (u,v) € C and we replace the symmetry condition above
with (u,v) = (v,u), an Hermitian symmetry condition.

Example B.4. V = R” the weighted Euclidean inner product is given by
n
(ll, V) = Z W;i;UV;
i=1

with each w; > 0.

Example B.5. V = C" the weighted complex Euclidean inner product is
given by

n
(u,v) = Z WU V;
=1

with each w; > 0.

B.4 VECTOR AND MATRIX NORMS

The norm of a vector is a unary operator which maps any element of a vector
space V onto the real line and satisfies the properties

e |lu+ v|| < |ul| + ||v]]. Triangle inequality.
¢ |loaf| = [ lull.
¢ ||lu]| > 0. Equality iff u=20.

The following theorem permits a connection between any inner product
space and a normed vector space.

Theorem B.2. If V is an inner product space, the equation
lluf] = v/ (u,u)
defines a norm in V and V is referred to as a normed vector space.
Let x be a vector in R”. Examples of vector norms are

e The l; norm defined as

x|l =Y |2l (B.2)
i=1
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e The I3 norm, or standard Euclidean norm, defined as

lIx]|2 = ZVXTX (B.3)

e The I3 norm, or standard Euclidean norm, defined as

Il = max fo (B.4)

e The weighted norm defined as
lIxllw = [[Wx]| (B.5)
where W is any non-singular matrix.

Matrix norms are defined in the same fashion as vector norms, i.e., a matrix
norm must satisfy

e ||[A+ BJ < ||A|l + ||B]|- Triangle inequality.
o |laAll = |l All-
¢ ||A]| > 0. Equality iff A = 0.

where A and B are matrices.
A widely used example of a matrix norm is the Frobenius norm which is
defined as

A% =" laisl*. (B.6)
i=1 j=1

A special class of matrix norms are referred to as induced matriz norms.
They inherit there measure from vector norms. A matrix norm is induced by
a vector norm if

A
14]) = sup X
A0 ||X||

In other words, ||A[| is the smallest number a such that

for all x. The induced matrix norm is a measure of how much the matrix A
expands a vector, i.e., it is defined by its action.

Induced matrix norms may be induced by different vector norms. The
nature of the norm is identified by the appropriate subscript, i.e., ||A]|2 for
the induced 2-norm.
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Example B.6. Let ¥ be a diagonal matrix with elements (¥ on the diago-
nal. Then

[[Z]l2 = max |[Xx]|2
IxlI=1

hence .
Hﬂhzmywmﬂ

Orthogonal matrices also preserve 2-norms (and F-norms). If @), P orthog-
onal then

QAP = [|Al|

This is not true in general, e.g., it is false for 1-norms.

It follows from these two statements that the 2-norm of a matrix is given
by the largest singular value in the SVD. If A = UXV7T, then || 4|2 = [|Z]2
SO

4]l = o®

B.5 METRIC SPACES

Definition B.11. A metric space is a collection of elements and a law of
composition which defines for every pair of elements belonging to the set a
distance function which satisfies the properties

o d(u,v) > 0 with equality iff u =v.
e d(u,v) =d(v,u)
e d(u,v) <d(u,w) +d(w,v)

Example B.7.
d(u,v)
1+d(u,v)
If d(u, v) is a metric show that dy(u,v) also defines a metric. What is the
range of possible values of dy(u, v).

dy(u,v) =

Solution: To show that dn is a metric we must demonstrate that all the
properties in the definition are satisfied. First note that dy(u,v) = 0 iff
d(u,v) = 0 therefore dy(u,v) = 0 iff u =v. If u # v then d(u,v) > 0, i.e,
dn behaves like the function f(z) = ;. We have f'(z) = (1 + 2)~? which
is monotonically increasing. Hence, dy (u, v) is always positive. To show the

second property we have

d(v,u) d(u,v)

dN(Vau) = 1+d(v,u) - ]_+d(ll,V)

=dn(u,v).

The triangle inequality for dy(u,v) is a straightforward consequence of the
fact that d(u,v) satisfies the triangle inequality.
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To find the maximum value of dy (we have already shown that the mini-
mum is 0) we observe that dy increases monotonically with d. Hence

maxdy = i g

Le., dy(u,v) € [0,00) for all u,v.

The similarity of the definitions of metric and norm should be apparent
and in fact it can easily be shown that every normed linear space is a metric
space if we define the metric as

d(u,v) = |lu—v||.
We now present several examples of metrics which are used in the literature.

Example B.8. The Minkowski metric is given by

n

Aoy, v) = O Jus — i)/

i=1
dpr(1) is often referred to as the city block metric.

Example B.9. The Tanimoto similarity measure is defined on a normed in-
ner product space and is given by

(u,v)
l[all® + [vI* = (u,v)

d(u,v) =

Example B.10. The discrete metric requires only a set of objects and identi-
fies the distance of all non-identical objects as having the value 1, specifically

0 ifu=v
d(u,v)—{ 1 ifu#v

Example B.11. The Hamming distance between two members of a set is
defined as the number of elements of each member which do no match. For
instance if u = (1,0,1,1,1,0),v = (1,1,1,1,0,0) then dgy = 2. As another
example if u = (¢, a,t),v = (h,a,t) then dg = 1.

Example B.12. The Mahalanobis distance
dy (v, v) = (u=v)"C7} (u—v))"/?

where C = uv?” is the covariance matrix of u and v is an optimal distance
for vectors corrupted by normally distributed noise.



