
Supercomputer Hardware Fault Detection

Josh Thompson1, David W. Dreisigmeyer∗,2, and Michael Kirby1

1Colorado State University, Department of Mathematics
2University of Pittsburgh, Department of Mathematics

February 3, 2010

Abstract

This investigation presents two distinct approaches for the prediction
of system failures occurring in the Oak Ridge National Laboratory’s Blue
Gene/P supercomputer. Each technique uses subsets of large data logs of
physical system information such as fan speeds and CPU temperatures.
This data is used to develop models of the system capable of sensing
anomalies, or deviations from nominal behavior. Each algorithm pre-
dicted log reported anomalies in advance of their occurrence without false
positives. Both algorithms failed to detect the same anomaly.

1 Introduction

This investigation concerns the detection of anomalous behavior in large data
sets of supercomputer systems logs. The goal is to identify a system failure in
advance and to maximize the leadtime of an alarm, i.e., the difference between
the timestamp of an alarm and the timestamp of the nearest fault. The problem
is challenging given the large amount of information available, at any instant in
time, that must be analyzed to determine if a failure is immiment.

We propose two distinct approaches for solving this prediction problem.
First, non-negative matrix factorization is used to build a model based on ob-
served failures. Then, new testing data is presented to the system and the model
bases its prediction on the similarity of the new data to the failure data. As
such it may be viewed as a library based algorithm that exploits exemplars of
behavior that is to be detected. However, it is based on a function evaluation
of the new exemplar rather than a pattern matching approach. Secondly, we
apply the MSET algorithm to the same data set. MSET is based on building a
mapping of the identity based on non-fault data. When new data contains nov-
elty the mapping produces a larger than expected residual indicating a future
failure.

∗Email: david.dreisigmeyer@gmail.com

1



In this studey we examine data logs generated by the Oak Ridge National
Laboratory’s Blue Gene/P supercomputer. Each technique uses carefully culled
subsets of large data logs of physical system information such as fan speeds and
CPU temperatures. In this study we restrict our attention to the most severe
errors that were identified in the system log as fatal.

2 Data Preproccesing

Obtaining usable data from these system logs proved to be a respectable task
unto itself. The data consisted of many components and sub-components each
reporting asynchronously and sometimes erroneously. A good deal of the work-
load falls then to the pre-processing step, whose goal was to produce usable,
representative data. In this report we restrict our attention to one subset S of
the system, namely data generated by Rack 00 - Midplane 00. Although system
behavior from one rack / midplane pair was observed to affect system behavior
of an adjacent rack / midplane pair, we found enough interesting questions to
explore by simply using data generated by S to predict faults occuring in S.

Prior to any data transformations the data was cleaned and interpolated
with splines. The interpolation was done to create a synchronous time-series of
each sub-component. The two prediction methods presented each chose various
subsets of S for its analysis. This choice was guided by the geometry of each
of the algorithms. In S there were six clusters of faults and the table below
illustrates a portion of our results.

FAULT ALARM LEADTIME ALARM LEADTIME
CLUSTER AFFINE MAPPING IDENTITY MAPPING

1 2.5 min. 10.4 hours
2 5 min. 10.2 hours
3 80 min. 2.5 hours
4 32.5 min. 1 hour
5 10 min. 7 min.
6 -2.5 min. -22 hours

Table 1: Fault Prediction Results

3 Affine Transformation and Threshold Detec-
tion

A simple (non-invertible) affine transformation of the data in conjunction with
a thresholding for alarm signaling performs very well on the data. For testing
our prediction method, we either used the last three clusters to predict the
preceding faults, or used the first three clusters to predict the latter faults.
The affine transformation was done in a stepwise fashion. First, the data was

2



normalized to remove scale effects. Given the fault times we wished to find data
points with an obvious fault signature. We found that the Non-negative Matrix
Factorization (NMF) [?] method performed extremely well in classifying data.
So the second step of our method was to use NMF to pick out a good direction
for separating fault data from non-fault data.

The direction chosen by NMF should not be considered optimal for classifi-
cation of the data, though it does seem to provide a good clustering algorithm.
However, we can improve the classification direction by performing a General-
ized Linear Discriminant Analysis (GLDA) [?] on the data. Here, every point
that NMF classifies as fault is windowed, so that points with 50 time steps are
not considered non-fault data. The data that remains after this is considered
non-fault data, one of the classes for GLDA. The points that NMF classifies as
faults is the second GLDA class.

3.1 Results

After finding the optimal (GLDA) direction, incoming data is simply scaled
and projected onto the one-dimensional subspace. This magnitude was then
thresholded to classify a new time point as sounding an alarm or not. A sliding
window of length three sounded a fault detection if there were two alarms within
the window. This lead to prediction of five out of six faults with leadtimes of
approximately 2.5 mins, 5 mins, 80 mins, 32.5 mins, 10 mins, and -2.5 mins.

The last time is the fault we missed, which may be mis-stamped. These
are using the first three clusters to predict the last three. Similar results were
found when we used the last three clusters to predict the first three. An ad-
ditional (very strong) fault signal was found near the end of the time series
(approximately 11 hours after the last marked fault). See Figure ??.

4 Detection Using a Mapping of the Identity on
Healthy Data

The Multivariate State Estimation Technique (MSET) is a well-known non-
parametric technique that has been used to predict anomalous system behavior
in large systems [?]. Since coordinates of data points correspond to physical
properties like fan speeds and temperatures, it is assumed that data points
near faults will have different geometry than data points arising from healthy
periods of the system. These differences may be subtle, however, and an MSET
algorithm can be tuned to reveal and exploit these differences.

Data that is considered to be healthy, H is used to define a non-linear map-
ping Φ of the entire data set. New data points that share similarities with H
are left relatively unchanged by Φ, while points that are unfamiliar to H are
changed significantly by Φ. Thus the geometrical differences between a data
point and its image under Φ are used to define a Residual which is used as a
threshold to predict faults. In the results below, we predict a fault soon after
time t if at time t the MSET residual is above the given threshold.

3



The MSET mapping is calculated using an inverse matrix, which may be
calculated or approximated. This calculation is done only as often as one needs
to create a new model for the system and may be done off-line. To create a
mapping representative of a large range of data (weeks,months) efficiently, we
cluster the data into 1500 model points using the well-known LBG clustering
algorithm [?]. We applied this algorithm to various subsets of S but saw the
best results when applied to smaller more correlated portions of S.

4.1 Results

Figures ?? through ?? below indicate results from our prediction scheme using
either of the following two groups of training data, A whose timestamps ranged
from 2.81e8 to 2.83e8 and B whose timestamps fell in the range 2.855e8 to
2.875e8. Each training set was used to predict both the first 3 and the last 3
fault clusters. The map Φ is constructed to encode the angle and magnitude of
the the training data. A Residual in the figures below is the difference between
the norm of a data point xt and the norm of its image under Φ.

The leadtimes generated from using A to predict the last faults, as well as
the leadtimes from using B to predict the first faults are presented in Table 1.
The leadtimes generated from using A and B to predict the first and last faults,
respectively are: -15 mins, 10.2 hours, 2.5 hours, 55 mins, 13 mins, -22 mins.
This iteration of the algorithm missed the first and the last fault. We observe
that the first fault is of a different geometric character than the others, and
our MSET mapping needs to be further tuned to reflect this. The last fault we
think may be mis-labeled, since the strong signal that occurs at the end of our
data set is not marked as a fault.

5 Dissusions and Proposed Algorithm Enhance-
ment

We have proposed two algorithms for predicting anomalies in supercomputer
log data. Each method presented was successful in predicting 5 of 6 anomalies
and both algorithms suggested the presence of an anomaly not registered in the
log data. This study is preliminary and the methods were not highly tuned.
We now propose several enhancements to the model that should improve their
predictive qualities.

The non-negative matrix factorization method is an affine transformation
onto a 1-D subspace followed by a classification using the magnitude of this
projection. One could generalize our method as follows:

• Continue to use the NMF to classify the affinely transformed data into
fault and normal. A window will still be put around any NMF predicted
fault cluster.

• With this classified data, we will find a separating hyper-plane of the
fault from non-fault data. The normal of this hyper-plane will be the

4



projection direction to classify the data by a simple threshold (perhaps
using the windowing method above).

• We should be willing to accept misclassifying normal data as faults since
these misclassifications tend to be separated in time. If an alarm is
sounded when two out of three points are classified as faults, false alarms
should be avoided (as above). This needs to be incorporated into our
optimization routine.

6 Conclusions

5


