Syllabus for M517, Fall, 2002

1. **Basic Topology**
 Chapter 2 of Rudin
 - Metric Spaces
 - Compact Sets
 - Connected and Convex Sets

2. **Numerical Sequences and Series**
 Chapter 3, pages 47-57 of Rudin
 - Convergent Sequences
 - Subsequences
 - Cauchy Sequences and Completeness
 - Upper and Lower Limits

3. **Continuity**
 Chapter 4 of Rudin
 - Limits of Functions
 - Continuous Functions
 - Continuity and Compactness
 - Continuity and Connectedness
 - Discontinuities
 - Monotonic Functions
 - Infinite Limits and Limits at Infinity

4. **Differentiation**
 Chapter 5 of Rudin
 - The Derivative of a Real Function
 - Mean Value Theorems
 - The Continuity of Derivatives
 - Derivatives of Higher Order
 - Differentiation of Vector-Valued Functions
 - Taylor’s Theorem

5. **The Riemann-Stieljes Integral**
 Chapter 6 of Rudin
 - Definition and Existence of the Integral
 - Properties of the Integral
 - Integration and Differentiation

6. **Sequences of Functions**
 Chapter 7 of Rudin
 - Discussion of the Main Problem
 - Uniform Convergence
 - Uniform Convergence and Continuity
 - Uniform Convergence and Integration
 - Uniform Convergence and Differentiation
 - Equicontinuous Families of Functions
 - The Weierstrass Approximation Theorem
7. **Functions of Several Variables**

Chapter 9 of Rudin, Chapters 10, 23 in DePree and Swartz, Chapter 2 in Spivak, Chapters 3 and 5 of Ortega and Rheinboldt

- Linear Transformations
- Differentiation
- The Contraction Principle
- The Inverse Function Theorem
- The Implicit Function Theorem
- Derivatives of Higher Order
- Differentiation of Integrals
- Taylor’s Theorem
- Classification of Critical Points