Remark 2.4

In the case of continuous motions, from the material derivative of an integral formula (1.2.5) and the continuity equation (2.7) we get

\[
\frac{d}{dt} \int_D (pF) \, dV = \int_D \left[\frac{d}{dt} (pF) + pF \Delta \vec{v} \right] \, dV = \int_D \left[p \frac{dF}{dt} + F \left(\frac{d\rho}{dt} + p \Delta \vec{v} \right) \right] \, dV = \int_D p \frac{dF}{dt} \, dV.
\]

We will use this formula when deriving the balance equations.

Definition: Mass flux

Let's calculate the quantity of material through a surface \(S \) in an interval of time equal to \(t \) (see Figure 2.1). Let \(\Delta a \) be a surface element; the quantity of mass through \(\Delta a \) in \(\Delta t = 1 \) is contained in the cylinder with generator \(\vec{n} \Delta a \), as \(1 \Delta a \) is the distance per unit time. With a sign convention that the flux is positive when \(\vec{v} \) and \(\vec{n} \) point in the same direction, or negative otherwise, we obtain for the flux of mass the formula

\[
\Phi = \int_S p \vec{v} \cdot \vec{n} \, da
\]

as \(dV = p \, dV \), and \(\Delta V = |\vec{v} \cdot \vec{n}| \Delta a \).

In fact, in this way we can calculate the flux of any variable having a density \(\Phi \); we get

\[
\Phi = \int_S \vec{v} \cdot \vec{n} \, da
\]
2.3. The Principle of the Variation of Momentum.

The momentum of a continuous system \(P \) with support \(D \) is

\[
\mathbf{H} = \int_\mathcal{P} \mathbf{v} \, dm = \int_\mathcal{D} \mathbf{p} \mathbf{v} \, dV. \tag{2.13}
\]

Postulate: a material system \(P \) moves such that at any time \(t \), the derivative of the momentum with respect to time is equal to the resultant of the external forces acting on \(P \),

\[
\frac{d\mathbf{H}}{dt} = \mathbf{R} \tag{2.14}.
\]

For a continuous medium we need to consider both contact forces of resultant \(\mathbf{R}^c \),

\[
\mathbf{R}^c = \int_\partial \mathbf{r} \, d\mathbf{a} \tag{2.15}
\]

and momentum

\[
\mathcal{M}^c = \int_\partial \mathbf{r} \times \mathbf{r} \, d\mathbf{a} \tag{2.16}
\]

and distance forces like gravitational attraction, of density \(\mathbf{f} \); their resultant force and resultant momentum are

\[
\mathbf{R}^d = \int_\mathcal{P} \mathbf{r} \, dm = \int_\mathcal{D} \mathbf{p} \mathbf{r} \, dV, \tag{2.17}
\]

and

\[
\mathcal{M}^d = \int_\mathcal{P} \mathbf{r} \times \mathbf{r} \, dm = \int_\mathcal{D} \mathbf{p} \mathbf{r} \times \mathbf{r} \, dV, \tag{2.18}
\]

respectively.

From (2.15) - (2.18) and (2.14) we get that

\[
\frac{d}{dt} \int_\mathcal{D} \mathbf{p} \mathbf{v} \, dV = \int_\partial \mathbf{r} \, d\mathbf{a} + \int_\mathcal{D} \mathbf{p} \mathbf{f} \, dV, \tag{4) DCD}, \tag{2.19}
\]
The above formula is valid for both continuous and discontinuous motions. For continuous motions only, if we take into account (2.10), we get the momentum equation under the form

$$\int_D \mathbf{F} \cdot d\mathbf{V} = \int_D \mathbf{F} \cdot d\mathbf{a} + \int_D \rho \mathbf{v} \cdot d\mathbf{V}$$ \hspace{1cm} (2.20)

2.4. The Principle of Variation of the Kinetic Momentum

The kinetic momentum of any part P of a continuous material system M can be defined as

$$\mathbf{K} = \int_M \mathbf{r} \times \mathbf{v} \cdot d\mathbf{m} = \int_D \rho \mathbf{r} \times \mathbf{v} \cdot d\mathbf{V}$$ \hspace{1cm} (2.21)

The principle of variation of the kinetic momentum: A material system M moves such that, at any time t and for any subdomain P of M, the time derivative of the kinetic momentum equals the resultant momentum of external forces acting on P.

Analytically, we can write the above principle as

$$\frac{d}{dt} \int_D \rho \mathbf{r} \times \mathbf{v} \cdot d\mathbf{V} = \int_D \mathbf{F} \cdot d\mathbf{a} + \int_D \rho \mathbf{r} \times \mathbf{v} \cdot d\mathbf{V}$$ \hspace{1cm} (2.22)

and for continuous motions, using the formula (2.10), we get that

$$\int_D \mathbf{r} \times \mathbf{a} \cdot d\mathbf{V} = \int_D \mathbf{F} \cdot d\mathbf{a} + \int_D \rho \mathbf{r} \times \mathbf{v} \cdot d\mathbf{V}$$ \hspace{1cm} (2.23)

Cauchy's Lemma *)

If \(\bar{\tau} \) is continuous w.r.t. \(x^3 \), then at any \(x^3 \in \mathbb{D} \) we have
\[
\bar{\tau}(x^3, \bar{n}) = -\bar{\tau}(x^3, -\bar{n})
\] (2.24)

Proof

Consider a cylinder \(D \), centered at \(x^3 \), such that if reduces to the disc \(\Sigma \) when its height \(h \to 0 \) (see Figure 2.2). From (2.20) we have
\[
\int p \bar{n}^2 \, dv = \int \bar{\tau} \, da + \int \bar{f} \bar{n} \, d\nu
\]
and the volume integrals \(\int \) as well as the integrals on the surface of \(D \), the external surface approach zero as \(h \to 0 \). We are left with
\[
\int [\bar{\tau}(x^3, \bar{n}) + \bar{\tau}(x^3, -\bar{n})] \, da = 0
\]
and from the Fundamental Lemma we get that \(\bar{\tau}(x^3, \bar{n}) + \bar{\tau}(x^3, -\bar{n}) = 0 \) q.e.d.

Cauchy's Theorem

If \(\bar{\tau} \) is a continuous function on \(\mathbb{D} \) then there exists a tensor \(\overline{\tau}(x^3) \), defined on \(\mathbb{D} \), such that at any point \(p(x^3) \) we have
\[
\bar{\tau}(x^3, \bar{n}) = \overline{\tau}(x^3) \bar{n}^3
\] (2.25)
on components,
\[
\bar{\tau}_{ij}(x^3, \bar{n}) = \overline{\tau}_{ij} \bar{n}^i \bar{n}^j, \quad i, j = 1, 2, 3
\] (2.26).

Remark 2.4. Cauchy's theorem shows that \(\overline{\tau} \)
is a linear function of \(\bar{n}^3 \).

*) We consider the current (Eulerian) configuration, at an instant time \(t \), so we omit \(t \) from \(\overline{\tau}(x^3, \bar{n}, t) \).
Remark 2.5. \(\mathbf{T}(\mathbf{x}^2) \) characterizes completely the stress state at \(P(\mathbf{x}^2) \). Indeed, if we know \(\mathbf{T}(\mathbf{x}^2) \) we can then calculate the stress vector \(\mathbf{T} \) for any oriented surface of normal \(\mathbf{n} \).

Proof

We consider a tetrahedron centered at \(P \) and having three sides perpendicular to the coordinate axes (see Fig. 2.3). Denote by \(h \) the length of the perpendicular from \(P \) to the opposite side \(PP_2P_3 \).

We observe that the volume of the tetrahedron approaches zero when \(h \to 0 \). This is not a particular choice since the dependence of \(\mathbf{T} \) on \(\mathbf{n} \) is unique. Denote by \(\mathbf{n} \) the normal to \(PP_2P_3 \), and by \(\Delta a_i \), \(i = 1, 2, 3 \), the areas of the sides \(PP_2P_3 \), \(PP_1P_3 \), \(PP_1P_2 \). We have denoted by \(\mathbf{T}_j(\mathbf{x}^2) = \mathbf{t}(\mathbf{x}, \mathbf{v}_j) \). According to Cauchy's Lemma, we denote by \(-\mathbf{T}_j \) the stress vector in the side \(PP_2P_3 \); analogously, we can define \(-\mathbf{T}_2 \) and \(-\mathbf{T}_3 \). If \(\Delta a \) is the area of \(PP_2P_3 \), we have

\[
\Delta a_i = \mathbf{n} \cdot \Delta a, \quad i = 1, 2, 3 \tag{2.27}
\]

The volume of the tetrahedron is \(\frac{1}{6} h \Delta a \). We apply the principle of the variation of momentum with \(D \) the tetrahedron and we use the formula

\[
\int_D \mathbf{F}(\mathbf{x}^2) dV = (\mathbf{F}(\mathbf{x}) + \mathbf{E}) \int_D dV,
\]

where \(\lim \varepsilon = 0 \). We get, from (2.27),

\[
p(\mathbf{x}) \left[\mathbf{a}_i(\mathbf{x}) - f(\mathbf{x}^2) - \varepsilon \right] \quad \frac{1}{6} h \Delta a = \left[\mathbf{t}(\mathbf{x}, \mathbf{n}) + \mathbf{E}_n \right] \Delta a - \sum_{j=1}^{3} \left[\mathbf{T}_j(\mathbf{x}) + \mathbf{E}_j \right] \Delta a_j.
\]
with \[\lim_{n \to 0} (\xi, \eta, \zeta) = 0. \]

Using (2.27), dividing by Δa and taking the limit $n \to 0$, we get
\[
\overrightarrow{t}(\mathbf{x}, \mathbf{n}) = T_{ij}(\mathbf{x}) n_j.
\]
(2.28)

After projection of (2.28) on $0x_i$ we get (2.26).

Remark 2.6.
The formula (2.26) is the proof that T is a tensor. It is the stress tensor, the first tensor to be defined in sciences. The name "tensor" comes from "tension".

Remark 2.7.
Let's project $t(\mathbf{x}, \mathbf{n})$ along a direction of unit vector \mathbf{m}. We have that
\[
\mathbf{m} \cdot \overrightarrow{t} = \overrightarrow{m} \cdot T \mathbf{n} = T_{ij} m_i n_j.
\]
(2.29)

This formula helps us to show that if we change the basis from $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ to another orthogonal basis of $\mathbf{e}_1', \mathbf{e}_2', \mathbf{e}_3'$, the quantity \overrightarrow{t} changes according to the formula
\[
\overrightarrow{t} = \mathcal{Q} \overrightarrow{t} \mathcal{Q}^T.
\]
(2.30)
where \mathcal{Q} is the change of base matrix. Equivalently,
\[
T_{ij}' = \mathcal{Q}_{ke} \mathcal{Q}_{ij} T_{ij}.
\]
(2.30')

If we take $\mathbf{m} = \mathbf{n}$ we get the formula for the normal stress
\[
\mathcal{N} = \mathbf{n} \cdot \overrightarrow{t} = \mathbf{n} \cdot T \mathbf{n} = T_{ij} n_i n_j.
\]
(2.31)

Question. Find those directions \mathbf{n} for which \mathcal{N} takes extremal values.