Problem 1: Show that the mappings described below are linear:
(a) \(T : \mathbb{C} \rightarrow \mathbb{C} \) (with \(\mathbb{C} \) regarded as a vector space over \(\mathbb{R} \)) mapping a complex number into its conjugate
(b) \(T : P_3 \rightarrow P_3 \) defined as \((Tp)(t) = p(t+1) - p(t) + \int_{-1}^{1} s^2 p(s) \, ds\)

Problem 2: Investigate the validity of the following statement and prove it if it is true, give a counterexample if it is false: If \(I \) is a non-zero scalar linear function on a (not necessarily finite-dimensional) linear space \(X \), and if \(\alpha \) is an arbitrary scalar, does there necessarily exist a vector \(x \in X \) such that \(I(x) = \alpha \)?

Problem 3: Show that if \(\dim X = 1 \) and \(T \in \mathcal{S}(X, X) \) then there is \(k \in \mathbb{K} \) such that \(Tx = kx \) for all \(x \in X \).

Problem 4: Suppose that \(U \) and \(V \) are finite-dimensional linear spaces and \(S \in \mathcal{S}(V, W) \), \(T \in \mathcal{S}(U, V) \). Show that \(\dim N_{ST} \leq \dim N_S + \dim N_T \).

Problem 5: Let \(T : \mathbb{C}^3 \rightarrow \mathbb{C}^3 \) be defined as
\[T((a_1, a_2, a_3)) = (a_1 - a_2 + ia_3, 2a_1 + ia_2, (2 + i)a_1 - a_3) \]
(a) Verify that \(T \) is a linear map
(b) Find \(R_T \) and \(N_T \) (by giving bases for both).

Problem 6: Show that if \(X \) is a finite-dimensional space then the space \(L(X, X) \) of all linear maps of \(X \) into \(X \) is finite-dimensional. Find the dimension of \(L(X, X) \).

Problem 7: Let \(T : P_n \rightarrow P_n \) be the linear map such that \(Tp(t) = p(t + 1) \). Show that if \(D \) is the differentiation operator then
\[T = 1 + \frac{D}{1!} + \frac{D^2}{2!} + \ldots + \frac{D^{n-1}}{(n-1)!} \]

Problem 8: If \(A \) is a linear map on an \(n \)-dimensional linear space, then there exists a non-zero polynomial \(p \) of degree \(\leq n^2 \) such that \(p(A) = 0 \).

Problem 9: Let \(\theta \) be a real number. Show that the following two matrices are similar over the field of complex numbers:
\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}, \quad \begin{bmatrix}
e^{i\theta} & 0 \\
0 & e^{-i\theta}
\end{bmatrix}
\]

Problem 10: Let \(T \) be a linear operator on \(\mathbb{R}^2 \) defined by \(T(a_1, a_2) = (-a_2, a_1) \). Prove that for every real number \(c \) the operator \((T - cI) \) is invertible (without the use of determinants or eigenvalues).